- Reclamation
- R&D
- Research Projects
- In Channel Systems for Providing Endangered Species Habitat While Providing Continued Water Delivery and Use and Power Production
In Channel Systems for Providing Endangered Species Habitat While Providing Continued Water Delivery and Use and Power Production
Project ID: 7621
Principal Investigator: Drew Baird
Research Topic: Sediment Management and River Restoration
Funded Fiscal Years:
2005,
2006 and
2007
Keywords: None
Research Question
Endangered aquatic species needs throughout the Western United States have the potential via court action to increase river flows, thereby potentially reducing water and power deliver to Reclamation customers.
* What are stable instream structures that will provide habitat to help recover endangered species thereby reducing adverse water delivery impacts?
* Can simple instream channel structures be developed that improve habitats and provide bank and bed stabilization and reduce sediment deposits near fish screen structures?
Need and Benefit
Effective use of limited water and power resources while meeting endangered species habitat requirements is becoming increasingly contentious and difficult to achieve in the Western United States. Water users desire to continue to use historic water supplies, power users desire to maximize power production, while Endangered Species Act (ESA) compliance causes increased water supplies for endangered species habitats.
River restoration structures can be used to meet requirements of threatened and endangered species while enabling continued water use and delivery, and power production by increasing the quality and diversity of the habitat. Native material habitat restoration structures have been constructed without knowledge of the engineering performance properties and, as a result, fail to perform as intended. Many restoration structures also provide bank and bed stabilization benefits. Restoration structures that provide bed stabilization are used as water diversion structures and roughened channels for fish passage and are constructed using boulders without the traditional structural features of sheetpile walls or geomembranes.
In addition, past methods of bank stabilization offered limited habitat value or diversity. Transverse structures used in habitat restoration also are used to reduce sediment deposits in front of fish screen and bypass structures. Currently, methods and standards based upon predictable engineering and hydraulic performance to implement the above listed structures with habitat value do not exist. Yet Reclamation personnel are tasked with implementing these types of structures on many rivers throughout the Western United States, including but not limited to the Rio Grande Basin, the Columbia River Basin, the Sacramento River basin and the Lower Colorado river. To address the lack of methods and standards, the Albuquerque Area Office began a physical hydraulic model study in fiscal year (FY) 2001 at Colorado State University. The purpose of the physical model study is to measure the engineering and hydraulic performance properties of these structures in both a fixed bed model with bends of the same shape as natural rivers, and a mobile bed flume. From FY 2001 to the present, the physical model has been used to develop engineering and hydraulic performance data for restoration and bank stabilization structures.
In addition, the U.S. Army Corps of Engineers (Corps) Engineer Research and Development Center recognized the lack of methods and standards and is conducting a field survey of these type of structures. The goal of the Corps' research is to compile a database that can be used to characterize long term performance. The Corps recognized the need to integrate the physical model and field performance data and offered their data set to Reclamation. Reclamation's laboratory data provides detailed information in a controlled setting that can be used for planning and performance that can not be measured accurately in the field. The Corps research provides long-term performance data and river system effects on the structures and the effects of the structures on the river system that can not be measured in the laboratory. In addition, the Corps research provides an assessment of whether or not the structures actually perform their intended purpose, and a comprehensive inventory of individual project performance.
Together, both will provide Reclamation personnel with the ability to select and design the most appropriate river restoration and bank/bed stabilization structures that meet project purposes in the most environmentally and cost effective manner consistent with river conditions. The laboratory data can be extended to river conditions not tested in the laboratory using the Corps field data. This research will render the results useful for rivers and projects throughout Reclamation.
Contributing Partners
Contact the Principal Investigator for information about partners.
Research Products
Independent Peer Review
The following documents were reviewed by qualified Bureau of Reclamation employees. The findings were determined to be achieved using valid means.
Alphabet Weirs Physical Modeling (interim, PDF, 5.0MB)
By Joseph J Mecure
Report completed on October 02, 2006
Stage-Discharge Relationships For U-A-, and W-Weirs in Un-Submerged Flow Conditions (interim, PDF, 446KB)
By Dr. Christopher Thornton, Anthony M Meneghetti, Mr. Kent Collins, Dr. Steven R. Abt and S. Michael Scurlock
Report completed on February 01, 2011
Numerical Analysis of River Spanning Rock U-Weirs: Evaluating Effects of Structure Geometry on Local Hydraulics (interim, PDF, 1.6MB)
By Chris Holmquist-Johnson
Report completed on July 01, 2011
Equilbrium Scour Downstream of Three-Dimensional Grade-Control Structures (final, PDF, 1.0MB)
By Dr. Steven R. Abt, S. Michael Scurlock and Dr. Christopher Thornton
Report completed on July 25, 2011
Bureau of Reclamation Review
The following documents were reviewed by experts in fields relating to this project's study and findings. The results were determined to be achieved using valid means.
Qualitative Evaluation of Rock Weir Field Performance and Failure Mechanisms (final, PDF, 4.5MB)
By David Mooney, Chris Holmquist-Johnson and Elaina R Holburn
Report completed on September 03, 2007
Quantitative Investigation of the Field Performance of Rock Weirs (interim, PDF, 1.4MB)
By Ms. Elaina R Holburn, Mr. David Varyu and Ms. Kendra Russel
Report completed on December 29, 2009
Rock Ramp Design Guidelines (final, PDF, 1.0MB)
By David Mooney, Chris Holmquist-Johnson and Susan Broderick
Report completed on June 28, 2014