Water and Energy Efficiency Project for FY 2020

Grant Proposal
FOA No: BOR-DO-21-F001

Westlands Advanced Metering Infrastructure Project

Applicant: Westlands Water District
Project Manager: Antonio Solorio
E-mail: asolorio@westlandswater.org
Phone Number: (559)241-6244

September 17, 2020
Westlands Water District
3130 N Fresno Street, P.O. Box 6056
Fresno, CA 93703
Table of Contents

Technical Proposal .. 4

Executive Summary ... 4

Background Data ... 4

Westlands Water District .. 4

Project Location ... 7

Technical Project Description .. 8

Evaluation Criteria ... 10

Project Budget .. 33

Funding Plan and Letters of Commitment .. 33

Budget Proposal ... 33

Budget Narrative ... 35

Environmental Compliance Costs ... 37

Required Permits/Approvals ... 37

Letters of Support ... 38

Official Resolution .. 40

References .. 43
Table of Figures

Figure 1: Westlands Water District .. 6
Figure 2: Proposed AMI Project Locations ... 7
Figure 3: Base Station Locations .. 8
Figure 4: Corcoran Clay Extent ... 11
Figure 5: Meter Comparison Study .. 13
Figure 6: McMag3000 Advanced Flow Measuring Device ... 15
Figure 7: Westside Subbasin ... 19
Figure 8: Disadvantaged Communities ... 21

Table of Tables

Table 1: Major Crop Distribution for 2019 ... 5
Table 2: Size and Number of Well Meters ... 9
Table 3: Groundwater Savings .. 13
Table 4: Quantity & Description of Equipment ... 15
Table 5: AMI Project Cost ... 33
Table 6: Budget Proposal ... 34
Westlands Water District (District) is pleased to submit this grant proposal for the Westlands Advanced Metering Infrastructure Project (Project) to the United States Bureau of Reclamation (Reclamation) for the WaterSMART: Water and Energy Efficiency Grant for Fiscal Year 2021. The District’s Project will be implemented District-wide, which includes both Fresno County and Kings County. The proposed Project will install and replace 760 manually read groundwater meters in the District with remote read, automated meters to increase water management efficiency and produce sustainable water savings. The District requests $1,609,000 from the Water and Energy Efficiency Grant to fund the Project. The District anticipates installing the new metering devices by June 2023. Project implementation will take approximately 2 years.

The Project will retrofit 760 manually-read meters on groundwater wells with advanced, automated metering devices. The advanced metering devices can transmit data over a regional network. In addition to the installation of the advanced meters, an advanced metering infrastructure (AMI) system will be implemented to establish a regional network with the advanced meters in the entire District, which would receive data from the meters across the District. The AMI system includes a database that would need to be implemented to store the daily groundwater well information from the advanced meters. The Project would increase water management efficiency and produce sustainable water savings offering the following benefits:

Estimated Amount of Water Savings over the 20-year life span: **316,000 acre-feet**

Estimated Amount of Reduced Carbon Emissions: **5.3 metric-tons of CO₂**

Background Data

Westlands Water District

The District encompasses more than 600,000 acres of farmland located in western Fresno and Kings Counties and serves approximately 700 family-owned farms that average 875 acres in size. The District is a Central Valley Project (CVP) contractor with water service contracts for 1,195,383 AF. The District receives water through the Delta Division/San Luis Unit of the CVP.
conveyance CVP facilities used for delivering water to the District include the Delta Mendota Canal (DMC) and the San Luis Canal (SLC). Water is delivered directly to lands in the San Luis Unit or is stored temporarily in San Luis Reservoir (SLR) for later delivery. Once diverted from the CVP facilities, water is delivered to farmers through 1,034 miles of underground pipe and over 2,900 metered delivery outlets.

The District is home to a variety of different crops. The major crops grown in the District are almonds, tomatoes, pistachios, and cotton. As seen in Table 1, almonds are grown on more acres than any crop in the District.

<table>
<thead>
<tr>
<th>Major Crop</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almonds</td>
<td>92,700</td>
</tr>
<tr>
<td>Tomatoes-Process</td>
<td>63,048</td>
</tr>
<tr>
<td>Pistachios</td>
<td>54,234</td>
</tr>
<tr>
<td>Cotton</td>
<td>36,605</td>
</tr>
</tbody>
</table>

Table 1: Major Crop Distribution for 2019
Figure 1 below shows the location of Westlands Water District, surrounding cities, local water conveyance systems, and other landmarks surrounding the District.

In addition to the CVP supply, landowners in the District rely on groundwater, water transfers, and temporary water acquisitions to supplement the CVP supply. If the water portfolio is insufficient to farm all land, land is fallowed. In 2019, the District received about 790,000 AF from the 75% CVP allocation. The District pumped approximately 328,00 AF of groundwater and water users received 115,000 AF of transferred water.
Figure 2: Proposed AMI Project Locations
Technical Project Description

The District is proposing to implement an Advanced Metering Infrastructure Project that will install approximately 760 groundwater meters in the District with advanced, automated metering devices. In addition to the meters, the Project includes the installation of transceivers and establishing a regional network. Twenty-one base stations will be established across the District. Figure 3 below shows the proposed locations of the twenty-one base stations and the signal strength of each. The twenty-one base stations, spread throughout the District, give the District the ability to receive data from any of the proposed meters with a strong, stable connection.

Currently, groundwater meters are privately owned and are not serviced or repaired until the owner reports the issue. The District is able to identify issues when the meters are manually read, but readings are only taken once a month. With the implementation of the Groundwater Sustainability Plan (GSP) for the Sustainable Groundwater Management Act (SGMA) and the

Figure 3: Base Station Locations
District as the GSA, the District would own and maintain the newly installed meters in the District to ensure accuracy and water use efficiency.

The proposed Project would increase efficiency in servicing the damage meter, employ water management efficiency, and provide an overall water savings. The proposed Project enables the District to identify, service, and maintain the inaccurate or damaged meter(s) in a timely manner. Timely responses result in water savings that would otherwise be lost or ineffectively used. Effective groundwater application will aid the District’s path to achieve sustainability in the Westside Subbasin.

Table 2 titled, “Size and Number of Well Meters”, summarizes the meter diameter and number of wells that require that size meter.

<table>
<thead>
<tr>
<th>Size (in)</th>
<th>Total Number of Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>387</td>
</tr>
<tr>
<td>12</td>
<td>327</td>
</tr>
<tr>
<td>>12</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>760</td>
</tr>
</tbody>
</table>

The data collected from the meters will be transmitted automatically and recorded on the database. The District will use this database for water management and billing purposes. The proposed Project allows the District to increase data collection frequency, reduce labor time, and reduce mileage on District vehicles, freeing up staff to work on other higher priority tasks. The advanced metering would detect any meter deficiencies, like inaccurate meter readings, that can contribute to overirrigation, causing the over application of water.

Developing the AMI Project District-wide would provide beneficial infrastructure for State programs, like the SGMA, by improving the accuracy of the flow measured by the metering devices. SGMA requires critically over drafted subbasins to develop a GSP to sustainably manage the subbasin by the year 2040. Groundwater Sustainability Agencies (GSAs) were created to manage their subbasins’ GSP. The District is the GSA for the Westside Subbasin and is developing the GSP. The GSP’s success depends on accounting for the amount of groundwater pumped in the District.
Evaluation Criteria

E.1.1. Evaluation Criterion A—Quantifiable Water Savings (30 points)

Describe the amount of estimated water savings.
For projects that conserve water, please state the estimated amount of water expected to be conserved (in acre-feet per year) as a direct result of this project.

Estimated Amount of Water Savings over the 20-year life span: **316,000 acre-feet.**

Supporting information is included in the following sections.

Describe current losses.
Please explain where the water that will be conserved is currently going (e.g., back to the stream, spilled at the end of the ditch, seeping into the ground)?

Current losses are due to inaccurate groundwater measurement readings and leaks within the meters that can lead to over application of water. Details regarding current water losses can be found in the following sections and the Westlands Water District Meter Comparison study found in Appendix A.

Water losses are currently seeping into the aquifers below. Unfortunately, as shown in **Figure 4**, the Corcoran Clay is present in most of the District. The Corcoran Clay restricts percolation into the Lower Aquifer, where 85% of the groundwater is extracted by water users within the District.
Figure 4: Corcoran Clay Extent
Describe the support/documentation of estimated water savings: Please provide sufficient detail supporting how the estimate was determined, including all supporting calculations. Note: projects that do not provide sufficient supporting detail/calculations may not receive credit under this section. Please be sure to consider the questions associated with your project type (listed below) when determining the estimated water savings, along with the necessary support needed for a full review of your proposal. *In addition, please note that the use of visual observations alone to calculate water savings, without additional documentation/data, are not sufficient to receive credit under this section. Further, the water savings must be the result of reducing or eliminating a current, ongoing loss, not the result of an expected future loss.*

a) How has the estimated average annual water savings that will result from the project been determined? Please provide all relevant calculations, assumptions, and supporting data.

The water savings that result from the proposed Project would decrease the amount of water lost from inaccurate meters that could result from overirrigation. The Project enables water users to efficiently apply water which results in an estimated water savings of 316,000 AF over a 20-year period. Based on studies of other AMI systems, advanced metering infrastructure implementation reduces the total amount of applied water which results in efficient water management. The District also prepared a Meter Comparison Study, included in Appendix A, that summarized the accuracies of current District meters to the proposed meter for the Project. On average, the analysis found that replacing the existing meters with the Project’s proposed meter would result in a 5.3% water savings.

**Table 3 titled, “Groundwater Savings”, shows the amount of groundwater pumping in the past 20 years. The amount of groundwater pumping that occurs in the District depends on the Central Valley Project (CVP) allocation. Surface Water allocation and groundwater pumping are inversely related and conjunctively used in the District. For example, the higher the CVP allocation, the less groundwater pumped in the District. Based on the Meter Comparison Study conducted by Westlands Water District, when compared to the proposed meters for the AMI technology, three different meters that are used across the District resulted in 1.8 – 8.7% maximum accuracy differentials as shown in Figure 5 below. Assuming not all meters in the District are one specific type of meter, an average was used to get a better sense of the accuracy differential. Assuming an average 5.3% reduction in groundwater pumping reduction due to more efficient water management, the District could save an approximately 316,000 AF throughout the 20-year life span of the advanced metering devices.*
Table 3: Groundwater Savings

<table>
<thead>
<tr>
<th>Year</th>
<th>CVP Allocation (%)</th>
<th>Groundwater Pumping (TAF)</th>
<th>Groundwater Savings (TAF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>70</td>
<td>20</td>
<td>1.1</td>
</tr>
<tr>
<td>2000</td>
<td>65</td>
<td>225</td>
<td>11.9</td>
</tr>
<tr>
<td>2001</td>
<td>19</td>
<td>215</td>
<td>11.4</td>
</tr>
<tr>
<td>2002</td>
<td>70</td>
<td>205</td>
<td>10.9</td>
</tr>
<tr>
<td>2003</td>
<td>75</td>
<td>160</td>
<td>8.5</td>
</tr>
<tr>
<td>2004</td>
<td>70</td>
<td>210</td>
<td>11.1</td>
</tr>
<tr>
<td>2005</td>
<td>85</td>
<td>75</td>
<td>4.0</td>
</tr>
<tr>
<td>2006</td>
<td>100</td>
<td>15</td>
<td>0.8</td>
</tr>
<tr>
<td>2007</td>
<td>50</td>
<td>310</td>
<td>16.4</td>
</tr>
<tr>
<td>2008</td>
<td>40</td>
<td>460</td>
<td>24.4</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
<td>480</td>
<td>25.4</td>
</tr>
<tr>
<td>2010</td>
<td>45</td>
<td>140</td>
<td>7.4</td>
</tr>
<tr>
<td>2011</td>
<td>80</td>
<td>45</td>
<td>2.4</td>
</tr>
<tr>
<td>2012</td>
<td>40</td>
<td>355</td>
<td>18.8</td>
</tr>
<tr>
<td>2013</td>
<td>20</td>
<td>640</td>
<td>33.9</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>655</td>
<td>34.7</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>660</td>
<td>35.0</td>
</tr>
<tr>
<td>2016</td>
<td>5</td>
<td>612</td>
<td>32.4</td>
</tr>
<tr>
<td>2017</td>
<td>100</td>
<td>54</td>
<td>2.9</td>
</tr>
<tr>
<td>2018</td>
<td>50</td>
<td>328</td>
<td>17.4</td>
</tr>
<tr>
<td>2019</td>
<td>75</td>
<td>89</td>
<td>315.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5,953 TAF</td>
</tr>
</tbody>
</table>

Total savings: 316 TAF of Water Savings

Figure 5: Mag/Prop Meter Comparison

- McMag3000
- Seametrics AG90
- Water Specialties LP 32
- Water Specialties LP 32D

b) Have current operational losses been determined? If water savings are based on a reduction of spills, please provide support for the amount of water currently being lost to spills.

Current operational losses are due to inaccurate groundwater measurement readings that can lead to over application of water. Majority, 99 percent, of the sites have groundwater flow
meters. Meters that may be damaged, inoperable, or broken impact reading accuracy by greater than ±5 percent. The meters with variances greater than ±5 percent are older meters nearing their lifespan or meters that are not calibrated properly. The District services the groundwater meters when either the well owner requests the service or the District’s operator identifies the damaged meter during the monthly meter reading. If the damage to the meter is minor, the meter can be serviced at the site. If not, the meter will have to be repaired or replaced at on the District’s field offices.

Based on the AMI studies, like the *Evaluation of the East Bay Municipal Utility District’s Pilot of WaterSmart Home Water Reports*, the AMI system results in water savings that result from improved water use management. After looking at the different AMI studies that have been implemented, there are a variety of benefits the AMI systems produce. The proposed AMI Project will benefit customers by providing them access to their respective groundwater meter database. The District’s water user can actively improve their water management efficiency. The water users would also be able to notice if there is a discrepancy from the usual amount of water they use. If they notice it is much higher than the owner expected, the user knows there must be something wrong. In addition, the AMI system can detect early leaks and send notifications to the well owner. The early leak detection system saves time, money, and most importantly, water.

c) Are flows currently measured at proposed sites and if so, what is the accuracy of existing devices? How has the existing measurement accuracy been established?

Measurements of flows, accuracies, and supporting documentation, including the District’s meter Comparison Study, are discussed above in sections (a) and (b).

d) Provide detailed descriptions of all proposed flow measurement devices, including accuracy and the basis for the accuracy.

The District is proposing to replace 760 current groundwater meters and install meters on ten unmetered groundwater wells in the District with the (Micrometer) McMag3000. The advanced, magnetic flow meter with a saddle mount design is capable of logging flow measurement data with a guaranteed battery life of 5 years. Under District operations, the meter will take fewer readings per day, which could extend the battery life up to 10 years. The magnetic flow meter has multiple sensor points to deliver accuracies of ±2%. The McMAG3000 has the possibility to deliver accuracies of ±1% with custom factory calibration. Table 4 titled, “Quantity & Description of Equipment,” lists the description and quantity of the equipment needed for each of the Project. Figure 6 titled, “McMag3000 Advanced Flow Measuring Device”, includes a picture of the McMAG3000, the proposed meter for the Project.
Table 4: Quantity & Description of Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity (EA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6" McMag 3000 Flow Meter</td>
<td>2</td>
</tr>
<tr>
<td>8" McMag 3000 Flow Meter</td>
<td>16</td>
</tr>
<tr>
<td>10" McMag 3000 Flow Meter</td>
<td>324</td>
</tr>
<tr>
<td>12" McMag 3000 Flow Meter</td>
<td>274</td>
</tr>
<tr>
<td>>12" McMag 3000 Flow Meter</td>
<td>25</td>
</tr>
<tr>
<td>MiNodes, Mueller Hybrid Network</td>
<td>760</td>
</tr>
<tr>
<td>Hangers, Mueller Hybrid Network</td>
<td>760</td>
</tr>
</tbody>
</table>

Figure 6: McMag3000 Advanced Flow Measuring Device

e) Will annual farm delivery volumes be reduced by more efficient and timely deliveries? If so, how has this reduction been estimated?
The Project will install meters used to measure flow from groundwater wells. Although, the devices do not directly impact deliveries, the Project will provide indirect benefit to water users who use surface water deliveries. The water savings that come from implementing the advanced metering devices can be used to reduce that amount of surface water needed to be transferred in and the amount of groundwater pumped.

f) How will actual water savings be verified upon completion of the project?
The District’s water savings will be verified using the AMI Leakage Detection technology. Along with the ability to collect data daily, the AMI technology has the capacity to notify the District of any leaks that are occurring at the meter site. Due to the efficiency of the leakage detection, the
meter can be serviced quickly and only a minimal amount of water will be lost. Water savings can be estimated and verified by simulating water user’s management of groundwater pumping before and after implementation of the proposed Project. Accurate meter readings and improved water management will result in water savings.
E.1.2. Evaluation Criterion B—Water Supply Reliability (18points)

1. Will the project address a specific water reliability concern? Please address the following:

 o Explain and provide detail of the specific issue(s) in the area that is impacting water reliability, such as shortages due to drought, increased demand, or reduced deliveries. Will the project directly address a heightened competition for finite water supplies and over-allocation (e.g., population growth)?

Reliability of the District’s CVP supply has decreased due to the Central Valley Project Improvement Act, Delta Smelt, and Salmon Biological Opinions and drought in recent years. When the District receives a reduced CVP allocation, water users in the area must rely on groundwater pumping or other local water sources to produce their crops. However, groundwater is limited in supply. According to SGMA, critically overdrafted subbasin must reach sustainability by 2040. To sustainably manage the subbasin, groundwater levels and storage must be maintained effectively. Water users will have access to accurate usage information in a timely manner. Implementing the Westlands AMI Project would improve water use management and accurately measure the amount of groundwater pumped.

Furthermore, the District need to account for the total amount of CVP water applied within the District for groundwater storage. The District has developed the Aquifer Storage and Recovery (ASR) program that would enable the injection of surface water, such as CVP and Section 215 water. The proposed Project will account for subsequent extraction of the injected water consistent with USBR’s white paper as shown in Appendix B. The ASR wells increase the water supply reliability of farmers and improve sustainability by recovering the declining groundwater levels.

In addition, the proposed metering devices could accurately measure the amount of water being injected into the groundwater aquifers by the retrofitted ASR wells.

 o Describe how the project will address the water reliability concern? In your response, please address where the conserved water will go and how it will be used, including whether the conserved water will be used to offset groundwater pumping, used to reduce diversions, used to address shortages that impact diversions or reduce deliveries, made available for transfer, left in the river system, or used to meet another intended use.

The proposed AMI Project would save water by improving the water management efficiency of the well owners and reduce over irrigation in the District. The District will save approximately 316,000 AF over the lifespan of the proposed meters and collectors. Additionally, groundwater wells are pumped to address the surface water shortage and the McMag meter 3000 will ensure
efficiency water application practices based on accurate crop demands. The water savings would be reflected in a sustainably managed groundwater basin.

- **Provide a description of the mechanism that will be used, if necessary, to put the conserved water to the intended use.**

The conserved groundwater will be used in subsequent years after the proposed Project has been implemented. The water savings from the proposed Project will positively reflect the sustainable groundwater management of the groundwater basin.

- **Indicate the quantity of conserved water that will be used for the intended purpose.**

As shown on Table 3, District could save approximately 316,000 AF of groundwater in the Westside Subbasin throughout the 20-year life span of the advanced metering devices. This results in an average of 15,800 AF of water per year that would be used by the water users during periods of drought.

2. Will the project make water available to achieve multiple benefits or to benefit multiple water users? Consider the following:

- **Will the project benefit species (e.g., federally threatened or endangered, a federally recognized candidate species, a state listed species, or a species of particular recreational, or economic importance)? Please describe the relationship of the species to the water supply, and whether the species is adversely affected by a Reclamation project.**

Lands within the District’s service area might contain habitat where endangered species could be found. The California least tern, San Joaquin kit fox, Tipton kangaroo rat, blunt-nosed leopard lizard, woolly-threads and giant garter snake are known species that could be found in the District’s service area identified by USBR. Due to the lack of environmental disturbance in the construction of the proposed AMI Project, the project will not negatively impact the species. In addition, the proposed Project would increase water user’s ability to farm, thus providing a benefit to the endangered species within the District. Farming benefits the endangered species within the area by maximizing agricultural land while avoiding endangered habitats and applying pesticides to harmful weeds that could otherwise invade habits of the endangered species (CropLife America, 2018).

- **Will the project benefit a larger initiative to address water reliability?**
The proposed Project would increase groundwater pumping efficiency, which directly benefits the Sustainable Groundwater Management Act (SGMA). SGMA was passed in 2014 and is focused on managing overdraft in the groundwater basins and achieving sustainable groundwater levels by 2040. The proposed Project will be located within the District, which is located within the San Joaquin Valley-Westside Subbasin (Westside Subbasin) as shown in Figure 7. The Westside Subbasin is one of the subbasins that was deemed critically overdrafted by the California Department of Water Resources (DWR). Groundwater pumping is one of the factors that contributes to overdraft and declining water levels.

Figure 7: Westside Subbasin

- Will the project benefit rural or economically disadvantaged communities?

The proposed Project would benefit the disadvantaged communities (DACs) within the District, shown in the Figure 8 below, by improving groundwater conditions and enhancing conjunctive use opportunities over the course of the 20-year life span of the Project. Currently, the DACs rely purely on surface water sources from the San Luis Canal. DACs, like the City of Huron, are...
customers of the District and are severely impacted by the water shortages and higher water rates during drought periods. It is our understanding that three disadvantaged communities in the District plans to develop groundwater wells in the future to help improve water reliability during periods of drought.
3. Does the project promote and encourage collaboration among parties in a way that helps increase the reliability of the water supply?

 o Is there widespread support for the project?
There is widespread support for the Project. Balancing the delivery of surface water supply and groundwater within the District are a crucial water management tool supported by the local water users and enhanced by the Proposed Project. The proposed Project will also allow the water users to access daily groundwater pumping data. Additionally, local communities, like the City of Huron and Fresno County, provided letters of support for the proposed Project. Local communities support the Project because of the conservation of natural resources and effective usage of water which results in a water savings.

- **What is the significance of the collaboration/support?**
 Westlands AMI Project promotes improvement of water management in the District. During droughts, local farm owners face farming hardships when CVP allocation is limited. The farmers turn to groundwater pumping. With the installment of the AMI Project, the farmers can have more reliable metering devices that allow the farmers to make better decisions, which can result in sustainable groundwater conditions.

- **Is the possibility of future water conservation improvements by other water users enhanced by completion of this project?**
 Yes, the objective of the Project is to improve future water conservation in the District. The 316 TAF of quantifiable water savings, shown in Table 3, increases the possibility of future water conservation improvements by other water users. This objective is attainable through daily data collection.

- **Will the project help to prevent a water-related crisis or conflict? Is there frequently tension or litigation over water in the basin?**
 Yes. The proposed Project supports accurate groundwater pumping measurements in the District. Accurate data is the foundational principle that the District uses to manage its Monthly Water Schedule and the Westside Subbasin GSP. Legal tension over water in the basin is not common in the District, however, with the implementation of the GSP accurate data is instrumental to ensure monitoring the groundwater pumping helps support SGMA by sustainably managing groundwater conditions while not impacting neighboring subbasins. Accurate data is needed to determine the groundwater conditions of the subbasin.
E.1.3. Evaluation Criterion C—Implementing Hydropower (18 points)

Although, the District’s Project does not contain the implementation of hydropower, the proposed AMI Project will still be reducing the CO₂ emissions. CO₂ emissions will be reduced due to the automated reading component of the advanced metering devices. The metering devices on the wells across the District will not have to be manually read. With manual reading of the meters not being needed after implementation of the Project, fuel consumption will be significantly reduced.

The District encompasses over 600,000 acres of farmland and District workers will not have to travel up and down the District checking each groundwater well meter. Annually, the District field operators drive about 6,000 miles to read the groundwater meters District-wide. Based off the fuel economy of the vehicle and the frequent stops the vehicle must make, a District vehicle averages about 10 mpg. That is an average of 600 gallons of gasoline used by District vehicles to manually read the meters in the District. Using the U.S. EPA emissions calculator online, the District would save an approximate 5.3 metric tons of CO₂ emissions.
E.1.4. Evaluation Criterion D—Complementing On-Farm Irrigation Improvements (10 points)

If the proposed project will complement an on-farm improvement eligible for NRCS assistance, please address the following:

- Describe any planned or ongoing projects by farmers/ranchers that receive water from the applicant to improve on-farm efficiencies.

During the introduction of the 2020 Aquifer Storage and Recovery (ASR) Program, water users participated in developing their wells to allow for injection of surface water into the aquifers for temporary storage. Water users were able to inject 597 AF of water over the period of two months. The water users were able to extract the same amount of water when surface water supply was limited. The surface water that was injected into the ground resulted in additional water quantity for later use and improved water quality from regular groundwater in the area. The ASR Program increases water supply reliability for the District and helps improve groundwater conditions that contribute to the compliance of the Westside Subbasin with SGMA.

- Describe how the proposed WaterSMART project would complement any ongoing or planned on-farm improvement.

 • Will the proposed WaterSMART project directly facilitate the on-farm improvement? If so, how? For example, installation of a pressurized pipe through WaterSMART can help support efficient on-farm irrigation practices, such as drip-irrigation.

OR

 • Will the proposed WaterSMART project complement the on-farm project by maximizing efficiency in the area? If so, how?

Farmers in the District will benefit from the proposed Project because it will enable them to conserve groundwater which will in turn help them continue to farm during CVP water shortages. Additionally, the Project can be used with the District’s ASR Program to accurately measure the amount of water extracted. The purpose of this program is retrofit water user wells, so they have the capacity to inject surplus surface water into the aquifers. This allows the surplus water, including non-storable CVP water, to be stored and used later when that injected water is needed. The ASR program that the District has developed is consistent with the United States Bureau of Reclamation’s White Paper focusing on SGMA and CVP Water Recharge. Local water users with ASR wells will be able to inject surface water, like CVP water, into the groundwater aquifers and it will be considered recharge under SGMA. The proposed AMI project would enhance the District’s ability accurately extract and store available CVP.
Describe the on-farm water conservation or water use efficiency benefits that are expected to result from any on-farm work.

- Estimate the potential on-farm water savings that could result in acre-feet per year. Include support or backup documentation for any calculations or assumptions.

The District land encompasses over 600,000 acres of farmland, so on-farm water savings will result after implementation of the proposed Project. With the implementation of the Project, accurate and timely data will be available to the District and the water user. With the accurate metering devices and SGMA, groundwater management will be improved. Assuming the 5.3% reduction of water use and increased water management, the District would be able to conserve about 15,800 AF per year. In addition to the water saved, the District’s ASR program would benefit from the implementation of proposed Project, because the surface water that was injected into the Aquifer resulted in improved water quality from regular groundwater in the area.
E.1.5. Evaluation Criterion E—Department of the Interior Priorities (10 points)

- Creating a conservation stewardship legacy second only to Teddy Roosevelt
 The proposed Westlands AMI Project utilizes science to identify best practices to manage water resources and adapt to changes in the environment. The Project allows the District to efficiently manage the limited amount of water resources in the area without causing undesirable results in the groundwater conditions. The Project allows constant data monitoring to prevent and quickly respond to any water losses occurring at the metering sites.

- Utilizing our natural resources
 Groundwater is one of the most precious natural resources in the District. The District recognizes the importance of utilizing our natural resources so that it continues to be available in the future. One of the goals of the proposed Project is to promote the conjunctive use of groundwater. The proposed Project will save and control water losses and use groundwater efficiently.

 The use of fossil fuels for meter reading is eliminated. The District encompasses over 600,000 acres of farmland and the Project eliminates the need to travel to read each groundwater well meter. Annually, the District field operators drive about 6,000 miles per year to read the groundwater meters District-wide. Based off the fuel economy of the vehicle and the frequent stops the vehicle must make, a District vehicle averages about 10 mpg. That is an average of 600 gallons of gasoline used by District vehicles to manually read the meters in the District.

- Restoring trust with local communities
 Restoring trust with local communities is an aspect that comes with the AMI Project. The AMI Project will allow local water users in the District to effectively manage their wells and improve groundwater use efficiency. The water users will have daily information on their wells metering devices that can be accessed through the database.

- Striking a regulatory balance
 The proposed AMI Project reduces the administrative and regulatory burden on the U.S. Industry and the public, which in this case are the farmers within the District, by providing sustainable water savings, increased water reliability, and improved groundwater management to the District.

- Modernizing our infrastructure
 The proposed Project modernizes the District’s groundwater metering infrastructure. The Project eliminates the need to manually read every well meter within the District, which saves time, energy, and costs. The AMI Project allows the owner of the wells to access the advanced metering
database of their respective well. The database contains daily data of the automated readings that can be used to improve water management and reduce overirrigation. The well owner will be notified when discrepancies in their water usage appear.

Reclamation Priorities

1. Increase Water Supplies, Storage, and Reliability under WIIN and other Authorities
 a. The proposed AMI Project would save water by improving the water management efficiency of the well owners and reduce over irrigation in the District. The District will save approximately 316,000 AF over the lifespan of the proposed meters and collectors.

2. Streamline Regulatory Processes and Remove Unnecessary Burdens to Provide More Water and Power Supply Reliability
 a. N/A

3. Leverage Science and Technology to Improve Water Supply Reliability to Communities
 a. Groundwater wells are pumped to address the surface water shortage and the McMag meter 3000 will ensure efficiency water application practices based on accurate crop demands. The water savings would be reflected in a sustainably managed groundwater basin.

4. Address Ongoing Drought
 a. To sustainably manage the subbasin during droughts, groundwater levels and storage must be maintained effectively. Water users will have access to accurate usage information in a timely manner. Implementing the Westlands AMI Project would improve water use management and accurately measure the amount of groundwater pumped. The District has also developed the Aquifer Storage and Recovery (ASR) program that would enable the injection of surface water, such as CVP and Section 215 water. The proposed Project would complement the subsequent extraction of the injected water consistent with USBR’s white paper as shown in Appendix B.

5. Improve the Value of Hydropower to Reclamation Power Customers
 a. N/A

6. Improve Water Supplies for Tribal and Rural Communities
 a. The proposed Project would benefit the disadvantaged communities (DACs) within the District by improving groundwater conditions and enhancing conjunctive use opportunities over the course of the 20-year life span of the Project. Currently, the DACs rely purely on surface water sources from the San Luis Canal. DACs, like the City of Huron, are customers of the District and are severely impacted by the water shortages and higher water rates during drought periods. It is our understanding that three disadvantaged communities in the District plans to develop groundwater wells in the future to help improve water reliability during periods of drought.

7. Implementation of new Title Transfer authority pursuant to P.L. 116-9
 a. N/A
E.1.6. Evaluation Criterion F—Implementation and Results (6 points)

E.1.6.1. Subcriterion F.1—Project Planning

Does the applicant have a Water Conservation Plan and/or System Optimization Review (SOR) in place? Please self-certify or provide copies of these plans where appropriate to verify that such a plan is in place.

Provide the following information regarding project planning:

- Identify any district-wide, or system-wide, planning that provides support for the proposed project. This could include a Water Conservation Plan, SOR, Drought Contingency Plan or other planning efforts done to determine the priority of this project in relation to other potential projects.

- Describe how the project conforms to and meets the goals of any applicable planning efforts and identify any aspect of the project that implements a feature of an existing water plan(s).

Westlands Water District has a Water Management Plan and a Groundwater Management Plan. The District’s Water Management Plan describes its agricultural water management activities in accordance with Reclamation’s and the State of California’s requirements. The Plan also includes an evaluation of the District’s water management operations and the implementation of Best Management Practices (metering, improved irrigation systems, and real time ET data). The Plan contains a description of the District, inventory of water resources, water delivered, cropping patterns, and District water inventory tables. The objective of the Groundwater Management Plan is to preserve and enhance the long-term viability of the groundwater resources within the District with respect to both quantity and quality. The primary and secondary goals of the GMP are listed below:

Primary Goals

- Preserve and enhance the reliability of groundwater resources of the District.
- Ensure the long-term availability of high-quality groundwater.
- Maintain local control of groundwater resources within the District.
- Minimize the cost and impacts of groundwater use.

Secondary Goals

- Prohibit unrestricted export of groundwater from the District and use of groundwater to replace surface water removed from the District as a result of a transfer.
- Minimize impacts of groundwater pumping, including subsidence, overdraft, and soil productivity.
• Prevent unnecessary restrictions on the private use of the District’s groundwater resources.

• Ensure coordination between District, local, and regional groundwater management activities.

• Optimize use of groundwater storage conjunctively with surface water.

• Ensure efficient use of the District’s groundwater resources and minimize deep percolation and its contribution to the shallow groundwater problem through use of an effective water conservation and management program.

• Ensure that District water users understand the steps they can take to protect and enhance their groundwater supply.

Westlands Water District is also the GSA managing the Westside Subbasin. The District GSA is currently developing the Groundwater Sustainability Plan (GSP) for SGMA. The District’s GSP is outlining the plan to sustainably manage the critically overdrafted groundwater basin by the year 2040.

E.1.6.2. Subcriterion F.2— Performance Measures

Provide a brief summary describing the performance measure that will be used to quantify actual benefits upon completion of the project (e.g., water saved or better managed, energy generated or saved). For more information calculating performance measure, see Appendix A: Benefit Quantification and Performance Measure Guidance.

The performance measures that will be used to quantify actual benefits upon completion of the Project will be based on past and post-Project implementation. Performance measures include reduction of labor, improved groundwater management, and leakage analysis of metering devices. The performance measures mentioned above will be used to quantify the sustainable savings of the AMI Project.
E.1.6.3. Subcriterion F.3—Readiness to Proceed

Applicants that describe a detailed plan (e.g., estimated project schedule that shows the stages and duration of the proposed work, including major tasks, milestones, and dates) will receive the most points under this criterion.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Submittal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Award Notification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execute Grant Agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmenta/Permitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction/Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI Network System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Meters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.1.7. Evaluation Criterion G— Nexus to Reclamation Project Activities (4 Points)

- Is the proposed project connected to Reclamation project activities? If so, how? Please consider the following:

 - Does the applicant receive Reclamation project water?
 Yes. Reclamation is Westlands’ water provider. Westlands’ full contract entitlement from Reclamation is approximately 1.195 million AF, but it is subject to reductions depending upon hydrology and environmental restrictions.

 - Is the project on Reclamation project lands or involving Reclamation facilities?
 No.

 - Is the project in the same basin as a Reclamation project or activity?
 The Project is located within Reclamation’s San Luis Division and is within the Tulare Lake Basin.

 - Will the proposed work contribute water to a basin where a Reclamation project is located?
 Yes. The Westside Subbasin which will be recharged by the Project is located within the San Luis Unit. The District contains Reclamation facilities, including the San Luis Canal, Coalinga Canal, Pleasant Valley Pumping Plant, and the District’s distribution system. The Westside Subbasin is in a state of critical overdraft, and the project will contribute to reducing overdraft and help the District sustainably manage the Westside subbasin. The ASR wells have the capacity to inject surface water, like CVP and Section 215 water, into the ground for storage. The proposed Project will account for subsequent extraction of the injected water consistent with USBR’s White Paper focusing on SGMA and CVP Water Recharge shown in Appendix B.
E.1.8. Evaluation Criterion H—Additional Non-Federal Funding (4 points)
The Non-federal cost share for the Project is $1,610,539. Total Project cost estimates at $3,219,539. The percent of Non-Federal Cost Share is 50%.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,609,000</td>
<td>Federal Funding (50%)</td>
</tr>
<tr>
<td>$1,610,539</td>
<td>Non-Federal Funding (50%)</td>
</tr>
<tr>
<td>$3,219,539</td>
<td>Total Project Cost</td>
</tr>
</tbody>
</table>
Project Budget

Funding Plan and Letters of Commitment

Project budget includes cost incurred after July 1, 2020 and is estimated at $3,219,539. The non-federal share amount is estimated at $1,610,539 for the Project. Westlands’ share from the non-federal amount is $1,214,539 coming from the Public Purpose Program (P3) funding and/or well users within the District. The other non-federal amount is $396,000 from a grant solicited by DWR through the Sustainable Groundwater Planning (SGWP) Grant. Westlands is requesting $1,609,000 of federal funds through the Water and Energy Efficiency Grant for Fiscal Year 2021 to contribute to the Project cost as shown on Table 5. The total estimated costs for engineering, permitting, construction and management are presented in Table 6. Federal and non-federal cost share are 50% and 50%, respectively. Costs provided in the tables below are an approximation and are subject to change, however, the District will be obligated to at least 50% of the cost share, if awarded. Westlands will be obligated to at least 50% of the cost share, if awarded.

Westlands adopted a resolution on August 18, 2020 at its Board meeting to authorize the submittal of the Grant application and commit to financial and legal obligation associated with the receipt of the Grant funding. Westlands cost share of the Project is approximately $1,214,539. Westlands’ cost share would be funded from P3 funding and/or well users within the District. The other non-federal amount is $396,000 from a grant solicited by DWR through the SGWP Grant. The District has fully executed the Grant Agreement No. 4600012707 with DWR for the SGWP Grant and will provide the Grant agreement upon Reclamation’s request.

Budget Proposal

Table 5: AMI Project Cost

<table>
<thead>
<tr>
<th>AMI Project Cost</th>
<th>$ 3,219,539</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Sources</td>
<td>Amount</td>
</tr>
<tr>
<td>Requested Reclamation Funding</td>
<td>$1,609,000</td>
</tr>
<tr>
<td>District Cost Share Requirement</td>
<td>$1,214,539</td>
</tr>
<tr>
<td>California Department of Water Resources - SGWP Grant</td>
<td>$396,000</td>
</tr>
</tbody>
</table>
Table 6: Budget Proposal

<table>
<thead>
<tr>
<th>BUDGET ITEM DESCRIPTION</th>
<th>COMPUTATION</th>
<th>Quantity</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$/Unit</td>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>WWD Salaries & Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor of Resources</td>
<td>$ 59.42</td>
<td>80 hr.</td>
<td>$ 4,753.60</td>
</tr>
<tr>
<td>Resources Engineer</td>
<td>$ 35.88</td>
<td>370 hr.</td>
<td>$ 13,275.60</td>
</tr>
<tr>
<td>Supervisor of Field Engineering and Planning</td>
<td>$ 59.42</td>
<td>32 hr.</td>
<td>$ 1,898.47</td>
</tr>
<tr>
<td>Field Engineer</td>
<td>$ 35.88</td>
<td>51 hr.</td>
<td>$ 1,834.19</td>
</tr>
<tr>
<td>Field Operator</td>
<td>$ 28.52</td>
<td>3,800 hr.</td>
<td>$ 108,363.33</td>
</tr>
<tr>
<td>Water Measurement Technician</td>
<td>$ 31.95</td>
<td>101 hr.</td>
<td>$ 3,228.24</td>
</tr>
<tr>
<td>Senior Water Measurement Specialist</td>
<td>$ 31.95</td>
<td>83 hr.</td>
<td>$ 2,666.81</td>
</tr>
<tr>
<td>Electrician</td>
<td>$ 42.30</td>
<td>2,280 hr.</td>
<td>$ 96,444.00</td>
</tr>
<tr>
<td>WWD Fringe Benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor of Resources</td>
<td>$ 46.68</td>
<td>80 hr.</td>
<td>$ 3,734.40</td>
</tr>
<tr>
<td>Resources Engineer</td>
<td>$ 28.12</td>
<td>370 hr.</td>
<td>$ 10,404.40</td>
</tr>
<tr>
<td>Supervisor of Field Engineering and Planning</td>
<td>$ 46.68</td>
<td>32 hr.</td>
<td>$ 1,491.43</td>
</tr>
<tr>
<td>Field Engineer</td>
<td>$ 28.12</td>
<td>51 hr.</td>
<td>$ 1,437.49</td>
</tr>
<tr>
<td>Field Operator</td>
<td>$ 22.38</td>
<td>3,800 hr.</td>
<td>$ 85,056.67</td>
</tr>
<tr>
<td>Water Measurement Technician</td>
<td>$ 25.05</td>
<td>101 hr.</td>
<td>$ 2,531.06</td>
</tr>
<tr>
<td>Water Measurement Specialist</td>
<td>$ 25.05</td>
<td>83 hr.</td>
<td>$ 2,090.88</td>
</tr>
<tr>
<td>Electrical</td>
<td>$ 33.20</td>
<td>2,280 hr.</td>
<td>$ 75,696.00</td>
</tr>
<tr>
<td>WWD Travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter Site Installations</td>
<td>$ 0.575</td>
<td>25,932 mi</td>
<td>$ 14,910.90</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8" McMag3000 Mag Meter</td>
<td>$ 2,293.99</td>
<td>16 ea</td>
<td>$ 36,704</td>
</tr>
<tr>
<td>10" McMag3000 Mag Meter</td>
<td>$ 2,683.01</td>
<td>324 ea</td>
<td>$ 869,295</td>
</tr>
<tr>
<td>12" McMag3000 Mag Meter</td>
<td>$ 3,078.34</td>
<td>274 ea</td>
<td>$ 843,465</td>
</tr>
<tr>
<td>>12" McMag3000 Mag Meter</td>
<td>$ 3,540.09</td>
<td>15 ea</td>
<td>$ 53,101</td>
</tr>
<tr>
<td>Unknown Mag Meter Size McMag3000 Mag Meter</td>
<td>$ 3,540.09</td>
<td>10 ea</td>
<td>$ 35,401</td>
</tr>
<tr>
<td>MiNode License Endpoint</td>
<td>$ 105.00</td>
<td>760 ea</td>
<td>$ 79,800</td>
</tr>
<tr>
<td>Hanger</td>
<td>$ 7.00</td>
<td>760 ea</td>
<td>$ 5,320</td>
</tr>
</tbody>
</table>
Budget Narrative

Salaries and Wages

The Project Manager is a Resources Engineer for Westlands Water District and will devote 370 hours overseeing the Project, at a rate of $35.88 per hour. The Supervisor of Resources for Westlands Water District will contribute approximately 80 hours for the review of deliverables and oversight, at a rate of $59.42 per hour.

The District’s Field Engineer will contribute 51 hours to purchasing the McMag3000 Mag meters and overseeing installation of the meters at a rate $35.88 per hour. The Supervisor of Field Engineering and Planning will contribute 32 hours to review purchase orders and installations of McMag3000 Mag meters at a rate of $59.42.

Field Operators for Westlands Water District will contribute 3,800 hours installing the McMag3000 Mag meters at a rate of $28.52 per hour. Senior Water Measurement Specialist and Water Measurement Technician will contribute 83 and 101 hours, respectively, on calibrating the installed meters to accurately measure flow within the District standards at a rate of $31.95 per hour.
Electricians for Westlands Water District will contribute 2,280 hours installing the grounding rods for the McMAG3000 Mag meters at a rate of $42.30 per hour.

Fringe Benefits

The Project Manager is a Resources Engineer for Westlands Water District, and will devote 370 hours overseeing the Project, at a rate of $28.12 per hour. The Supervisor of Resources for Westlands Water District and will contribute approximately 80 hours for the review of deliverables and oversite, at a rate of $46.68 per hour.

A Field Engineer for Westlands Water District will contribute 51 hours to purchasing the McMAG3000 Mag meters and overseeing installation of the meters at a rate $28.12 per hour. The Supervisor of Field Engineering and Planning for Westlands Water District and will contribute 32 hours to review purchase orders and installations of McMAG3000 Mag meters at a rate of $46.68.

Field Operators for Westlands Water District will contribute 3,800 hours installing the McMAG3000 Mag meters at a rate of $22.38 per hour. Senior Water Measurement Specialist and Water Measurement Technician will contribute 83 and 101 hours, respectively, on calibrating the installed meters to accurately measure flow within the District standards at a rate of $25.05 per hour.

Electricians for Westland Water District will contribute 2,280 hours installing the grounding rods for the McMAG3000 Mag meters at a rate of $33.20 per hour.

Travel

According to Google Maps, the trip mileage total, starting at the Westlands Water District Fresno office to the Five Points Field Office is approximately 87 miles round trip. The Five Points Office was used as an approximation destination because McMAG3000 Mag meters will be installed District-wide. Westlands Fresno staff estimates a total of 36 trips are to be required to the (3,132 miles) during the Project oversight. Field Operators and Electricians will have to travel to each meter to install grounding rods at the sites. Field operators and electricians are estimated to have a total of 380 trips, respectively (11,400 miles each). At a rate of $0.575 per mile, Westlands total travel budget is approximately $14,910.90 to cover travel expenses.

Equipment

The Project will install 760 advanced groundwater well meters that vary in size. The prices were based off the company pricing as shown. The prices of the unknown-sized meters were based off the meters that were greater than 12”. The MiNode Licensed Endpoint and the Hanger will be installed with the proposed meters. The prices listed are from a quote that was given to the District by R&B Company.
Construction/Maintenance

Construction costs include the installation of all 760 proposed meters along with the Yearly Hosting Cost of installing each proposed meter.

Mi.Net Fixed Network AMI Collector System

The cost of installing the Mueller systems AMI Hybrid Network across the District was given by R&B Company. The R&B Company quoted all the listed prices as shown above.

Environmental Compliance Costs

The proposed Westlands Advanced Metering Infrastructure Project does not create any environmental impact, nor will it need any environmental documentation. However, there are existing facilities in the District that are not exempt from CEQA. Therefore, the proposed project environmental compliance cost may include CEQA and NEPA compliance. Westlands budgeted $37,405 for CEQA filing fees and fees associated with NEPA. The environmental permitting is expected to start in April 2021 once the Grant Agreement has been executed. Westlands will hire a qualified consultant to obtain all required permits.

Required Permits/Approvals

Prior to construction, the District will obtain all appropriate permits that are needed to construct the Westlands Advanced Metering Infrastructure Project. All necessary permits will be completed within 6 months after grant agreement has occurred.
Letters of Support

County of Fresno

DEPARTMENT OF PUBLIC WORKS AND PLANNING
STEVEN E. WHITE, DIRECTOR

September 10, 2020

Mr. Jose Gutierrez
Chief Operating Officer
Westlands Water District
3130 North Fresno Street
Fresno, California 93703-6056

RE: Support for Application of U.S. Bureau of Reclamation WaterSMART: Water and Energy Efficiency Grant

Dear Mr. Gutierrez,

The intent of this letter is to express the County of Fresno's (County) support for Westlands Water District (WWD) in applying for funding from the WaterSMART program, aimed at achieving sustainable water savings and broader water reliability benefits. It is our understanding that the proposed Advanced Metering Infrastructure Project (Project) is to replace the manually read meters with advanced, hands-free metering devices.

We appreciate the importance of conserving our resources and efficiently utilizing the water savings the proposed Project will produce, benefitting both the District and the Westside of the County, including the cities of Coalinga and Huron.

Therefore, the County supports the District's application to achieve sustainable water savings and broader water reliability benefits. Thank you for giving the County the opportunity to support the proposed Project and we hope the U.S. Bureau of Reclamation gives thoughtful consideration for approval.

Sincerely,

Bernard Jimenez
Assistant Director
September 17, 2020

Mr. Jose Gutierrez
Chief Operating Officer
Westlands Water District
3130 North Fresno Street
Fresno, California 93703-6056

RE: Support for Application of U.S. Bureau of Reclamation WaterSMART: Water and Energy Efficiency Grant

Dear Mr. Gutierrez,

The intent of this letter is to express Westlands Water District Groundwater Sustainability Agency’s (GSA) support for Westlands Water District’s (WWD) application for funding from the WaterSMART program. The WaterSMART program funds projects that achieve sustainable water savings and water reliability benefits. As we understand, the proposed Advanced Metering Infrastructure Project (Project) replaces manually read meters in the District with advanced, hands-free metering devices.

We support this Project because it conserves water resources, promotes efficiency, and results in water savings, which ultimately benefits the District and the entire Westside Subbasin. Therefore, the GSA supports the District’s application and efforts to implement sustainable groundwater management practices. Thank you for giving the GSA the opportunity to support the proposed Project and we encourage Reclamation to provide thoughtful consideration for approval.

Sincerely,

Katarina Campbell, P.E.
Groundwater Sustainability Agency – Plan Manager
RESOLUTION NO. 121-20
WESTLANDS WATER DISTRICT
A RESOLUTION OF THE BOARD OF DIRECTORS
AUTHORIZING THE SUBMISSION OF AN APPLICATION FOR GRANT FUNDING
FROM THE UNITED STATES BUREAU OF RECLAMATION
FOR PROJECTS RELATED TO WATER AND ENERGY EFFICIENCY PROGRAM

WHEREAS, Westlands Water District (District) receives essential water supplies from
the Central Valley Project (CVP) through its water service and repayment contracts with
the United States Bureau of Reclamation (Reclamation); and

WHEREAS, Reclamation solicited grant funding proposals through the WaterSMART
Water and Energy Efficiency Grant Program (WaterSMART Grant) for projects that
result in quantifiable and sustained water savings and support broader water reliability
benefits.

WHEREAS, the District is an eligible applicant for the WaterSMART Grant; and

WHEREAS, the District is preparing a WaterSMART Grant application, in the amount of
$1,841,000, to help fund the installation of the Advanced Metering Infrastructure (AMI),
which includes the installation of advanced meters on groundwater wells in the District
and a regional network to collect and store the data; and

WHEREAS, the District determined that the AMI will be beneficial for both the District
and Reclamation by optimizing water management and improving sustainable water
savings.

NOW, THEREFORE, BE IT AND IT IS HEREBY RESOLVED AS FOLLOWS:

1. The General Manager or his designee is authorized and directed to execute an
agreement and associated documents with Reclamation related to the grant
funding for the District's Water and Energy Efficiency AMI Project.

2. The Board of Directors supports the submission of an application for the
WaterSMART Water and Energy Efficiency Grant Program, and the District is
committed to the financial and legal obligations associated with the receipt of
Reclamation's grant funding.

3. The District can provide the amount of funding and in-kind services specified in
the funding plan for the Water and Energy Efficiency grant application.

4. The District will work with Reclamation to meet established deadlines if the District
is selected to receive funding from Reclamation.

5. The General Manager or his designee is authorized and directed to do all other
things necessary and appropriate to carry out the foregoing and to take such
additional actions as may be necessary or convenient to carry out the intent of this
resolution.
6. A certified copy of this resolution shall be prepared and transmitted by the
District's Secretary to Reclamation.

Adopted at a regular meeting of the Board of Directors at Fresno, California, this 18th
day of August 2020.

AYES: Directors Anderson, Bourdeau, Coelho, Errotabere, Enos, Ferguson,
Neves, Nunn and Peracchi

NOES: None

ABSENT: None

Bobbie Ormonde, District Secretary
STATE OF CALIFORNIA
COUNTY OF FRESNO

I, Bobbie Ormonde, do hereby certify that I am the duly appointed, qualified and acting District Secretary of Westlands Water District, a public district organized under the laws of the State of California with its offices at Fresno, California; that Resolution No. 121-20 was duly and regularly adopted by the Board of Directors of Westlands Water District serving as said Board of Directors duly called and held on the 18th of August 2020, at the offices of said Westlands Water District at which a quorum of said Directors was present and acting; and that said Resolution is still in full force and effect.

IN WITNESS WHEREOF, I have hereunto set my hand and seal as District Secretary of said District this 19th day of August, 2020.

Bobbie Ormonde, District Secretary
Westlands Water District
References

Appendix A – Westlands Water District Meter Study

Westlands Water District Meter Comparison Study

Date: September 12th, 2019

By: John Johnston

Senior Water Measurement Specialist
Executive Summary

ES-1 General Information

Westlands Water District (District) measures approximately 930 groundwater meters annually across the District’s service area. Many of the groundwater meters are inaccurate and many of the well owners will not notice the inaccuracy until an issue arises with the meter, like a broken part. With the implementation of Sustainable Groundwater Sustainability Plan (GSP) for the Sustainable Groundwater Management Act (SGMA) and the District as the GSA, the District would own and maintenance the newly installed meters in the District to ensure accuracy.

ES-2 Procedure and Results

The Meter Comparison Study (Study) was completed to determine which meters produced the most accurate meter reading. The Study consisted of four types of testing meters: the McCrometer McMag 3000, Seametrics AG90, Water Specialties LP 32, and the Water Specialties LP 32D. The totalized comparison was performed between the meters listed above and the Westlands Water District Measurement McCrometer Ultra Mag. The procedure for the comparison was completed for each meter at different flow rates to provide different points of accuracy. Westlands personnel has also been looking into pairing the flow meter with an AMR/AMI to report daily readings, so AMI compatibility was also taken into consideration.

ES-3 Findings

Overall, the McMag3000 produced the most linear accurate results over the entire flow range when compared to the other meters under test.
Testing and comparison of the following meters was produced: McCrometer McMag3000, Seametrics AG90, Water Specialties LP32 and Water Specialties LP32D. All testing of meters was performed by doing a totalized comparison between above said meters and Westlands Water Measurement McCrometer Ultra Mag. The operational facilities can be seen in Figure 1. The procedure for the comparison was completed for each meter at different flow rates to provide different points of accuracy. The McCrometer McMag3000 and the Water Specialties LP32D produced the most accurate results at the manufacture Min/Max flow range when compared to the Ultra Mag.
Results

After testing the four different types of meters to the control meter which had been calibrated for accuracy, the results showed the different accuracies of the meters at different flow rates. The results can be seen below.

Appendix A - Table 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Flow Error (Percent)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error (.8 cfs)</td>
<td>Error (3.5 cfs)</td>
<td>Error (5.8 cfs)</td>
<td>Error (6.6 cfs)</td>
<td>Error (11.3 cfs)</td>
</tr>
<tr>
<td>McMag3000</td>
<td>-0.5</td>
<td>-0.8</td>
<td>0.7</td>
<td>N/A</td>
<td>1.3</td>
</tr>
<tr>
<td>Seametrics AG90</td>
<td>4.5</td>
<td>-1.7</td>
<td>-2.3</td>
<td>N/A</td>
<td>-6.6</td>
</tr>
<tr>
<td>Water Specialties LP 32</td>
<td>-9.2</td>
<td>0.9</td>
<td>N/A</td>
<td>-0.6</td>
<td>N/A</td>
</tr>
<tr>
<td>Water Specialties LP 32D</td>
<td>-2.3</td>
<td>0.3</td>
<td>N/A</td>
<td>2.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Westlands personnel has also been looking into pairing the flow meter with an AMR/AMI to report daily readings. The required output from the meter to the AMR/AMI is a Sensus protocol output. The only two meters that have the Sensus output are the McMag3000 and the Water specialties LP32D. Although the LP32D produced favorable testing results it has some troublesome drawbacks. The biggest drawback is its straight run requirements. The LP32 requires ten diameters of straight run upstream of the meter and two diameters downstream compared to the McMag3000 three diameters upstream and 1 downstream. The second drawback of the LP32D is the moving parts and potential for meter failure when compared to the McMag3000 which has no moving parts. The McMag3000 does come with its own unforeseen challenges in grounding issues to eliminate stray noise from the meter. We will not know how significant or insignificant this problem will be until we start deploying meter in field conditions.

Findings

In conclusion given the accuracy testing that was done in comparison to the Ultra Mag meter, the McMag3000 meter outperforms the others. Given the straight run requirements of the two meters, the McMag3000 appears to be the best choice. The McMag3000 meets the Sensus protocol output and additionally has no mechanical moving parts. The McMag3000 also produced the most linear accurate results over the entire flow range when compared to the other meters under test. Overall, the McMag3000 seems to be the best choice for the SGMA/ASR program.
Groundwater Banking Guidelines for Central Valley Project Water

Effective Date: November 12, 2014
Updated October 4, 2019

Introduction

The Bureau of Reclamation (Reclamation) developed these Water Banking Guidelines (Guidelines) to implement water Banking as authorized by the Central Valley Project Improvement Act (CVPIA), and as authorized by certain Federal contracts.

Reclamation recognizes groundwater Banking as an important water management tool in optimizing the use of Central Valley Project (CVP) Water, while addressing groundwater overdraft in some areas.

Historically, Reclamation has approved Banking of CVP Water in acknowledged Groundwater Banks listed in Appendix "A". The process used to approve past Banking actions served as the basis of development for these Guidelines.

Authority

Banking of CVP Water is authorized by Sections 3408 (c), (d), and (e) of the CVPIA, Title XXXIV, Public Law 102-575, October 1992. Additionally, certain CVP contracts allow for the Banking of CVP Water, and the development of these Guidelines is required by the delegation of authority to negotiate and administer contracts for CVP Water supplies.

Applicability

These Guidelines apply to Contractors that have a contract with Reclamation for water service or repayment, water rights settlement, exchange, or other applicable contract(s) (herein referred to as contract) requesting to Bank CVP Water outside of its Contract Service Area. Contractors are subject to these Guidelines and any updates thereof when Banking CVP Water as approved by Reclamation.

These Guidelines do not apply to within-district Conjunctive Use, to a Contractor Banking its CVP Water within its Contract Service Area, to annual transfers and exchanges between CVP Contractors, previously authorized transfers and exchanges under executed long-term contracts, or the Banking of non-CVP Water, or water acquired/delivered pursuant to a Contractor’s own water right.
Purpose

Groundwater Banking creates operational flexibility and water supply reliability to Contractors. These Guidelines set forth the standards under which Reclamation may approve the Banking and Recovery of CVP Water outside of the Contractor's Contract Service Area while protecting the integrity of the CVP. Contractors requesting approval to Bank or Recover CVP Water need to submit a water Banking proposal (Proposal) to Reclamation and should use these Guidelines when writing the Proposal.

General

A Contractor is encouraged to consult with Reclamation before and during the formulation of a water Banking proposal. Reclamation analyzes all Proposals to ensure consistency with state and federal laws and that no Banking action will result in adverse third-party impacts to the CVP, other Contractors, other legal users of water, or the environment, as determined through the environmental compliance process.

Proposals will also be analyzed to ensure it delineates how all CVP Water will be returned or otherwise put to beneficial use prior to expiration of the Contractor’s contract with Reclamation or the water Banking approval.

Appendix “B” is a guide to help Contractors develop a complete Proposal. After Reclamation receives a complete Proposal and it is reviewed by a contract specialist, the Proposal/action must undergo National Environmental Policy Act (NEPA) compliance before approval. Once approved, Reclamation will notify the Contractor in writing.

Reclamation has acknowledged certain Groundwater Banks for Banking and storing CVP Water (listed in Appendix “A”). Reclamation may update the list of acknowledged Groundwater Banks without modifying these Guidelines. A Bank Operator seeking to add a Groundwater Bank to the existing acknowledged list should contact their local Reclamation area office or visit http://www.usbr.gov/mp/waterbanking/ for more information.

To ensure continued compliance with applicable federal and state laws and authorities, Reclamation will update or revise these Guidelines as necessary. Future Banking approvals will be made pursuant to these Guidelines or any updates or revisions thereof. Approvals issued prior to these Guidelines are subject to Reclamation review for compliance with these Guidelines or any updates or revisions thereof.

Definitions

For the purposes of these Guidelines, the following definitions apply:

- **Banking Action**: The deposit of CVP Water into a Groundwater Bank and its subsequent withdrawal, return, and/or transfer from the Groundwater Bank.
- **Bank Operator**: An entity that manages and/or operates a Groundwater Bank.
• **Contract Allocation**: CVP Water made available pursuant to a Contractor’s CVP contract, typically expressed as a percentage of contract total.

• **Contractor**: A party having a contract with the United States for the use of CVP Water pursuant to Federal Reclamation law.

• **Central Valley Project Water (CVP Water)**: All water that is developed, diverted, stored, or delivered by the Secretary of the Interior in accordance with the statutes authorizing the CVP and in accordance with the terms and conditions of water rights acquired by Reclamation pursuant to California law.

• **Conjunctive Use**: The coordinated and planned management of both surface and groundwater resources to maximize the efficient use of the resources; that is, the planned and managed operation of a groundwater basin and a surface water storage system combined through a coordinated conveyance infrastructure.

• **Contractor’s Contract Service Area**: The area to which the Contractor is permitted to provide CVP Water under its contract(s) as described in the contract(s), which may be modified from time to time in accordance with the contract without amendment to the contract.

• **Groundwater Bank(s)**: An established groundwater storage aquifer managed by a Bank Operator or a Recharge area within a groundwater subbasin (as identified in the current California Department of Water Resource’s Bulletin 118) acknowledged by Reclamation as appropriate for the Recharge and Recovery of CVP Water.

• **Groundwater Banking (Bank/Banked/Banking)**: A process whereby a Contractor’s CVP Water is deposited and stored in a Groundwater Bank outside of the Contractor’s Service Area and made available for beneficial use in a subsequent month(s) or period(s) consistent with Reclamation’s CVP Water rights, permits, and/or licenses and provisions of the applicable CVP contract.

• **In-lieu Banking (In-lieu)**: Utilizing surface water rather than pumping groundwater and allowing groundwater to remain in the aquifer.

• **Letter of Agreement (LOA)**: Written instrument entered into by Reclamation and the Contractor whereby Reclamation’s costs are paid for the reviewing and processing of a Proposal.

• **Project Power**: Electrical energy, and its associated ancillary service components, required to provide the full electrical service needed to operate and maintain CVP facilities and to provide electric service for CVP purposes.

• **Recharge**: The process of adding water to an aquifer to augment or replace groundwater supplies. Ground water Recharge occurs either naturally or artificially. For purposes of these Guidelines, Recharge occurs as part of a Banking Action.

• **Recovery (Recover/Recovering/Recovered)**: Return of Banked water from an acknowledged Groundwater Bank to a CVP Contractor through facilitated exchanges, physical extractions, or In-lieu transactions.
Guidelines for Banking CVP Water

To Bank CVP Water, a Contractor must have a contract that allows a Contract to request Banking, the Banking must occur within a Reclamation acknowledged Groundwater Bank, and the Banking Action will not result in adverse third-party impacts. Banking of CVP Water is subject to the following:

1. **Compliance:** A Contractor requesting to Bank CVP Water must be in compliance with the:
 a. Contractor’s previous Banking Action(s) approved by Reclamation, as appropriate.
 b. Applicable contract under which CVP Water is/was made available for Banking by the Contractor.

2. **Conveyance:** Conveying water for Banking transactions must meet the following:
 a. Conveyance of CVP Water to or from a Groundwater Bank shall follow the general rule of no harm (as determined in the environmental compliance process) to the:
 i. Operations of the CVP
 ii. Other CVP Contractors
 iii. Financial status of the CVP
 iv. Environment
 b. The Contractor proposing the Banking Action is responsible for:
 i. Coordinating with and acquiring written approvals or agreements for conveyance (if applicable) from the appropriate entity(ies) that may include but are not limited to, the Department of Water Resources, the local Reclamation Area Office, or other water purveyors.
 ii. If a water Banking Action requires an exchange for non-CVP Water, an additional conveyance agreement/contract may be necessary.
 c. The introduction of any water into a CVP facility for Banking returns must comply with Reclamation’s then-current water quality standards/requirements for that CVP facility.

3. **Recharge and Recovery:** Banking Actions include Recharge and Recovery of CVP Water, and this may be done by direct Recharge and Recovery, exchange, transfer\(^1\), or in-lieu.
 a. When Banking in a groundwater subbasin as identified in the then-current California Department of Water Resource’s Bulletin 118, the Banking Action will occur within the same subbasin(s) that the Contractor’s Contract Service Area overlies or in a neighboring sub-basin. If Banking in a neighboring sub-basin, the contractor must provide documentation of the subsurface groundwater movement between subbasins.
 b. Unless otherwise approved, Recovered water needs to be put to beneficial use within the Contractor’s Contract Service Area.
 c. The Contractor must document coordination with the Groundwater Sustainability Agencies overlying the subbasin and document how the subbasin will benefit from the Banking and Recovery Actions in the water banking proposal.

4. **Duration:** CVP Water deposits into a Groundwater Bank must be made during the term of the existing Federal contract under which the CVP Water is being Banked and within the

\(^1\) An exchange or transfer in this scenario does not refer to an exchange approved outside of these Guidelines.
terms and conditions of the applicable Reclamation CVP Water rights permits and/or licenses. If the return of the Banked water extends beyond the duration of the Federal contract under which the CVP Water was Banked, the Banking Action will be considered on a case by case basis.

5. **Acreage Limitation Exemption:** This section of the Guidelines is only applicable to Contractors that are actively subject to the acreage limitation provisions of Federal Reclamation Law.

On or after the effective date of these Guidelines, CVP Water Banked under a temporary Section 215 water service contract is only exempt from the acreage limitation provisions of Federal Reclamation Law for the duration of the applicable Section 215 contract.

Notwithstanding accepted Banking operational losses (as referenced in 13.a and 13.b), any water acquired under a Section 215 contract that is not put to beneficial use within the duration of the Section 215 contract becomes subject to acreage limitation provisions of Federal Reclamation Law.

6. **Administrative Costs:** The LOA under which Banking occurs will remain in effect during the term of the approval. The Contractor is responsible for any Reclamation costs or expenditures relating to the Banking approval, including any other costs deemed applicable by Reclamation and defined in the LOA.

7. **Purpose of Use:** Beneficial use of Banked CVP Water must be consistent with the terms and conditions of the applicable Reclamation CVP Water rights permits and/or licenses and provisions of the contract under which the CVP Water is/was Banked.

Previously Banked CVP Water may be used for beneficial purpose(s) other than that for which it was initially Banked but is subject to Reclamation approval and any additional requirements that may be imposed by Reclamation.

8. **Place of Use:** When previously Banked CVP Water is Recovered through an exchange of non-CVP Water, the non-CVP Water received by the Contractor must be beneficially used within the Contractor's Contract Water Service Area and within the permitted water rights place of use. Likewise, the exchanged CVP Water must be used within the permitted CVP place of use, unless relevant State Water Resources Control Board orders or decisions and Reclamation approval are issued.

9. **Environmental Compliance:** Reclamation approval for Banking CVP Water is dependent upon Reclamation and the Contractor complying with applicable environmental requirements including but not limited to:
 a. NEPA
 b. The Endangered Species Act (ESA)
 c. Other applicable state and federal laws

10. **Power:** Project Power can only be used for conveyance of CVP Water through federal facilities for federal Contractors participating in Banking actions.

11. **Records:** When Banking in an established groundwater storage aquifer operated by a Bank Operator, the Contractor and the Bank Operator by written agreement, will maintain accounting records of the Contractor's CVP Water balance depicting CVP Water deposited and Recovered.
The Contractor will provide monthly detailed accounting during periods of Banking and Recovery. These may be submitted as part of the water delivery records due on the 20th of every month. If no activity is occurring, accounting records are required annually.

The Contractor is responsible for providing an annual report summarizing the cumulative Banking actions from the initial Banking approval through the end of the then current reporting year, and each year thereafter, as defined in the Banking approval. The Banking Operator must concur, in writing, with the Contractor’s Banking and Recovery balances.

When Banking in a groundwater subbasin as identified in the current California Department of Water Resource’s Bulletin 118, the Contractor shall follow the same reporting procedures outlined above, minus the written agreement and concurrence of records with the Bank Operator.

12. **Scheduling:** The Contractor Banking CVP Water will provide monthly water schedules with proposed quantities of CVP Water for Banking or Recovery.

13. **Banking Losses:** Water losses vary by Groundwater Bank. To protect the CVP from unreasonable loss, Reclamation, in consultation with Contractors and/or Bank Operators, will review specified losses to determine if the loss is acceptable to Reclamation for Banking CVP Water. Determinations will be based on local conditions (i.e., local hydrology, evaporation rates, conveyance facilities, aquifer characteristics, etc.), and the current Record of Decision or Finding of No Significant Impact associated with the Groundwater Bank’s operation and/or construction.
 a. Acceptable operational losses will be treated as an even exchange.
 b. Reclamation is not responsible for any water losses associated with the Banking transaction once the water passes the specified point of diversion(s) for the Banking action.
 c. Notwithstanding accepted Banking operational losses (as referenced in 13.a and 13.b), a Contractor using CVP Water as “leave behind” for an unbalanced Banking arrangement, must transfer the unbalanced quantity to the Groundwater Bank Operator; e.g. 100 acre-feet (AF) of CVP Water are Banked and 75 AF are returned to the Contractor and 25 AF are left behind. The Contractor must transfer the 25 AF of leave behind water to the Bank Operator, consistent with current Interim Guidelines for Implementation of the Water Transfer Provisions of the Central Valley Project Improvement Act, Title XXXIV of Public Law 102-575 (Water Transfer Guidelines).

14. **Transfer of Previously Banked CVP Water:** Reclamation may approve a transfer of previously banked CVP Water to either a CVP or non-CVP contractor, providing the transfer complies with applicable federal and state laws, the water transfer provisions of the CVPIA, Reclamation’s Water Transfer Guidelines, applicable Reclamation policy, contract provisions, and is otherwise consistent with Reclamation’s CVP Water rights, permits, and/or licenses, and other regulatory requirements.

Transfer of previously Banked CVP Water, not originally included in the Proposal, may require additional environmental compliance and subsequent approval by Reclamation.
The water transfer’s consumptive use requirement is deemed met after the water remains in the Bank for 365 days so long as the water is being transferred within the CVP Place of Use and meets all conditions of the transfer provisions listed above.

15. **Rates Associated with Banking CVP Water**: CVP Water delivered to a Groundwater Bank will be treated as CVP Water delivered to the Contractor; and therefore, all applicable CVP rates, charges, and assessments, including any operation and maintenance payments to operating non-federal entities apply. Reclamation water accounting practices apply, and the charges will occur at the time of delivery to the Groundwater Bank. Additional conveyance charges may apply based on the return of Banked water and will be determined on a case-by-case basis.

16. **Quantities of CVP Water Available for Banking**:
 a. Article 3f water of the applicable CVP contract, 215 water, uncontrolled releases, flood flows, water made available through the San Joaquin River Restoration Program (recovered water account, unreleased restoration flows, and recaptured/recirculated water), or Class 2 supplies are not subject to quantity limitations for Banking.
 b. Reclamation may place quantity limitations on other CVP contract supplies (those not identified in 16.a) based on the proposed timing of the Banking Action, historic CVP Water use of the Contractor seeking to Bank CVP Water, or any other factor(s) that may cause harm to the CVP, CVP operations, or Reclamation’s ability to meet regulatory and other contractual obligations.
This page intentionally left blank
Appendix A
Acknowledged Water Banks

The entities listed below are the Groundwater Banks that Reclamation acknowledges for Contractors Banking and Recovering CVP Water. Reclamation may update this list as needed without modifying the Guidelines. A potential Bank Operator or Contractor seeking to add a Bank to the existing list should contact the local Reclamation area office or visit http://www.usbr.gov/mp/waterbanking/index.html.

The acknowledgement of an additional Bank, other than those listed below, requires analysis through the NEPA process. The analyses will include, but is not limited to, the groundwater storage capacity, recharge rates, ability to recover, recovery rates, water quality, groundwater flow and movement, water losses, degree of aquifer confinement, and impacts associated with the operation of the Bank.

<table>
<thead>
<tr>
<th>Acknowledged Water Banks</th>
<th>Identifier Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 North Kern Water Storage District</td>
<td>05-WC-20-3256</td>
</tr>
<tr>
<td>2 Rosedale-Rio Bravo Water Storage District</td>
<td>05-WC-20-3257</td>
</tr>
<tr>
<td>3 Semitropic Water Storage District</td>
<td>05-WC-20-3258</td>
</tr>
<tr>
<td>4 Tulare Lake Basin Water Storage District</td>
<td>05-WC-20-3259</td>
</tr>
<tr>
<td>5 Cawelo Water District</td>
<td>05-WC-20-3260</td>
</tr>
<tr>
<td>6 Lakeside Irrigation District</td>
<td>05-WC-20-3261</td>
</tr>
<tr>
<td>7 Kaweah Delta Water Conservation District</td>
<td>05-WC-20-3266</td>
</tr>
<tr>
<td>8 Kern Water Bank Authority</td>
<td>18-WC-20-5263</td>
</tr>
<tr>
<td>9 Meyers Farms Family Trust</td>
<td>N/A</td>
</tr>
<tr>
<td>10 Pixley Water Bank Project</td>
<td>18-WC-20-5264</td>
</tr>
<tr>
<td>11 West Kern Water District Groundwater Bank</td>
<td>18-WC-20-5255</td>
</tr>
</tbody>
</table>
Appendix B
Guide for Water Banking Proposal

A Contractor shall provide the following information to initiate Reclamation’s review of the Proposal. The Contractor shall ensure that all information referenced in these Guidelines is addressed in the Proposal.

1. Name and location of Contractor.
2. Contract number that allows for Banking CVP Water.
4. Complete a written description of the Proposal, including the proposed time period and/or duration, in term of years, for the Banking actions. Identify Banking and Recovery periods.
5. State the quantity of CVP Water to be made available for Banking. Identify the initial and subsequent purposes of use for the Banked water; e.g., irrigation water being Banked for future irrigation or municipal and industrial (M&I) use or fish and wildlife use; M&I water being Banked for future M&I or irrigation uses.
6. Identify the source CVP Water that is being made available for Banking (i.e., Class 1 or 2, water made available pursuant to Section 215 of RRA, transfer water, recirculation water, etc.).
7. Identify the method or methods by which the water will be Banked, i.e., exchanges, in-lieu, and/or direct Recharge.
8. Identify the conveyance methods for delivering the water to the Groundwater Bank and for the return of the Banked water to the Contractor, including the power required. Include any applicable wheeling agreements if necessary.
9. Identify all conveyance losses and Banking losses associated with the Banking action.
10. State what environmental requirements (NEPA, ESA, CEQA, and Fish and Wildlife Coordination Act, if applicable) have been completed. Explain and provide documentation.
11. If non-CVP Water will be introduced into Reclamation facilities for Banking returns, provide the water quality information for all water supplies that will be introduced.
12. Provide information on how & where Banked water will be used after it is Recovered.
13. Identify any required State Water Resources Control Board action(s) or other required actions by any other federal, state, city, county, or private entity.
15. Provide documentation that the Banking Action is consistent with the applicable Groundwater Sustainability Plan.
This page intentionally left blank
Acronyms and Abridgments

AF Acre-Feet
Bank Groundwater Bank
CEQA California Environmental Quality Act
Guidelines Water Banking Guidelines
CVP Central Valley Project
CVPIA Central Valley Project Improvement Act
ESA Endangered Species Act
LOA Letter of Agreement
M&I Municipal and Industrial
NEPA National Environmental Policy Act
Proposal Water Banking Proposal
Reclamation Bureau of Reclamation
RRA Reclamation Reform Act of 1982
Evaluation of
East Bay Municipal Utility District's
Pilot of WaterSmart Home Water Reports

Prepared by
David L. Mitchell
M.Cubed

Thomas W. Chesnutt, Ph.D., CAP™
A&N Technical Services, Inc.

Prepared for
California Water Foundation
&
East Bay Municipal Utility District

December 2013
TABLE OF CONTENTS

EXECUTIVE SUMMARY

iii

I. INTRODUCTION

1

II. OVERVIEW OF SNB EFFICIENCY PROGRAMS

2

A. SOCIAL NORMS MARKETING

2

B. STRUCTURE OF SNB EFFICIENCY PROGRAMS

3

C. THEORETICAL BASIS FOR SNB EFFICIENCY PROGRAMS

4

D. EMPIRICAL EVIDENCE FOR EFFECTIVENESS OF SNB UTILITY PROGRAMS

6

1. Evidence from the Energy Utility Sector

6

2. Evidence from the Water Utility Sector

7

III. THE WATERSMART SERVICE

8

A. HOME WATER REPORT DESIGN

8

B. WEB PORTAL

10

IV. EBMUD PILOT

11

A. PILOT GOALS AND OBJECTIVES

11

B. PILOT EXPERIMENTAL DESIGN

12

1. Random Group Experiment

13

2. Castro Valley Group Experiment

17

C. CASTRO VALLEY HWR ROLLOUT PHASES

26

D. PRE-PILOT HOUSEHOLD SURVEY

26

E. POST-PILOT HOUSEHOLD SURVEY

27

V. EVALUATION OF PILOT OUTCOMES

27

A. WATER USAGE

27

1. Methodology

28

2. Data and Estimation

30

3. Estimation Results

32

4. Mean Treatment Effect

33

5. Impact of Household Water Use Percentile on Treatment Effect

34

M.CUBED
6. Impact of Water Score on Treatment Effect ...35
7. Impact of Paper vs Electronic Reports on Treatment Effect ...35
8. Seasonal Shape of Treatment Effect ...36

B. CONSERVATION PROGRAM PARTICIPATION ..36
1. Pre-Pilot Program Participation ...36
2. Post-Pilot Program Participation ...39
3. Estimation of Mean Treatment Effect ...42
4. Effect of HWR Score on Likelihood of Program Participation ..46

C. WATER USE AWARENESS ..48
1. Household Estimates of Water Use ..49
2. Household Commitment Towards Water Conservation ..53
3. Getting Help on How to Save Water ..54

D. COST EFFECTIVENESS ...55
1. Average Water Savings Per Household ...56
2. Average HWR Cost Per Household ...57
3. Unit Costs of Water Savings ..57

E. PROGRAM INTEGRATION ...59

VI. SUMMARY OF OUTCOMES AND IMPLEMENTATION LESSONS60
A. PILOT OUTCOMES ...60
B. IMPLEMENTATION LESSONS ...62

VII. RECOMMENDATIONS FOR FUTURE RESEARCH ..63

ACKNOWLEDGEMENTS ..68

APPENDIX 1: Random Group Experiment Sample Distribution by Pressure Zone69
EXECUTIVE SUMMARY

This report presents the results of an independent evaluation of the East Bay Municipal Utility District's (EBMUD) year-long pilot project (Pilot) of WaterSmart Software's Home Water Reports (HWRs) service. HWRs provide households with periodic information on their current water use and compare it to their past use, the average use of similar households, and the use of the most efficient similar households. This data is coupled with actionable information on ways to use water around the home more efficiently. HWRs aim to motivate households to reduce their water use through changes in behavior or adoption of more water efficient technology. The approach is based on research on social norms marketing coming out of the field of social psychology and for this reason we refer to these type of programs as social-norms-based (SNB) efficiency programs. While SNB efficiency programs have been broadly adopted by energy utilities across the United States in recent years, they are new to water utilities.

The EBMUD Pilot is the first relatively large-scale implementations of an SNB efficiency program by a large urban water utility, providing HWRs to 10,000 homes over a twelve-month period. The pilot was comprised of two experiments. The first we call the Random Group Experiment. The second we call the Castro Valley Group Experiment. In both experiments, households were selected to be in either a treatment group or a control group. Households in the treatment groups received HWRs while households in control groups did not. The Pilot ran from June 2012 through June 2013.

The Random Group Experiment consists of households representative of EBMUD's overall service area. The Castro Valley Group Experiment is comprised of a much more homogenous group of homes with characteristics thought to make them good candidates for HWRs. The goal of having two experiments was to provide insight into the effectiveness of HWRs directed at a targeted group of homes (Castro Valley Experiment) as well as into what the average effectiveness of HWRs might be if the program were expanded across EBMUDs whole service area (Random Group Experiment).

The Pilot was intended to address three primary questions:

1. First, would an SNB efficiency program like WaterSmart result in measurable reductions in household water use?
2. Second, would it increase rates of participation in other EBMUD conservation programs?
3. Third, would it increase household knowledge and awareness of water consumption and ways to use water more efficiently?

Within the context of each of the primary questions, EBMUD hoped the Pilot would yield information to address a number of additional questions of interest. These included:

1. Are households that are above (below) the norm more (less) likely to reduce their consumption of water?
2. Does whether the household receives a paper or electronic HWR affect the level of savings?
3. Is there a seasonal shape to water savings?
4. If HWRs increase participation in other conservation programs, which programs receive the greatest boost? Are households receiving HWRs that are above (below) the norm more (less) likely to participate in other conservation programs?
5. Are HWRs cost-effective? What is the expected cost of saved water from HWRs relative to other conservation program options or the cost of new water supply?

To address these questions we employ a range of statistical techniques, including robust panel data regression and dichotomous choice logit models. The following is a summary of our primary findings.

1. We find strong evidence that households in the Pilot’s treatment groups reduced their water use in response to the HWRs. We estimate mean treatment effects on residential water use of 4.6% and 6.6% for the Random Group and Castro Valley Group experiments, respectively. We reject the null hypothesis of no treatment effect with better than 99% statistical confidence. Our estimates of mean treatment effect bracket the 5% mean effect estimated by WaterSmart using a less robust difference-in-differences methodology. The consistency between the WaterSmart estimates and our results is useful corroborating information.

2. We also find evidence that the magnitude of the water savings scales with level of household water use. Households in the top quartile of water use save, on average, 1% more, while households in the bottom quartile of water use save, on average, 3% less, than households in between these two categories. This suggests that if HWRs are not
going to be universally provided, utilities should consider giving households in the bottom quartile of use lower priority for receiving HWR.

3. Paper reports delivered by mail appear to be more effective in terms of water savings than electronic reports delivered by email. On average, households receiving paper reports were found to save about 1% of mean household use more than households receiving email reports. An implementing utility will still need to evaluate a host of factors, including the cost of delivering mail versus email reports, the avoided cost of saved water, and the availability of customer email addresses, to determine the preferred delivery method.

4. We estimate that the unit cost of saved water is likely to range between $250 and $590 per acre-foot for email reports and between $290 and $570 per acre-foot for paper reports. The mid-point unit costs for email and paper reports are $380 and $400 per acre-foot, respectively. Even at the upper-end of the cost ranges, the unit costs are less than the cost of most other water demand management and new water supply options, indicating SNB efficiency programs could provide very cost-effective water savings.

5. We find strong evidence that households in the Pilot's treatment groups were significantly more likely to participate in audit and rebate programs offered by EBMUD than households in the control groups. Looking at both audit and rebate programs together, we estimate that households receiving HWRs were 2.3 times more likely to participate in a program than households not receiving reports. The effect appears to be strongest for audit programs, where we estimate households getting HWRs were 6.2 times more likely to participate. The effect is weaker for rebate programs (1.7 times more likely), but statistically significant. The results suggest that SNB efficiency programs can provide an effective conduit for channeling customers into other utility conservation programs.

6. Our analysis indicates that households receiving a water score of 3 on their HWR, which tells them to take action, are in fact more likely to do just that. The magnitudes of the treatment effects for both average daily use and program participation are positively correlated with water score. While our results should not be interpreted to imply that there is value to adjusting the scores to place more households in the high score category, they do suggest that targeting HWRs to homes that fall within this category is likely to

1 Unit cost estimates have been rounded to the nearest $10 throughout this report.
yield better results in terms of average water savings and boosting program participation rates.

7. We do not find evidence that HWRs improve household knowledge of water use in the conventional sense of being able to quantitatively estimate average daily use. The proportion of homes stating they did not know their water use was essentially the same between households in the control and treatment groups. Similarly, the tendency to underestimate daily water use was also generally the same between control and treatment households. It may be that over time this will change and as households receive more HWRs they will begin to incorporate this information into their general understanding of how they use water.

8. We do, however, find strong evidence that households receiving HWRs view them as providing useful and actionable information for managing their water consumption. Households in the treatment group were 52 to 80% more likely to score EBMUD as "Excellent" in terms of explaining household water use, showing ways to save money on water bills by conserving water, and giving useful tips and tools needed to use water efficiently. Thus, HWRs appear to be effective at delivering information on ways to use water efficiently that households can, and judging by the measured effects on daily water use and program participation, do act upon.
I. INTRODUCTION

This report presents the results of our evaluation of the outcomes of the East Bay Municipal Utility District's (EBMUD) year-long pilot project (Pilot) of WaterSmart Software's Home Water Reports (HWRs) service. HWRs provide households with periodic information on their current water use and compare it to their past use, use by similar households, and efficient use. This data is coupled with actionable information on ways to use water around the home more efficiently. HWRs aim to motivate households to reduce their water use through simple to implement changes in behavior or adoption of more water efficient technology. The approach is based on research on social norms marketing coming out of the field of social psychology and for this reason we refer to these type of programs as social-norms-based (SNB) efficiency programs. While SNB efficiency programs have been broadly adopted by energy utilities across the United States in recent years, they are new to water utilities.

The EBMUD Pilot is the first relatively large-scale implementations of an SNB efficiency program by a large urban water utility. The Pilot was intended to address three primary questions:

1. First, would an SNB efficiency program result in measurable reductions in household water use?
2. Second, would it increase rates of participation in other EBMUD conservation programs?
3. Third, would it increase household knowledge and awareness of water consumption?

Within the context of each of the primary questions, it was hoped the Pilot would yield information to address a number of additional questions of interest. These included:

1. Are households that are above (below) the norm more (less) likely to reduce their consumption of water?
2. Does whether the household receives a paper or electronic HWR affect the level of savings?
3. Is there a seasonal shape to water savings?
4. If HWRs increase participation in other conservation programs, which programs receive the greatest boost? Are households receiving HWRs that are above (below) the norm more (less) likely to participate in other conservation programs?
5. Are HWRs cost-effective? What is the expected cost of saved water from HWRs relative to other conservation program options or the cost of new water supply?
The analysis that follows touches on each of these questions. To our knowledge, this report provides the first published independent evaluation of the effect of an SNB efficiency program on residential water use.² The remaining parts of this report are organized as follows. In Section II we provide an overview of SNB efficiency programs, including a discussion of the theoretical basis for and empirical evidence of their effectiveness. In Section III we describe the WaterSmart service that was implemented for this Pilot. In Section IV we describe the Pilot, including its goals and objectives, experimental design, and implementation. In Section V we present the results of our evaluation. This section is divided into five main parts that address Pilot outcomes in terms of household water use, participation in other conservation programs, knowledge and awareness of water use, cost effectiveness, and potential for integration with or extension of existing water use efficiency programs and strategies. In Section VI we provide a summary of Pilot outcomes and implementation lessons learned. We conclude the report in Section VII with recommendations for future research.

II. OVERVIEW OF SNB EFFICIENCY PROGRAMS

A. SOCIAL NORMS MARKETING

Social norms marketing is increasingly being used to motivate behavioral change (Andreasen, 2002). The central idea behind social norms marketing is that much of people's behavior is influenced by their perceptions of what is "normal" or "typical." According to social norms theory, if people are shown that their behavior is outside of the norm or that their perception of the norm is incorrect, they will be motivated to change the way they behave so they conform more closely to the norm. Moreover, it is believed the effect can be enhanced by coupling information on social norms with actionable information that facilitates the desired behavioral change.

Social norms marketing originated with issues related to college student drinking and substance abuse (Perkins & Berkowitz, 1986), but has evolved over the last two decades into a much more broadly applied concept. The effectiveness of social norms marketing in motivating behavioral change has been studied in a wide variety of contexts, including voting (Gerber & Rogers, 2009), environmental awareness (Goldstein, Cialdini, & Griskevicius, 2008), retirement savings (Beshears, 2021).

² An unpublished working paper by University of Washington researchers also examined average treatment effects of HWRs using similar panel regression techniques (Brent, et al, 2013).
Choi, Laibson, Madrian, & Milkman, 2009), charitable giving (Frey & Meier, 2004), and energy conservation (Allcott, 2011).

B. STRUCTURE OF SNB EFFICIENCY PROGRAMS

Interest in the use of social norms marketing within the energy and water utility sectors has grown significantly in the last decade. Partly this has been spurred by the transition to Advanced Metering Infrastructure (AMI) in the energy utility sector, which has substantially lowered the marginal cost of delivering detailed consumption information to customers and matching this information to the usage patterns of other similar customers. All of the major energy utilities in California are transitioning to AMI and most have coupled this technology with the provision of detailed consumption information to their customers. The largest provider of social-norms-based (SNB) efficiency program services is Opower, a private sector software-as-a-service company based in Virginia. Opower currently has contracts to run SNB efficiency programs at more than 90 energy utilities -- including 8 of the U.S.’s 10 largest -- and its programs reach more than 22 million homes worldwide.

Typical elements of SNB efficiency programs designed to promote efficient usage behavior, customer engagement, and individual consumption management include.\(^3\)

1. Normative comparison of a customer's usage against comparable customers in the same geographical area;
2. Use of what social psychologists call "injunctive norms" which convey to the customer that efficient use of natural resources is pro-social while excessive use is anti-social;
3. Targeted conservation tips based on an analysis of a customer's past usage and individual profile;
4. Information and enticements to direct customers to other utility programs based on their previous usage patterns and individual customer profiles.

This information is delivered to customers through customized reports that they receive -- via mail or electronically -- on a monthly, bi-monthly, or quarterly basis, depending on their utility's

\(^3\) Adapted from Sergici & Farugui (2011).
Typically, SNB efficiency programs also provide customers access to a web portal that provides even more information on their consumption and ways in which they can improve their efficiency. Customer relationship, analytical, and reporting tools are used by the utility to respond to customer inquiries, monitor and analyze changes in usage patterns, and report on outcomes.

C. THEORETICAL BASIS FOR SNB EFFICIENCY PROGRAMS

Allcott (2011) identifies three primary mechanisms through which SNB efficiency programs may induce households to increase the efficiency of their consumption. First, providing actionable information to households on how to reduce consumption lowers the cost of implementing efficiency improvements and therefore increases household demand for them. Second, given that households have incomplete knowledge about how much water is needed to achieve desired levels of water-dependent household services (e.g. a lush landscape or clean clothes), the use of social comparisons and injunctive norms may result in households adjusting their privately-optimal levels of water use when confronted with new information about what constitutes "average" and "efficient" water use for similarly situated households. Third, the use of social comparisons and injunctive norms may alter the "moral cost" of water use, thereby altering household demand for water. Households using more than the norm may be made to feel they are using more than "their fair share" and try to use less because of this. Alternatively, households using much less than the norm may be made to feel they are not getting "their just desserts" and may therefore increase their consumption.

The last case raises the possibility that use of social comparisons could induce either lower or higher consumption, depending on how households perceives their own consumption after receiving information on normative consumption for similarly situated households. If the goal of the treatment is to get households to use less of something, then inducing some households to use more of it would be an unintended and undesirable consequence of the intervention. In the social psychology literature this is termed a boomerang effect and at least one study has reported its occurrence in the context of an energy efficiency program providing normative information on household energy.

4 In the absence of AMI, the billing cycle sets the maximum frequency in which reports can be offered. However, utilities may choose to provide them less frequently than every billing cycle.

5 Information and search costs are costs associated with finding, gathering, and processing information needed to make informed investment and consumption decisions. Consumers will balance of the cost of obtaining additional information against the benefit they expect to gain from it. Lowering information costs can therefore increase demand for goods or services where these costs had heretofore been relatively high.
consumption (Schultz, Nolan, Cialdini, Goldstein, & Griskevicius, 2007). However, Schultz et al (2007) also found that boomerang effects could be neutralized by coupling the normative information with an injunctive message conveying social approval or disapproval. Telling households with low use relative to the norm they are doing great appears to prevent them from adjusting their consumption upward, while telling households with high use relative to the norm they could do better appears to induce them to adjust their consumption downward. In his impact evaluation of Opower home energy reports, which included both information on social norms and injunctive messaging, Allcott (2011) did not find evidence of boomerang effects.6

Another way of thinking about the "moral" cost of using a scarce good is in terms of the value (or utility) consumers get from using less of it if they believe doing so contributes to other public goods they value, such as contributing to healthy ecosystems, protecting at-risk species, reducing greenhouse gas emissions, or benefitting public health. As pointed out by Levitt and List (2007), social norms provide a key point of reference from which consumers may judge the morality of their consumption choices.7 Allcott (2011) posits that most consumers believe their consumption of natural resources like water and energy is closer to the social norm than it actually is. Put another way, most of us tend to believe the social norm must be close to our own level of consumption because we all want to believe we only use what we need and do so efficiently. As shown in Section V, households in the Pilot consistently and significantly underestimated their consumption of water. Similar underestimation of usage has been reported for energy consumption (The Economist, 2010).

In this case, consumers may not perceive much of a gain in moral utility from using less of the resource because they already believe they are consuming near or below the socially acceptable level. When provided information reinforced with injunctive messaging that this is not the case, consumers update their beliefs about the social norm -- downward for high use consumers and upward for low use consumers. High use consumers find the moral utility they would get from using less of the good to have gone up and adjust their demands accordingly.

6 The SNB energy efficiency programs evaluated by Allcott involved nearly 600,000 households served by 14 different energy utilities. Six of the utilities were in California and Washington, six were in the Midwest, one was in the urban Northeast, and one was in a suburban area in a Mountain state.

7 Musings on the role of morality in economic choices is actually much older than this. The first formal treatise by an economist on the subject was Adam Smith's seminal book The Theory of Moral Sentiments published in 1759.
D. EMPIRICAL EVIDENCE FOR EFFECTIVENESS OF SNB UTILITY PROGRAMS

1. Evidence from the Energy Utility Sector

While SNB efficiency programs are relatively new, there have nonetheless been a number of empirical evaluations of their effectiveness. Because of its dominance in the market, most of these evaluations have focused on programs run by Opower and address impacts of SNB efficiency programs on household energy use.

Evaluations of Opower programs have typically found an average treatment effect in the range of 1.5% to 3.5% of baseline consumption. Allcott (2011), the first evaluation of a scaled SNB efficiency program to be published in a peer-reviewed journal, reported an average treatment effect in the range of 1.4% to 3.3% across seventeen separate utility experiments, with an unweighted mean treatment effect of 2%. Within California, evaluations of SNB efficiency programs run by Opower have reported average treatment effects ranging from 0.9% to 2.9% of baseline consumption (Perry & Woehleke, 2013; Wu & Osterhus, 2012; Summit Blue Consulting, LLC, 2009).

SNB efficiency programs have been shown to be effective at reducing both seasonal, peak day, and peak hour energy demands (Jessoe & Rapson, 2013). Average treatment effects have also been shown to be constant or increasing over multiple years (Provencher, 2011), indicating the effectiveness of repeated treatments does not appear to diminish with time. Additionally, the magnitude of the treatment effect has been shown to scale up with baseline use, meaning high use customers reduce use proportionally more than low use customers (Allcott, 2011). For example, in the SNB efficiency program experiments evaluated by Allcott (2011), the average treatment effect for households in the 30th percentile of baseline use was under 1% whereas for households in the 80th percentile it was approximately 3.5%.

8 A report by McKinsey & Company found the long-term potential savings from SNB efficiency programs in U.S. residential energy markets to be immense -- 1.8 to 2.2 quadrillion BTUs per year, or 16% to 20% of current U.S. non-transportation residential energy use (Heck & Tai, 2013). The largest savings potential -- accounting for more than half of the total -- is associated with changing temperature set points for heating and hot water systems during cold weather. Other significant potentials are associated with changing the operating parameters for air-conditioning and refrigerators. According to the report, these savings potentials are as yet largely untapped, but could be through broader use of SNB efficiency programs over a sustained period.

9 The span of years evaluated, however, has been relatively short -- usually two to three years. The effectiveness of SNB efficiency programs over longer stretches has yet to be tested.
SNB efficiency programs also may increase customer participation in other efficiency programs, which the evaluation literature terms "uplift" or "channeling." Opower claims its home energy reports have boosted participation in other utility programs by 17% to 59%. The evaluation literature is somewhat mixed. Several studies have shown positive uplift (Provencher, Hampton, Brown, & Hummer, 2013; Opinion Dynamics Corporation, 2012) while others have shown no uplift or even negative uplift (Perry & Woehleke, 2013; Gunn, 2012).

Assessments of SNB energy efficiency program costs have found them to be cost effective relative to other energy efficiency programs (Allcott & Mullainathan, 2010; Allcott, 2011). Cost estimates for Opower-like SNB energy programs are in the neighborhood of 2.5 to 3.5 cents per kilowatt-hour saved. This is substantially below the average cost of 6.4 cents per kilowatt-hour saved estimated for conventional energy demand-side-management (DSM) programs (Arimura, Newell, & Palmer, 2009). It also is comparable to an incremental cost of 3 cents per kilowatt-hour saved estimated for DSM programs at utilities with little or no historical investment in DSM (Arimura, Newell, & Palmer, 2009).

2. Evidence from the Water Utility Sector

To our knowledge there have not been any published independent evaluations of the effectiveness of SNB efficiency programs in the water utility sector. Our evaluation of the EBMUD pilot may constitute the first such evaluation. WaterSmart has reported savings estimates in the neighborhood of 5% for its City of Cotati and EBMUD pilots. However these estimates have not been independently verified.10 Our estimates of the average treatment effect of the EBMUD Pilot are consistent with these previous estimates. They are also consistent with average treatment effects of three WaterSmart pilots -- including the EBMUD Pilot -- reported by University of Washington researchers in an unpublished working paper (Brent, et al, 2013). If these results are replicated in

10 WaterSmart's internal metrics rely on difference-in-differences (DID) estimators. DID estimators, however, require strong identifying assumptions -- in particular that in the absence of treatment the average outcomes of the treatment and control groups would have followed parallel paths over time (Abadie, 2005). The preferred approach for estimating the treatment effect of SNB efficiency programs is panel data regression analysis, which can more effectively control for other factors, such as weather, impacting differences in consumption between the pre and post intervention periods for the control and treatment groups (Sergici & Farugui, 2011). Typically either a fixed-effects or random-effects estimator is recommended. For information on estimation of fixed and random effects models, more generally, the reader is referred to Wooldridge (2001).
other evaluations of SNB efficiency programs for water, it would provide compelling evidence for the viability of SNB efficiency programs in the water utility space.

III. THE WATERSMART SERVICE

SNB efficiency programs can be implemented in varying ways which may yield differing results. It is therefore important to acknowledge that our evaluation results are based on a particular implementation provided by WaterSmart Software. In this section, we describe the WaterSmart SNB efficiency program that was used in the EBMUD Pilot.

A. HOME WATER REPORT DESIGN

The design of the WaterSmart HWR is very similar to the design employed by Opower for home energy reports. It is divided into two primary modules. The Social Comparison Module appears at the top of the first page of the HWR -- it is designed to be the first thing the viewer of the report sees. As illustrated in Figure 1, the Social Comparison Module of the report presents the "descriptive norm" by comparing the household to the mean and 20th percentile of its comparison group. A household's comparison group comprises geographically proximate houses of similar irrigable area and number of occupants.

The WaterSmart HWR uses injunctive norms to convey to the household how they are doing. For the EBMUD Pilot, households were told they are doing "Great" if their use was less than the 20th percentile of their usage comparison group, they are doing "Good" if their use was within the 20th and 55th percentiles, and to "Take Action" if their use was above the 55th percentile. This messaging is reinforced with a large smiley face emoticon (in the shape of a water drop) whose expression -- smiley, neutral, or worried -- corresponds to where the household's water use falls within the distribution of water use for its comparison group (Figure 2).

11 In other implementations of WaterSmart, households were placed in the "Good" group if their consumption was between the 20th and 50th percentiles. This was broadened to the 55th percentile for the EBMUD Pilot at the request of EBMUD staff.
The second part of the report is the Suggested Actions Module. An example is shown in Figure 3. This module provides targeted recommendations of actions the household can take to use water more efficiently. The recommendations are tailored to each household based on their usage history, household characteristics, season of the year, and other factors. For example, actions related to landscape water use may be directed to households with high summer to winter use ratios or
suggestions related to leaks may be directed to households showing abnormally high use compared to their prior use history.

Figure 3. WaterSmart Home Water Report Suggested Actions Module

WaterSmart HWRs are delivered to households either via mail or electronically. The initial report is delivered electronically if WaterSmart has a valid email address for the household, and via mail otherwise. Households receiving paper reports can use the web portal to opt for electronic report delivery. HWR delivery is synchronized with the customer's billing cycle. In the case of the EBMUD Pilot, HWRs were delivered bi-monthly.

B. WEB PORTAL

WaterSmart HWRs direct households to a web portal where they can get more detailed information on their water consumption and tailored recommendations for reducing their consumption. The web portal for the EBMUD Pilot is called the WaterInsight Program. Users land on a home page where they get the most current summary of their consumption relative to their comparison group as well as recommended water saving actions. From the home page they can go to pages that allow them to verify or update information about their household; track their usage in greater detail; provide additional recommendations and tips for reducing consumption; and track the actions they have taken to reduce consumption. Figure 4 shows a screenshot of the home page and some of the usage charts on the Track Usage page.
IV. EBMUD PILOT

In this section we provide a descriptive summary of the EBMUD Pilot.

A. PILOT GOALS AND OBJECTIVES

EBMUD hoped to address three basic questions through the Pilot. First, would an SNB efficiency program like the one implemented by WaterSmart result in measurable reductions in household water use? Second, would it increase rates of participation in other EBMUD conservation programs? And third, would it increase household knowledge and awareness of their water consumption? According to interviews with EBMUD staff, the district had been interested for some time in using billing information and other household-level data to provide information to customers on their water usage relative to other households, encourage more efficiency, and direct customers to other EBMUD conservation programs. WaterSmart's implementation of HWRs provided an attractive turnkey solution that would enable the district to test the effectiveness of doing this. At the onset of the Pilot, EBMUD staff expected that it might reduce household water use by about 2%.

12 Personal communication with EBMUD Conservation Staff, October 22, 2013.
EBMUD hoped the Pilot would address a range of additional questions stemming from the three primary questions. These included:

1. To what extent do water savings vary seasonally? Are savings primarily due to changes in outside water use, inside water use, or a combination?
2. How do water savings relate to the information households receive on their HWRs about their water consumption relative to other similarly situated households? Are households that are above (below) the norm more (less) likely to reduce their consumption of water?
3. Does the level of savings depend on whether the household receives a paper or electronic HWR?
4. If HWRs increase participation in other conservation programs, which programs receive the greatest boost? Are households receiving HWRs that are above (below) the norm more (less) likely to participate in other conservation programs?
5. Are HWRs cost-effective? What is the expected cost per gallon saved for households receiving paper versus electronic HWRs?

In addition to these objectives, both EBMUD and WaterSmart were interested in exploring whether treatment effects differed when HWRs were provided to an entire community with similar characteristics rather than to randomly selected households spread across a service area, which was how WaterSmart had implemented a previous pilot for the City of Cotati.

B. PILOT EXPERIMENTAL DESIGN

The EBMUD Pilot was comprised of two experiments. The first we call the Random Group Experiment. The second we call the Castro Valley Group Experiment. In both experiments, households were selected to be in either a treatment group or a control group. Households in the treatment groups received HWRs while households in control groups did not. The treatment period, meaning the period when homes in the treatment groups received HWRs, ran from June 2012 through June 2013. Treatment in the Random Group Experiment spans this entire period. As we explain below, for the Castro Valley Group Experiment the treatment was rolled out in phases over this period, so that the duration of treatment varied among homes in this experiment. The details of each experiment are as follows.
1. Random Group Experiment

The Random Group Experiment consisted of randomly selected households that were split evenly between the treatment and control groups. EBMUD had previously developed a stratified random sample of its single family residential customers. This sample was based on three geographic zones and seven parcel size classifications, resulting in 21 strata. For the Random Group Experiment, it proportionately sampled approximately 4,000 households from these strata. About 16% of the initially sampled households were ultimately excluded from the experiment, either because of data problems identified prior to the start of the experiment or because of discontinued service or significant data anomalies during the course of the experiment. The final count of households in the Random Group Experiment is 3,286, of which 1,576 were in the control group and 1,710 were in the treatment group.

The distribution of sampled residential accounts across EBMUD's pressure zone groups is shown in Table 1. Overall the sample is representative of the geographic distribution of residential accounts within EBMUD's service territory. Group G is somewhat under-sampled while Group F is somewhat over-sampled. A table with the proportion of sampled accounts from each of EBMUD's 120 pressure zones is provided in Appendix 1. It shows the sample is generally representative of the geographic distribution of residential accounts at the pressure zone level as well.

<table>
<thead>
<tr>
<th>Pressure Zone Group</th>
<th>No. of Zones</th>
<th>% Residential Accounts</th>
<th>% Sampled Residential Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>A</td>
<td>32</td>
<td>15.6%</td>
<td>16.3%</td>
</tr>
<tr>
<td>B</td>
<td>23</td>
<td>8.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>6.6%</td>
<td>8.4%</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>4.4%</td>
<td>6.0%</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>2.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>F</td>
<td>17</td>
<td>12.5%</td>
<td>17.8%</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>46.9%</td>
<td>36.8%</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>3.1%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

EBMUD had developed the sample as part of the process it was using to calculate GPCD targets for 2020 (SBx7-7) compliance.
As would be expected for a random sample, the distributions of household attributes are essentially identical between the control and treatment groups, as shown in Figure 5.14

\textbf{Figure 5. Random Experiment Sample Household Attributes}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\end{figure}

14The box plots in Figure 5 are interpreted as follows. The dark line segmenting the box is the median value. The top and bottom of the box are the 75th and 25th percentiles, respectively. The horizontal lines above and below the box denote the range of the distribution, excluding outliers. The circles above or below these horizontal lines represent outliers. If the notches in adjacent Control and Treatment boxes overlap, it strongly indicates the median values for the two groups are statistically the same.
The annual trend in water use prior to the start of the pilot and the seasonal pattern of water use also are similar, as shown in Figure 6. In the second panel of Figure 6, the x-axis refers to the month in which the meter was read and mean water use is for the two month period leading up to this date. For example, a meter read on 9/15 would include consumption roughly from 7/15 to 9/15. This is why Figure 6 shows a peak in mean water use for reads occurring in September and October, since reads in these months capture the bulk of summer use.
The first panel of Figure 6 shows a parallel trend in mean annual water use between the control and treatment groups. This is useful information for assessing the reliability of water savings estimates based on DID estimators. As previously noted, a key identifying assumption for a DID estimator is the pattern of use between the control and treatment groups would have remained the
same but for the treatment.15 The first panel of Figure 6 strongly suggests this assumption holds for the Random Group Experiment.16

2. Castro Valley Group Experiment

The Castro Valley Group Experiment selected more than 8,000 single-family residences in the City of Castro Valley to receive Home Water Reports. These homes comprised the treatment group. Just over 1,300 homes in the Dingee Pressure Zone, which is adjacent to Castro Valley, thought to have similar single-family residential characteristics and climate comprised the control group for this experiment.17 The distribution of sampled accounts by pressure zone is shown in Table 2.

<table>
<thead>
<tr>
<th>Pressure Zone</th>
<th>Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5A</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>C2A</td>
<td></td>
<td>43.5%</td>
</tr>
<tr>
<td>C4A</td>
<td></td>
<td>34.7%</td>
</tr>
<tr>
<td>C4D</td>
<td></td>
<td>0.6%</td>
</tr>
<tr>
<td>C5C</td>
<td></td>
<td>7.0%</td>
</tr>
<tr>
<td>C5D</td>
<td></td>
<td>7.9%</td>
</tr>
<tr>
<td>C5E</td>
<td></td>
<td>1.0%</td>
</tr>
<tr>
<td>C6B</td>
<td></td>
<td>3.5%</td>
</tr>
<tr>
<td>C7A</td>
<td></td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Castro Valley was selected by EBMUD for the Pilot because the community is comprised of homes thought to approximate characteristics and climate of homes that would be targeted in a future expanded program implemented throughout the EBMUD service area. On average, compared to

15 The idea being there are no exogenous factors other than the treatment causing changes in use of the treatment group but not the control group.

16 For the reasons laid out in Sergici and Farugui (2011) and Chesnutt and McSpadden (1995), we employ panel data regression techniques to estimate the mean treatment effect on water use rather than a DID estimator.

17 These are the sample sizes developed by EBMUD and WaterSmart for the Castro Valley Group Experiment. For the analysis of treatment effect on residential water use we extended the number of households in the control group to provide better resolution on household water use. Thus, we use consumption records from 13,765 households to serve as controls in our statistical model of water use.
homes in the Random Group Experiment, homes in the Castro Valley Group Experiment are larger, have more bathrooms, and have larger irrigable area. They are also more homogenous, showing smaller coefficients of variation for key household characteristics. Most single family homes in Castro Valley are in the middle to upper-middle income brackets. The income distribution within the Random Group Experiment is more varied. Given the differential in home attributes between the two experiments, it was hoped the Castro Valley Group Experiment would provide insight into the effectiveness of HWRs directed at homes thought to be good targets, while the Random Group Experiment would provide insight into what the average effectiveness of HWRs might be if the program were expanded across EBMUD's whole service area.

The distributions of household characteristics for the control and treatment groups in the Castro Valley Group Experiment are summarized in Figure 7. Unlike the Random Group Experiment, the data show significant differences in household characteristics between control and treatment households. According to the data we obtained from WaterSmart, control group households tend to be larger and have more bathrooms, though fewer persons per household, on average. The age of control group homes is more varied and has a higher proportion of newer homes. Lot sizes are similar for the two groups, but water use per billing period is higher for the control group than for the treatment group.

Figure 7. Castro Valley Experiment Sample Household Attributes
Number of Bathrooms

- **Control**
- **Treatment**

House Size

- **Control**
- **Treatment**

Overlapping notches indicate statistical equivalency of means.
As we describe in the next section, the Castrol Valley Group Experiment was rolled out in three phases. Originally the intention was to roll out the experiment in four phases, but the first two phases were ultimately combined. The rollout phases are therefore referred to as Phase 1/2, Phase 3, and Phase 4. The differences in household characteristics between the control and treatment groups by rollout phase are shown in Figure 8 and Figure 9. From these figures it is seen that Phase 1/2 and Phase 3 homes have similar attributes. Phase 4 homes are generally smaller, have fewer bathrooms, and smaller lots. These differences are only important if they have the potential to differentially affect home water use in the pre- and post-treatment periods, which could then confound estimates of
the treatment effect if not controlled for in the statistical model. This is not expected to be the case for attributes like number of bathrooms or house size.18 It could be the case for lot size since this correlates positively with irrigable area and seasonal water use. Larger lot homes may be expected to respond differently than smaller lot homes to differences in weather between the pre- and post-treatment periods. Since Phase 4 and control group homes have significantly smaller lot sizes than Phase 1/2 and Phase 3 homes, it is necessary to put appropriate weather controls into the statistical model of mean treatment effect.

The distributions of water use per billing period by rollout phase are summarized in the top panel of Figure 10. Relative to homes in the control group, median and mean water use for homes in Phase 1/2 is higher; it is about the same in Phase 3 homes; and it is lower in Phase 4 homes.

The second panel of Figure 10 shows the time trend for mean water use per billing period for each treatment phase and the control group. This panel shows that the treatment and control groups followed generally parallel trends in annual use leading up to the start of the Pilot.

The seasonal pattern of water use for 2009-2011 is shown in Figure 11. Seasonal use in 2009 and 2010 follow nearly identical patterns, suggesting a fairly stationary relationship between the different treatment phases. However, seasonal use in 2011 deviates from this pattern with a dip in water use during the summer billing period (which corresponds to the spring to early summer consumption period). The relative position of the control group shifted somewhat in 2011, perhaps in response to weather anomalies during the spring months, which again points to the need to put appropriate statistical controls on weather effects when estimating the mean treatment effect of the Pilot on water use.

18 We employ fixed-effects regression techniques to control for the stationary differences in home attributes.
Figure 8. Castro Valley Experiment Sample Household Attributes by Rollout Phase

Persons Per Household

- Phase 1/2
- Phase 3
- Phase 4
- Control

Number of Bathrooms

- Phase 1/2
- Phase 3
- Phase 4
- Control
Figure 9. Castro Valley Experiment Sample Household Attributes by Rollout Phase

House Size

Overlapping notches indicate statistical equivalency of medians

- **Mean Value**

Lot Size

- **Mean Value**
Figure 10. Castro Valley Experiment Water Use by Rollout Phase

2011 Water Use Per Billing Period by Phase

Castro Valley Experiment Mean Water Use Per Billing Period by Year

- Control
- Phase 1/2
- Phase 3
- Phase 4

Gallons Per Billing Period

2005 2006 2007 2008 2009 2010 2011

Gallons per Billing Period
Figure 11. Castro Valley Group Seasonal Patterns of Mean Water Use Per Billing Period
C. CASTRO VALLEY HWR ROLLOUT PHASES

Primarily for administrative reasons, EBMUD chose to implement the Castro Valley Group Experiment in phases. Originally there were to be four phases. However, the first two phases were combined so ultimately the experiment was rolled out in three phases. As noted above, we refer to these phases as Phase 1/2, Phase 3, and Phase 4. Table 3 shows the number of homes in each phase along with the date they started to receive HWRs. Note there are two start dates for each phase. Which of the two dates applies for a particular home in a phase depends on its billing cycle. Homes in Phase 1/2 started receiving HWRs after June 15 or July 6 of 2012; homes in Phase 3 started receiving them after August 9 or September 7, 2012; and homes in Phase 4 started receiving them after October 7 or November 14, 2012. The Pilot ran through June of 2013. Homes in Phase 1/2 received six or seven HWRs over the course of the Pilot. Homes in Phase 3 received five or six and homes in Phase 4 received four or five. Homes had continuous access to the web portal following the receipt of their first report.

<table>
<thead>
<tr>
<th>Phase</th>
<th>No. of Homes</th>
<th>HWR Start Date</th>
<th>No. Reports Received During Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1,964</td>
<td>6/15/12 or 7/6/12</td>
<td>6 or 7</td>
</tr>
<tr>
<td>3</td>
<td>1,598</td>
<td>8/9/12 or 9/7/12</td>
<td>5 or 6</td>
</tr>
<tr>
<td>4</td>
<td>5,435</td>
<td>10/7/12 or 11/14/12</td>
<td>4 or 5</td>
</tr>
</tbody>
</table>

D. PRE-PILOT HOUSEHOLD SURVEY

Prior to the start of the Pilot, a household survey was administered to homes in the treatment group for the Castro Valley Group Experiment and to homes in both the control and treatment groups of the Random Group Experiment. The purpose of the survey was to collect information on household knowledge and attitudes about water use and conservation as well as information on household attributes, such as number of people in the home, number of toilets, presence and type of water using appliances, type of landscaping and irrigation, presence of pool or spa, etc. The information was used in creating the customer profiles, which were then used to tailor water saving

19 Since the majority of the Castro Valley homes have meter read dates in the second half of the two-month billing cycle, the majority of the homes received reports in the latter months of July, September and November.
tips and other information provided on the HWRs and through the web portal. The pre-pilot survey had an approximately 20% response rate.

E. POST-PILOT HOUSEHOLD SURVEY

Following the end of the Pilot period, a second household survey was administered to homes in the treatment of control groups of both experiments. This survey was sent to an equal number of homes that did and did not respond to the pre-pilot survey. In total, surveys were sent to 4,766 households. The post-pilot survey had an approximately 31% response rate. Results from the two surveys are used in this evaluation to assess the mean treatment effect of HWRs on household knowledge and attitudes about water use and conservation.

V. EVALUATION OF PILOT OUTCOMES

In this section we present results of our evaluation of Pilot outcomes. Broadly, we address the three primary questions presented in Section IV.A:

1. Did the Pilot result in measurable reductions in household water use?
2. Did it increase rates of participation in other EBMUD conservation programs?
3. Did it increase household knowledge and awareness of their water consumption?

Within the context of each of these primary questions, we also present evaluation results for a range of secondary questions of interest. Additionally, we examine the cost-effectiveness of HWRs and their potential for integration with existing conservation programs.

A. WATER USAGE

Arguably the most important question to be addressed by the Pilot is did providing households with HWRs result in measurable reductions in household water use compared to the control group? While SNB efficiency programs are multi-dimensional in what they offer to utilities in terms of customer services and demand management, they are primarily marketed as a way to reduce customer water use. As previously discussed, WaterSmart has reported savings estimates in the neighborhood of 5% for its City of Cotati and EBMUD pilots. WaterSmart's internal metrics, however, rely on less statistically robust DID methodology (Sergici & Farugui, 2011). To our

20 Indeed, the banner across WaterSmart's homepage currently reads "Reduce Water Demand by 5% in 6 months."
knowledge, this report provides the first published independent evaluation of the effect of an SNB efficiency program on residential water use based on more robust panel data regression methodology.

1. Methodology

We use panel data regression techniques to estimate the mean effect of HWRs on household water consumption for the two experiments. Specifically, we estimated a fixed-effects model of water consumption that controls for time-variant seasonal and weather effects on consumption over the pre- and post-treatment periods as well as effects of unobserved time-invariant differences in household characteristics.

The general form of the model is given in equation (1):

\[
(1)
\]

where \(\bar{y}_{it} \) is household i’s average daily water use in period t, \(y_{it} \) is household i’s mean daily water use, \(s_{it} \) is the seasonal effect on average daily water use in period t, \(w_{it} \) is the weather effect on average daily water use in period t, \(h_{it} \) is the effect of HWRs on household i’s average daily water use in period t, and \(e_{it} \) is model error.

We model the seasonal and weather effects as continuous (as opposed to discrete bi-monthly) functions of time following the approach in Chesnutt and McSpadden (1995). We also include interactions between the seasonal and weather components to isolate season-specific weather responses.

The seasonal term, \(s_{it} \), is formed by the Fourier series shown in equation (2), where \(d = 1, 2, 3, \ldots, 365 \) is an index of the days of the year, and \(d_{t} \) and \(d_{t}^{*} \) are the first and last indexed days in period t, respectively.\(^{21}\) For this analysis, we assume the number of days between billing periods, \(d_{t}^{*} - d_{t} \), is a constant 61 days.

\(^{21}\) A Fourier series is an expansion of a periodic function \(f(x) \) in terms of a sum of sines and cosines. The use of Fourier series to represent periodic functions is called harmonic analysis, which was first employed to estimate a seasonal component in a regression context by Hannan(1960). Jorgenson (1964) extended the use of harmonics in least squares estimation to include both trend and seasonal components. Note that if t has the length of 1 day (e.g., daily observations of water use), then equation (2) simplifies to...
The model incorporates two types of weather measures into the weather component -- rainfall and average daily evapotranspiration -- both of which are logarithmically transformed. These measures are defined in equation (3).\footnote{Total rainfall in period t is scaled by adding one in equation (3) to accommodate periods in which total rainfall is zero, in which case the logarithm of total unscaled rainfall would be undefined.}

The expected values for rainfall, r, and evapotranspiration, q, are derived from regression against the seasonal harmonics. The weather measures expressed in this way are thereby separated from the seasonal effects. The seasonal component, therefore, captures all constant seasonal effects, including those caused by normal weather conditions, while the weather component captures the effect of weather departing from its normal pattern (e.g. unusually wet or dry for the given time of year).

The effect of HWRs on average daily water use is specified in equation (5), where the indicator variable, d_{it}, takes the value 1 if household i is receiving HWRs in period t and 0 otherwise.

The coefficient β_d measures the mean treatment effect of HWRs on average daily water use and is expected to have a negative sign if HWRs induce lower average daily water use.\footnote{The index j represents the frequency of each harmonic. Because the lower frequencies tend to explain most of the seasonal variation in average daily water use, the higher frequencies can often be omitted with little predictive loss.}

Note.
that captures the effect on average daily water use of both changes to behavior and any induced participation in other conservation programs. We interact with treatment group affiliation to separately estimate the mean treatment effect for each experiment. We also interact it with other indicators of household characteristics -- e.g., Water Score, paper vs. email report, consumption level -- to measure how the treatment effect varies with these factors.

We use Hausman's specification test to select between a fixed effects or a random effects estimator. While a random effects estimator can be more efficient, it depends on a more restricted set of assumptions about the structure of the model error. Hausman's specification test indicated these assumptions were unlikely to hold and we therefore adopted a fixed effects estimation approach. The model was estimated in STATA (version 13.1) using the panel data estimator for fixed effects models with consistent standard errors for clustered data.

2. **Data and Estimation**

We compiled household metered consumption records from January 2006 to September 2013. We converted metered consumption to average daily use by dividing by the length of the billing period. These data were then matched to the corresponding weather data for each billing period.

We collected daily weather measurements -- precipitation, maximum air temperature, and evapotranspiration -- from the CIMIS weather stations located in EBMUD's service area: Union City/Oakland Foothills (CIMIS station #149), Concord (CIMIS station #170), and Moraga (CIMIS station #178). Customer accounts were assigned to one of the three stations on the basis of zip code.

23 Because average daily water use is logarithmically transformed prior to estimation, the coefficient approximates the percentage difference in average daily water use between households that receive HWRs (i.e. receive the treatment) and households that do not.

24 As previously noted, we treat the length of the billing period as a fixed 61 days. While this is not strictly true in all cases, doing so greatly simplifies the conversion of the billing data to average daily use with little predictive loss.
We then generated rolling bimonthly averages of rainfall, temperature, and evapotranspiration to exactly match the weather variables to the meter read dates for household water use.\(^{25}\)

Data from meter reads can contain a lot of noise in the form of missing reads, duplicative reads, erroneous reads, and interpolated reads. This resulted in the elimination of some accounts from the sample for data quality reasons—too short a pre-intervention consumption history, change of residence, unconfirmed high consumption reading. Robust regression techniques were used on the remaining data to detect and address any residual data quality errors. This methodology determines the relative level of inconsistency of each observation with a given model form. A measure is constructed to depict the level of inconsistency between zero and one; this measure is then used as a weight in subsequent regressions. Less consistent observations are thereby down-weighted during model estimation.

Table 4 presents the counts on the final sample used to estimate the water use model given in equation (1).\(^{26}\)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro Valley Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Households</td>
<td>10,529</td>
<td>13,765</td>
</tr>
<tr>
<td>No. Meter Reads</td>
<td>362,198</td>
<td>473,204</td>
</tr>
<tr>
<td>Random Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Households</td>
<td>1,710</td>
<td>1,576</td>
</tr>
<tr>
<td>No. Meter Reads</td>
<td>58,824</td>
<td>54,214</td>
</tr>
</tbody>
</table>

\(^{25}\) A meter read represents the end of a consumption period. For example, a meter read on June 30 would represent consumption roughly from May 1 to June 30. However, meters are read on a schedule that often does not coincide with the start or end of calendar months. Thus, the need to work with daily weather data so that the weather variables can be correctly aligned with the corresponding consumption data.

\(^{26}\) The sample sizes in Table 4 for the Castro Valley Group Experiment differ from the sample as originally developed by EBMUD and WaterSmart because we expanded the control group in order to get better statistical resolution on the treatment effect on water use.
3. Estimation Results

Model estimation results are presented in Table 5. The results are based on water consumption for 27,580 single family households between January 2006 and September 2013. This sample contains 1,710 households in the treatment group of the Random Group experiment, 10,529 households in the treatment group of the Castro Valley Group experiment, and over 15,000 single family control households.

The first variable in Table 5 is the overall intercept term. The estimated model also includes fixed effects intercepts for each household represented in the model, which are excluded from the table for obvious reasons of parsimony. Variables 2 thru 9 comprise the seasonal component, S_c, of the model. These correspond to the sines and cosines of the Fourier series in equation (2). These variables and their coefficients describe the shape of demand over the year given normal weather. Variables 10 thru 16 measure changes in average daily use that result from departures in weather from normal conditions. Thus, variables 10 and 11 indicate that above average rainfall pushes demand down (as one would expect), while variable 14 shows that higher than average evapotranspiration pushes demand up (again as one would expect). Interactions between season and weather are captured by variables 12 and 13 for rainfall and by variables 15 and 16 for evapotranspiration. The coefficients for these variables indicate that departures of evapotranspiration from normal produce the largest percentage effect in the spring growing season. Similarly, an inch of rainfall produces a larger effect on water use in the summer than in the winter.

The treatment effects of HWRs are captured by variables 17 thru 23. These variables represent an expanded version of equation (5) to include interactions with other household characteristics. The main effect for the Random and Castro Valley experiments are given by the coefficients for variables 17 and 18, respectively. Both are negative and statistically different from zero at better than 99% confidence, meaning the model definitively rejects the null hypothesis of no treatment effect on average daily water use.
Table 5. Household Average Daily Water Use Fixed Effects Model Estimation Results

<table>
<thead>
<tr>
<th>Model Variable</th>
<th>Coeff.</th>
<th>St. Err.</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Constant (Mean intercept)</td>
<td>5.2406</td>
<td>0.0003</td>
<td>17468.67***</td>
</tr>
<tr>
<td>2. First Sine harmonic, 12 month (annual) frequency</td>
<td>0.0485</td>
<td>0.0007</td>
<td>69.29***</td>
</tr>
<tr>
<td>3. First Cosine harmonic, 12 month (annual) frequency</td>
<td>-0.337</td>
<td>0.0017</td>
<td>-198.24***</td>
</tr>
<tr>
<td>4. Second Sine harmonic, 6 month (semi-annual) frequency</td>
<td>0.0000</td>
<td>0.0006</td>
<td>0.00</td>
</tr>
<tr>
<td>5. Second Cosine harmonic, 6 month (semi-annual) frequency</td>
<td>0.0003</td>
<td>0.0007</td>
<td>0.43</td>
</tr>
<tr>
<td>6. Third Sine harmonic, 4 month frequency</td>
<td>-0.0128</td>
<td>0.0008</td>
<td>-16.00***</td>
</tr>
<tr>
<td>7. Third Cosine harmonic, 4 month frequency</td>
<td>0.0235</td>
<td>0.0008</td>
<td>29.38***</td>
</tr>
<tr>
<td>8. Fourth Sine harmonic, 3 month (quarterly) frequency</td>
<td>0.0076</td>
<td>0.0014</td>
<td>5.43***</td>
</tr>
<tr>
<td>9. Fourth Cosine harmonic, 3 month (quarterly) frequency</td>
<td>-0.0092</td>
<td>0.0013</td>
<td>-7.08***</td>
</tr>
<tr>
<td>10. Deviation from logarithm of 61 day moving sum of rainfall</td>
<td>-0.0525</td>
<td>0.001</td>
<td>-52.50***</td>
</tr>
<tr>
<td>11. Bimonthly lag from rain deviation</td>
<td>-0.0051</td>
<td>0.0008</td>
<td>-6.38***</td>
</tr>
<tr>
<td>12. Interaction of contemporaneous rain with annual sine harmonic</td>
<td>-0.0475</td>
<td>0.0013</td>
<td>-36.54***</td>
</tr>
<tr>
<td>13. Interaction of contemporaneous rain with annual cosine harmonic</td>
<td>0.0126</td>
<td>0.0012</td>
<td>10.50***</td>
</tr>
<tr>
<td>14. Deviation from logarithm of 61 day moving average of CIMIS Evapotranspiration</td>
<td>0.2537</td>
<td>0.0047</td>
<td>53.98***</td>
</tr>
<tr>
<td>15. Interaction of CIMIS Evapotranspiration with ann. sine harmonic</td>
<td>0.261</td>
<td>0.0053</td>
<td>49.25***</td>
</tr>
<tr>
<td>16. Interaction of CIMIS Evapotranspiration with ann. cosine harmonic</td>
<td>0.1306</td>
<td>0.0005</td>
<td>26.12***</td>
</tr>
<tr>
<td>17. Main Effect of HWR Intervention Random Group</td>
<td>-0.0564</td>
<td>0.0162</td>
<td>-3.48***</td>
</tr>
<tr>
<td>18. Main Effect of HWR Intervention in Castro Valley Group</td>
<td>-0.0742</td>
<td>0.0045</td>
<td>-16.49***</td>
</tr>
<tr>
<td>19. Interaction of HWR Intervention with bottom usage quartile (0-25%)</td>
<td>0.0292</td>
<td>0.0121</td>
<td>2.41**</td>
</tr>
<tr>
<td>20. Interaction of HWR Intervention with top usage quartile (76-100%)</td>
<td>-0.0116</td>
<td>0.0063</td>
<td>-1.84**</td>
</tr>
<tr>
<td>21. Interaction of HWR Intervention with Email Delivery</td>
<td>0.0111</td>
<td>0.0074</td>
<td>1.50</td>
</tr>
<tr>
<td>22. Interaction of HWR Intervention with Max Water Score of 2</td>
<td>0.0192</td>
<td>0.0123</td>
<td>1.56</td>
</tr>
<tr>
<td>23. Interaction of HWR Intervention with Max Water Score of 1</td>
<td>0.0546</td>
<td>0.0272</td>
<td>2.01**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>948,440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of households</td>
<td>27,570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error of Individual Constant Terms (sigma_u)</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error of White Noise Error (sigma_e)</td>
<td>0.4172</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significant at 90% confidence level, ** significant at 95% confidence level, *** significant at 99% confidence level

4. Mean Treatment Effect

The coefficients on variables 17 and 18 represent the treatment effect for households receiving paper reports with pre-treatment consumption that fell between the 25th and 75th percentiles. For the Random Group Experiment (variable 17), households in this category reduced their water use by 33 M.CUBED. The effect is statistically significant at the 99% confidence level.
consumption by approximately 5.5% (95% CI 2.4% to 8.4%).27 Similarly situated households in the Castro Valley Group Experiment (variable 18) reduced consumption by approximately 7.1% (95% CI 6.3% to 8.0%).

To get the mean treatment effect for the full sample in each experiment we take a weighted average of the product of the intervention variables (17-23) and their estimated coefficients.28 For the Random Group Experiment we estimate an overall mean treatment effect of 4.6%. For the Castro Valley Experiment we estimate an overall mean treatment effect of 6.6%. While the mean treatment effect for the Castro Valley Experiment is greater than for the Random Group Experiment, we cannot reject the possibility that this is due to chance, since the confidence intervals surrounding the two estimates overlap. However, a larger effect in the Castro Valley experiment is not implausible given the greater homogeneity of the homes in terms of household characteristics and water use (see Section IV.B). Indeed, a primary reason that EBMUD selected Castro Valley for the experiment was the belief that its homes would be good candidates for HWRs.

5. Impact of Household Water Use Percentile on Treatment Effect

A question relevant to the targeting of HWRs if they are not going to be provided on a universal basis is whether savings scale with level of water use. That is, is the treatment effect larger for households in the upper percentiles of consumption than for households in the lower percentiles? The model results suggest the answer is yes. We find that the treatment effect for households in the bottom quartile of use is reduced by about 2.9% while it is increased by about 1.1% for households in the upper quartile of use, relative to households with use in the inter-quartile range. The difference in treatment effect between households in the middle two quartiles and households in the upper quartile is not statistically significant. This is not the case for households in the bottom quartile, where the difference is significant. The results suggest utilities should consider giving households in the bottom quartile of use lower priority for receiving HWRs if they are not to be universally provided.

27 While the coefficient is -0.0564, we are employing the estimator proposed by Kennedy (1981) for the expected percentage change for an indicator variable in a model with a logarithmically transformed right hand side variable, which is , where is the estimated coefficient and is its estimated variance. Thus,

28 We again employ the second order correction described in the previous footnote.
6. Impact of Water Score on Treatment Effect

We also find that treatment effect scales with HWR score. Thus, we calculate a treatment effect of 7.1% if a household in the Castro Valley treatment group received a HWR score of 3 (Take Action!); a treatment effect of 5.2% if it received a HWR score of 2; and a treatment effect of just 1.6% if it had a HWR score of 1 (Doing Great!). We view the results as indicating correlation of treatment effect with the HWR score but not necessarily causation. While it is certainly plausible that the injunctive norms implicit in the HWR scores and corresponding emoticons may motivate participation -- after all households getting a score of 3 are the only households explicitly told to take action -- it also could be the case that other underlying factors that correlate with the score are causing the response. For example, since score correlates with where households fall within the distribution of water use within their cohort, it could also be the case that households in the upper percentiles of their comparison group find more ways to reduce water use -- perhaps because they have more older water using fixtures or larger landscapes where they can make adjustments -- while households in the lower percentiles may already have efficient fixtures and perhaps minimal or already water efficient landscapes. In this case, while the injunctive norm to take action may provide some of the motivation to reduce use, other factors could also be at play. Allcott (2011) addressed this question with respect to the mean treatment effect of Opower home energy reports on energy consumption and concluded that the injunctive norms could explain no more than 15% to 30% of the differential effect in response across scores. As we discuss later in the report, we find similar effects between the HWR score and the odds of a household participating in an EBMUD audit or rebate program.

7. Impact of Paper vs Electronic Reports on Treatment Effect

Because electronic reports delivered by email offer a definite cost advantage over paper reports, there is interest in whether they generate equivalent savings. The model results suggest they do not. The coefficient on variable (21) indicates that email reports reduced the treatment effect by about 1%. We also note, however, that we cannot reject the null hypothesis of no difference at the 95% confidence level. Thus our evaluation does not provide a definitive answer to the question, other than to suggest that paper reports appear to have greater impact, on average. Even if savings are lessened by use of email reports, the cost savings may nonetheless justify their use. We take up this question later in the report.
8. Seasonal Shape of Treatment Effect

Preliminary models provide some evidence of stronger treatment effects associated with reports received in the fall and winter than in the spring and summer.29 This finding suggests a lagged response to high water use since households using large amounts of water in the summer do not receive feedback on this until they receive reports in the late summer and fall. More research is needed to better parse the seasonality of treatment effect. In particular, a longer period of treatment spanning more than 12 months would provide better information with which to examine this question.30

B. CONSERVATION PROGRAM PARTICIPATION

As discussed in the previous section, embedded in the mean treatment effect on average daily water use are any changes in use resulting from increased participation in EBMUD audit and rebate programs. In this section we examine the question of whether and to what extent homes in the treatment groups of the two Pilot experiments were more likely to participate in EBMUD audit and rebate programs. Home energy reports have been reported to increase customer participation in other energy efficiency programs. This effect is sometimes referred to as "uplift" or "channeling" in the literature. Opower, the largest provider of home energy reports, claims its home energy reports have increased participation in other energy conservation programs by 17 to 59%. On its website, WaterSmart claims up to a three-fold increase in program participation for homes receiving HWRs.31

1. Pre-Pilot Program Participation

During the four years prior to the start of the Pilot, program participation rates were similar for the treatment and control groups of both experiments, as shown in Figure 12 and Figure 13. In particular, both groups exhibit similar trends in participation over time, with participation declining steadily from 2008 to 2011. The sample participation rates in each year are statistically equivalent between the control and treatment groups of each experiment with one exception. The one exception is 2008 rebate participation rates for the Castro Valley Experiment. In subsequent years, however,

29 This seasonal effect was also detected by Brent, et al (2013).

30 Recall that households in Phase 4 did not start receiving HWRs until October or November and these homes comprised the bulk of the Castro Valley treatment group.

31 http://www.watersmartsoftware.com/our-solution.html#our-solution
the differences in the sample participation rates are not statistically significant at the 95% confidence level.32

From this data we conclude that rates of participation for the treatment and control groups in both experiments were very similar both in magnitude and trend leading up to the Pilot. This suggests the key identifying assumption of parallel trend needed for the difference-in-differences modeling approach is likely to hold for the two experiments with regard to program participation.

32 If the paired confidence intervals in Figure 12 overlap, it indicates the difference between the control and treatment group participation rates are not statistically significant. Conversely, if they do not overlap, it indicates the difference is statistically significant. Note the wider confidence interval for the control group compared to the treatment group in the Castro Valley Group Experiment is due to the smaller sample size for the control group.
Figure 12. Pre-Pilot Audit Program Participation Rates

Audits: Random Group

Audits: Castro Valley Group
2. Post-Pilot Program Participation

Participation rates in audit and rebate programs pre- and post-treatment are summarized in Figure 14 and Figure 15. These rates are for the Phase 1/2 treatment groups, which received a full year of HWRs. We define the pre-treatment period as the year prior to the start of Phase 1/2, roughly

Differences in participation between the control and treatment groups in the pre-treatment period are statistically insignificant at the 95% level of statistical confidence. However, while audit participation rates for the control groups remain essentially unchanged in the post-treatment period, rates for the treatment groups increase sharply in both experiments. Given the parallel pattern in audit participation rates leading up to the Pilot (Figure 12 and Figure 13), this suggests that HWRs had a definite effect on a home's decision to request an audit. For rebates, the parallel pattern in participation between control and treatment homes is also broken -- participation rates decrease between the pre and post periods for the control groups, while they increase for the treatment groups. The effect is clearly not as large as for audits, but the trend reversal suggests there is some effect.
Figure 14. Pre- vs. Post-Treatment Audit Participation Rates

Audits: Random Group

- Control
- Treatment

Audits: Castro Valley Group

- Control
- Treatment

Sample Participation Rate (with 95% CI)
3. Estimation of Mean Treatment Effect

We use logit regression techniques to estimate the strength of the effect of HWRs on the choice to participate in EBMUD rebate and water audit programs. Logit regression can be used to predict the outcome of a categorical dependent variable (in our case, the choice to participate in an
EBMUD conservation program) based on one or more predictor variables.33 For this analysis, the key predictor variables are whether a household is in the control group or treatment group and whether the time period is pre-treatment or post-treatment. Other predictor variables are whether the household had previously participated in a rebate program, size of the household, and landscape characteristics.34 The general specification of the model follows the DID specification in Puhani (2008) for estimating the treatment effect on a dichotomous choice variable in the context of a nonlinear regression model. The basic model is given in equation (6)

\begin{equation}
\pi_i = \frac{e^{\alpha + \beta T + \gamma G + \delta^\top \mathbf{x}_i}}{1 + e^{\alpha + \beta T + \gamma G + \delta^\top \mathbf{x}_i}},
\end{equation}

where

\(p_i\) is the probability of participation, \(T = 1\) in the post treatment period and 0 otherwise, \(G = 1\) if the household is in the treatment group and 0 otherwise, the \(\mathbf{x}\) are additional predictor variables, and

\(\Phi\) is the cumulative distribution function for a logistic random variable. The coefficient \(\delta\) on the interaction term measures the mean treatment effect of HWRs on participation in other EBMUD programs. The increase in the odds that a household chooses to participate in an EBMUD program given that it was in the treatment group is given by .

We estimated the model given by equation (6) separately for each experiment and also for the pooled experiments. Results were similar across the individual and pooled experiments. We therefore present the results for just the pooled estimation.

Table 6 presents the results for combined participation in rebate and audit programs. That is, it shows the mean treatment effect on overall program participation, without regard to type of

33 In the logit regression model, the probability, \(p\), that the observed value \(y\) takes the value 1 (e.g., the household participates in a program) given the predictor variable \(x\) is

\[\pi = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}},\]

where \(L\) is a random variable that follows the logistic distribution. Given a set of observed values for \(y\) and \(x\), maximum likelihood estimation techniques are used to estimate values for \(\alpha\) and \(\beta\). It can be shown that the log of the odds that \(y\) takes the value 1 is equal to \(\alpha + \beta x\), or equivalently, the odds that \(y\) takes the value 1 is equal to \(\frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}\). If \(x\) is a binary predictor variable, such as \(x=1\) if treatment is received and \(x=0\) otherwise, then the change in the odds that \(y\) takes the value 1 given \(x=1\) is equal to \(\beta\). This provides a particularly convenient way to assess the strength of the effect of \(x\) on the odds that \(y\) takes the value of 1 (e.g., the odds the household participates in a program).

34 Past participation in audit programs was not found to have a statistically significant effect and was dropped from the model.
program. The coefficient on the treatment effect variable, TG, is positive and is statistically significant at the 99% level of confidence, indicating treatment increased the likelihood of participation in other EBMUD programs.

Model results indicate that households receiving HWRs were 2.34 times more likely to participate in other EBMUD conservation programs than households not receiving HWRs.\(^{35}\)

Table 6. Mean Treatment Effect on EBMUD Program Participation

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>Logit Model Coefficient</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG (treatment effect)</td>
<td>0.84943</td>
<td>4.4920 ***</td>
</tr>
<tr>
<td>T (time effect)</td>
<td>-0.23407</td>
<td>-1.6349</td>
</tr>
<tr>
<td>G (group effect)</td>
<td>-0.30235</td>
<td>-2.1869 **</td>
</tr>
<tr>
<td>PPH (persons per household)</td>
<td>-0.074468</td>
<td>-0.19239</td>
</tr>
<tr>
<td>PREV_REB (received a rebate in prior 3 years)</td>
<td>-0.71114</td>
<td>-4.1360 ***</td>
</tr>
<tr>
<td>IR_SMALL (irrigable area 4000 sqft or less)</td>
<td>-0.17816</td>
<td>-1.9393 *</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-2.9795</td>
<td>-19.494 ***</td>
</tr>
</tbody>
</table>

* * significant at 90% confidence level, ** significant at 95% confidence level, *** significant at 99% confidence level

Table 7 presents the results for participation in audit programs only. The coefficient on the treatment effect variable, TG, is positive and is statistically significant at the 95% level of confidence, indicating treatment increased the likelihood of participation in other EBMUD programs. Model results indicate that households receiving HWRs are 6.2 times more likely to participate in EBMUD audit programs than households not receiving HWRs.\(^{36}\)

\(^{35}\) The increase in the odds of participation is calculated by exponentiation of the coefficient for TG (). If the probability of participation without treatment is \(p_0\) and the probability of participation with treatment is \(p_1\), then the odds ratio is defined as . Given the odds ratio and knowledge of the probability of participation without treatment, one can easily calculate the probability of participation given treatment. Suppose the probability of participation without treatment is 1% and the odds ratio is 2.34. Then the probability of participation given treatment is .

\(^{36}\) Again, the increase in the odds of participation is calculated by exponentiation of the treatment effect coefficient TG ().
Table 7. Mean Treatment Effect on EBMUD Audit Program Participation

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>Logit Model Coefficient</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG (treatment effect)</td>
<td>1.8263</td>
<td>2.1975 **</td>
</tr>
<tr>
<td>T (time effect)</td>
<td>0.51160</td>
<td>0.70065</td>
</tr>
<tr>
<td>G (group effect)</td>
<td>0.75408</td>
<td>-1.0921</td>
</tr>
<tr>
<td>PPH (persons per household)</td>
<td>-0.20386</td>
<td>2.1686 **</td>
</tr>
<tr>
<td>IR_SMALL (irrigable area 4000 sqft or less)</td>
<td>0.57681</td>
<td>-2.5435 **</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-6.6846</td>
<td>-10.316 ***</td>
</tr>
</tbody>
</table>

* significant at 90% confidence level, ** significant at 95% confidence level, *** significant at 99% confidence level
no. obs. = 12,672

Table 8 presents the results for participation in rebate programs only. The coefficient on the treatment effect variable, TG, is positive and is statistically significant at the 95% level of confidence, indicating treatment increased the likelihood of participation in other EBMUD programs. Model results indicate that households receiving HWRs are 1.66 times more likely to participate in EBMUD rebate programs than households not receiving HWRs.

Table 8. Mean Treatment Effect on EBMUD Rebate Program Participation

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>Logit Model Coefficient</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG (treatment effect)</td>
<td>0.50382</td>
<td>2.5224 **</td>
</tr>
<tr>
<td>T (time effect)</td>
<td>-0.26467</td>
<td>-1.8107 *</td>
</tr>
<tr>
<td>G (group effect)</td>
<td>-0.32403</td>
<td>-2.3019 **</td>
</tr>
<tr>
<td>PPH (persons per household)</td>
<td>-0.027124</td>
<td>0.65012</td>
</tr>
<tr>
<td>PREV_REB (received a rebate in prior 3 years)</td>
<td>-0.81709</td>
<td>-4.1760 ***</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-3.2026</td>
<td>-20.870 ***</td>
</tr>
</tbody>
</table>

* significant at 90% confidence level, ** significant at 95% confidence level, *** significant at 99% confidence level
no. obs. = 12,672

Table 9 summarizes the mean increase in the odds of program participation given a household received HWRs and its corresponding 95% confidence interval. In each case, we reject the null hypothesis of no treatment effect at the 95% level of confidence.\(^{37}\)

\(^{37}\) The confidence intervals are calculated as , where SE is the standard error on the coefficient estimate. The broad span of the confidence interval for Audits Only is driven by the very low audit counts overall for the sample of pre- and post-treatment observations. Only 86 audits were completed out of 12,672 pre- and post-treatment observations. The great majority of these audits were completed in the post-treatment period on homes in
Table 9. Mean Treatment Effect on Odds of Conservation Program Participation

<table>
<thead>
<tr>
<th>EBMUD Conservation Program</th>
<th>Odds Ratio*</th>
<th>95% CI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled Audit and Rebate Participation</td>
<td>2.34</td>
<td>1.61</td>
<td>3.39</td>
</tr>
<tr>
<td>Audits Only</td>
<td>6.21</td>
<td>1.22</td>
<td>31.66</td>
</tr>
<tr>
<td>Rebates Only</td>
<td>1.66</td>
<td>1.12</td>
<td>2.45</td>
</tr>
</tbody>
</table>

* The odds ratio shows the increase in the odds of program participation given the household received HWRs. The null hypothesis that HWRs do not affect the odds of participation is rejected when the lower bound of the 95% CI is greater than 1.

4. Effect of HWR Score on Likelihood of Program Participation

Recall that if household consumption is in the 20th percentile of their cohort (HWR score = 1) the report tells them they are efficient, has a large smiling emoticon, and a reinforcing message telling them they are great. If consumption is between the 20th and 55th percentiles (HWR score = 2) the report tells them they are average and gives a smiley emoticon without a reinforcing message. If consumption is above the 55th percentile (HWR score = 3) the report tells them they need to take action and reinforces the message with a worried face emoticon.

As we did for the treatment effect on average daily water use, we consider whether participation in other conservation programs is influenced by the initial score received. It seems reasonable to expect that households told they are efficient and doing great would see less reason to participate in an audit or rebate program -- why fix what's not broken -- than households told they are using too much water and need to take action. We test for this effect by extending the model in equation (6) by interacting the treatment effect term with HWR score indicator variables.

The extension of the model is given in equation (7)

\[
\text{(7)}
\]

where SCR1 and SCR2 are binary indicator variables that take the value 1 if the household received the indicated score and 0 otherwise. The coefficient measures the effect of an initial HWR score of 1 on participation (relative to a score of 3) while the coefficient measures the effect of an initial HWR score of 2. The change in the odds of participation given treatment is therefore given as

the treatment group. However, with so few observations on completed audits, the variance on the odds ratio for audits only is large.
If initial scores of 1 and 2 decrease the incentive to participate in programs we would expect the estimated values for \(\beta \) and \(\gamma \) to be negative and statistically significant. Moreover we would expect the magnitude of \(\beta \) in absolute value to exceed that of \(\gamma \). This is in general what we find, as reported in Table 10, which shows the estimated treatment effect coefficients and their t-statistics for rebates and audits combined, audits only, and rebates only. The score effects are all significant at the 99% level of confidence for the audit and/or rebate and audit only participation models. The score effects are of the expected sign and rank order for the rebate only participation model, but they do not have statistical significance at the 95% confidence level.

Table 10. Effect of Initial WaterSmart Score on Mean Treatment Effect on EBMUD Program Participation

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>Logit Model Coefficient</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Participation in audit and/or rebate programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG ()</td>
<td>1.1770</td>
<td>5.9543 ***</td>
</tr>
<tr>
<td>TG_SCR1 ()</td>
<td>-0.89304</td>
<td>-3.9858 ***</td>
</tr>
<tr>
<td>TG_SCR2 ()</td>
<td>-0.63286</td>
<td>-3.4769 ***</td>
</tr>
<tr>
<td>Model 2: Participation in audit programs only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG ()</td>
<td>2.3912</td>
<td>2.8671 ***</td>
</tr>
<tr>
<td>TG_SCR1 ()</td>
<td>-2.3165</td>
<td>-3.8936 ***</td>
</tr>
<tr>
<td>TG_SCR2 ()</td>
<td>-1.2261</td>
<td>-3.6866 ***</td>
</tr>
<tr>
<td>Model 3: Participation in rebate programs only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG ()</td>
<td>0.68080</td>
<td>3.1614 ***</td>
</tr>
<tr>
<td>TG_SCR1 ()</td>
<td>-0.44076</td>
<td>-1.7778 *</td>
</tr>
<tr>
<td>TG_SCR2 ()</td>
<td>-0.31475</td>
<td>-1.4671</td>
</tr>
</tbody>
</table>

* significant at 90% confidence level, ** significant at 95% confidence level, *** significant at 99% confidence level

no. obs. = 12,672

The increase in the odds of participation given the initial HWR score for the three participation models are shown in Table 11. As with the effect of score on average daily water use,

\[\text{CI}_{\text{score=1}} = \text{CI}_{\text{score=2}} \]

\[\text{CI}_{\text{score=2}} = \text{CI}_{\text{score=1}} \]
we view the results as indicating correlation of treatment effect but not necessarily causation. Again, while it is plausible that the injunctive norms implicit in the HWR scores and corresponding emoticons are motivating participation it also could be the case that other underlying factors that correlate with the score are causing the response. What we can say is there is clearly a differential response in participation across score categories and that some of the differentiation may result from the injunctive norm (e.g., take action) and some may be due to other underlying factors.

Table 11. Effect of Initial HWR Score on Odds of Program Participation

<table>
<thead>
<tr>
<th>Initial WaterSmart Score</th>
<th>Odds Ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>Model 1: Participation in audit and/or rebate programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score = 3 (</td>
<td>3.24</td>
<td>2.20</td>
</tr>
<tr>
<td>Score = 2 (</td>
<td>1.72</td>
<td>1.09</td>
</tr>
<tr>
<td>Score = 1 (</td>
<td>1.33</td>
<td>0.79</td>
</tr>
<tr>
<td>Model 2: Participation in audit programs only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score = 3 (</td>
<td>10.93</td>
<td>2.13</td>
</tr>
<tr>
<td>Score = 2 (</td>
<td>3.21</td>
<td>0.57</td>
</tr>
<tr>
<td>Score = 1 (</td>
<td>1.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Model 3: Participation in rebate programs only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score = 3 (</td>
<td>1.98</td>
<td>1.30</td>
</tr>
<tr>
<td>Score = 2 (</td>
<td>1.44</td>
<td>0.88</td>
</tr>
<tr>
<td>Score = 1 (</td>
<td>1.27</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* The odds ratio shows the increase in the odds of program participation given the household received HWRs. The null hypothesis that HWRs do not affect the odds of participation is rejected when the lower bound of the 95% CI is greater than 1.

The broader and arguably more important point is that households with scores of 3 are more likely to participate (for whatever reason) in other conservation programs and this is useful information for where to target HWRs if it is not possible to provide universal coverage within a service area. While our results should not be interpreted to imply that there is value to adjusting the scores to place more households in the score = 3 category, they do suggest that targeting HWRs to homes that fall within this category is likely to yield better results in terms of channeling customers to other programs than not targeting.

C. WATER USE AWARENESS

A third objective of the Pilot was to see if HWRs increase household knowledge and awareness of its water consumption. Knowledge about water use can take many forms, and thus this

39 See Section V.A.6 for additional discussion on this topic.
is really a multi-dimensional question. For example, in the most straightforward sense, households may be considered knowledgeable about their water use if they know approximately how much they use overall or for particular purposes. However, they may also be considered knowledgeable if they have a general understanding of how to efficiently perform various water-related things (e.g. taking a shower, washing clothes, irrigating landscape) even if they are unsure of the exact quantities of water involved. In this section we consider the more straightforward sense of water use awareness as well as less tangible measures.

1. **Household Estimates of Water Use**

 The pre- and post-Pilot customer surveys asked respondents to estimate how much water they use on average on a daily basis. Presumably, if HWRs are effective at increasing household awareness of water use, estimates from homes in the treatment group would become more accurate and less biased (i.e., not show a marked tendency to over or underestimate consumption) relative both to their pre-pilot estimates and to estimates by control group households. Ideally, we would want to compare how responses to the same question about water use differed between the pre- and post-pilot surveys. However, this is not possible because the question about water use is different in the two surveys. In the pre-pilot survey, households were asked to estimate how much water they use on average on a daily basis across the entire year. In the post-pilot survey, households were asked the same question but for the summer and for the winter. Thus the responses in the two surveys are not directly comparable. However, it is still possible to look at accuracy and bias of responses between the treatment and control groups in the post-Pilot survey to get a measure of whether HWRs improved households' quantitative estimates of their water consumption.

 It is a truism among those working in the water industry that most households generally have no idea how much water they use on a daily basis. Both the pre- and post-Pilot survey responses seem to bear this out. In the pre-Pilot survey more than 40% of households either indicated they did not know their water use or left the question blank. In the post-Pilot survey, this proportion increased to over 55%. Notably, there is little difference in the response rates between the control and treatment groups, suggesting that households receiving HWRs are no more likely to think they know their water use than households not receiving HWRs.

 Households that did provide an estimate of average daily water use showed a significant downward bias in both the pre- and post-Pilot surveys. This is illustrated in Figure 16, which
compares actual to estimated water use for those respondents providing use estimates. The tendency for households to underestimate their water consumption by a fairly wide margin is present in both periods, regardless of treatment.

In the post-Pilot survey the distribution of estimation errors is similar between the control and treatment groups, as shown in Figure 17. Both groups consistently underestimate their average use. Note that the mean error (the curved lines in Figure 17) is nearly identical for both groups and shows a tendency to increase with usage, indicating that high water use homes are more likely to underestimate their water use by a wider margin than low water use homes, which is not especially surprising.

In summary, we do not find evidence that HWRs increased the ability of households to provide an accurate quantitative estimate of their average daily water use. The proportion of homes stating they did not know or not answering the question was essentially the same between households in the control and treatment groups responding to the post-Pilot survey. Similarly, the tendency to underestimate daily water use was also generally the same between control and treatment households responding to the survey. It may be that over time this will change and as households receive more HWRs they will begin to incorporate this information into their general understanding of how they use water. Importantly, WaterSmart reported gallons per billing period rather than gallons per day on HWRs prior to April 2013, so it may be that households will be better at estimating daily water use going forward. However, it should also be noted that EBMUD has for a long while now provided average daily water use on its bills. Judging from the results of the pre-Pilot survey, however, this practice has not had much of an impact on the ability of households to estimate their water use.

It is also not obvious to us that a quantitative knowledge of daily water use is particularly relevant to most decisions about household water use. Households can make informed decisions on water use regardless of knowing precisely how much water they use. For example, to irrigate efficiently it is perhaps more important to know when and how long sprinklers should run and which parts of the yard can be effectively served with drip, than it is to know how much water the irrigation system uses. Similarly, the choice of a new washer may be made more effectively based on its potential to save on water and energy bills than on how many gallons per load it uses. Besides, our results on the effect of HWRs on household water use and decisions to participate in other conservation programs clearly show that households are responsive to the combination of social norms, injunctive messaging, and actionable information presented in HWRs regardless of their
ability to accurately estimate water use. In this respect, the proof is in the pudding when it comes to whether HWRs work.

Figure 16. Pre- and Post-Pilot Estimates of Household Water Use Compared to Actual Water Use
Figure 17. Post-Pilot Distribution of Water Use Estimation Error for Treatment and Control Households

Figure 18. Post Pilot: Summer Daily Use Estimation Error by Survey Respondents
2. **Household Commitment Towards Water Conservation**

Another dimension of a household's awareness and knowledge of its water use might be viewed in terms of its expressed beliefs in the importance of using water efficiently. The pre- and post-Pilot surveys asked respondents whether they agreed strongly with the following four statements:

1. I make an active commitment to use water efficiently.
2. It is important to me to reduce my water bills.
3. I talk with others in my household about reducing our water use.
4. I talk with friends and neighbors about ways to conserve water.

If HWRs are effective in shaping attitudes along these lines, we might expect to see more households in the treatment group indicating they agree strongly with the above statements than households in the control group. We used a difference-in-differences logit model to test for this effect. Our analysis generally does not support the hypothesis that survey respondents that were in the treatment group are more likely to agree strongly with the above statements than respondents that were in the control group.
The estimated odds ratio from the logit model and its 95% confidence interval for agreeing strongly with each of the four statements is shown in Table 12. The null hypothesis of no treatment effect is only rejected in the case of the second statement -- *It is important to me to reduce my water bills* -- and then only barely. In the other three cases, the null hypothesis of no treatment effect is not rejected, meaning that HWRs do not appear to change the odds that a household will agree strongly with the statements.

These results should be interpreted with some caution. Self-selection bias in opinion polls of this type is a common problem (Groves & Peytcheva, 2008). Typically individuals that are interested in a topic or have strongly held views on the topic are more likely to respond to voluntary polls. This can result in a biased sample that disproportionately represents individuals with particularly strong opinions or beliefs -- such as strongly supporting the need for water conservation. This type of self-selection could be present in both treatment and control group respondents.\(^{40}\)

Table 12. Treatment Effect on Odds Survey Respondent Strongly Agrees with Statement

<table>
<thead>
<tr>
<th>Statement</th>
<th>Odds Ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I make an active commitment to use water efficiently</td>
<td>0.98</td>
<td>0.73</td>
</tr>
<tr>
<td>It is important to me to reduce my water bills</td>
<td>1.37</td>
<td>1.03</td>
</tr>
<tr>
<td>I talk with others in my household about reducing our water use</td>
<td>1.19</td>
<td>0.90</td>
</tr>
<tr>
<td>I talk with friends and neighbors about ways to conserve water</td>
<td>1.17</td>
<td>0.79</td>
</tr>
</tbody>
</table>

* The odds ratio shows the increase in the odds of strongly agreeing with the statement given the respondent received HWRs. The null hypothesis that HWRs do not affect the odds of strong agreement is rejected when the lower bound of the 95% CI is greater than 1.

3. **Getting Help on How to Save Water**

The pre- and post-Pilot surveys also asked households to score EBMUD in terms of the following:

1. Explaining your water use on your bill
2. Showing you ways to save money on your water bill by conserving water
3. Giving you the tips and tools you need to use water efficiently

\(^{40}\) The fact that the question about water bills is the only one showing a statistically significant treatment effect lends some support to this possibility. Self-selection is more likely to be caused by strong moral beliefs in the importance of and need for water conservation than by a strong pecuniary interest in lowering water bills.
If households view HWRs as providing useful and actionable information we would expect respondents that received HWRs to be more likely to give EBMUD a high score in these areas then other respondents. Again, we used a differences-in-differences logit model to test for this effect. In this case, we reject the null hypothesis of no treatment effect in each case, meaning we find evidence that respondents who received HWRs are more likely to score EBMUD high in terms of providing useful information for managing household water use and bills then other respondents. The estimated odds ratio from the logit model and its 95% confidence interval for scoring EBMUD as "Excellent" in each of the three above categories is shown in Table 13. The estimated mean increase in the odds of scoring EBMUD as "Excellent" ranges from 52 to 80%.

Table 13. Treatment Effect on Odds Survey Respondent Scores

<table>
<thead>
<tr>
<th>Area of Assistance</th>
<th>Odds Ratio*</th>
<th>95% CI</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explaining your water use on your bill</td>
<td>1.52</td>
<td>1.07</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>Showing you ways to save money on your water bill by conserving water</td>
<td>1.64</td>
<td>1.12</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td>Giving you the tips and tools you need to use water efficiently</td>
<td>1.80</td>
<td>1.23</td>
<td>2.65</td>
<td></td>
</tr>
</tbody>
</table>

* The odds ratio shows the increase in the odds of respondent score EBMUD as "Excellent" given the respondent received HWRs. The null hypothesis that HWRs do not affect the odds of an "Excellent" score is rejected when the lower bound of the 95% CI is greater than 1.

D. COST EFFECTIVENESS

Many considerations go into a utility's decision to implement a specific demand management program. A key one is the cost of the program relative to other alternatives or doing nothing at all. A common metric for assessing the relative cost of a demand management program is to calculate the unit cost of water savings, which can then be compared to the unit cost of water savings for other demand management options as well as to the unit cost of water supply. In California, unit costs are typically expressed in dollars per acre-foot.\(^{41}\)

In its most general form, the equation for calculating unit cost is given by equation (8)

\[
\text{Unit Cost} = \frac{\text{Cost}}{\text{Savings}}
\]

(8) \[
\text{Cost} = \frac{\text{Savings}}{\text{Unit Cost}}
\]

\(^{41}\) An acre-foot of water is the volume of water that would cover an acre one foot deep in water, approximately 325,851 gallons.
C_{it} is the cost incurred by the utility in year t from implementing program i, W_{it} is the water savings expected from program i in year t, T_i is the number of years savings from program i are expected to last, and d is the discount rate. When program costs and savings last just one year, the general equation for unit cost simplifies to the ratio of annual cost to annual savings, as shown in equation (9).

\begin{equation}
(9)
\end{equation}

Equation (9) is applicable for HWRs if we make the conservative assumption that savings occur in the year in which the HWRs are received and do not persist beyond this time.\footnote{While this is a common assumption made for SNB efficiency programs (Allcott, 2011), there are of course plausible scenarios where savings might persist after a household stopped receiving HWRs, such as if the household had made significant changes to its landscape or had replaced toilets or other water using appliances as a result of getting HWRs. Thus the assumption is conservative in the sense that it is likely to impart an upward bias to the unit cost estimate.}

1. Average Water Savings Per Household

Results from the Pilot indicate a mean treatment effect for the Random Group Experiment in the range of 4.5 to 6.5% for households receiving paper reports by mail and in the range of 3.5 to 5.5% for households receiving electronic reports by email. Because the Random Group Experiment is representative of the distribution of households for the entire EBMUD service area, these ranges provide appropriate estimates of expected water savings if the program were extended to the entire service area.

Pre-treatment mean water use for households in the Random Group Experiment was about 261 gallons per day, or about 95,265 gallons per year. Average annual household water savings would therefore be expected to range between 4,287 and 6,192 gallons for households receiving paper reports and between 3,334 and 5,240 gallons for households receiving electronic reports. Converting to acre-feet, the expected savings would be 0.0132 to 0.0190 acre-feet for paper reports and 0.0102 to 0.0161 acre-feet for email reports.
2. Average HWR Cost Per Household

EBMUD is in the process of evaluating the expansion of HWRs to more parts of its service area. As part of this evaluation it has estimated average costs per household for providing one year of HWRs based on information from potential vendors as well as its own internal costs of program implementation. For electronic HWRs delivered by email it estimates an annual cost of $4.50 to $5.00 per household. For paper HWRs delivered by mail it estimates an annual cost of $6.40 to $6.60 per household. These are average costs over three years assuming the program is scaled up from its present level of less than 15,000 households to 100,000 households by the end of the third year.

Because some costs are fixed and others are variable, the average cost depends on the number of households in the program. Thus unit costs for other service areas may be more or less than what EBMUD has estimated depending on the scale of the program. For assessing program cost-effectiveness, we assume a cost range for paper and email reports of $4.00 to $6.00 and $5.50 to $7.50 per household, respectively.

3. Unit Costs of Water Savings

Expected program unit costs, in dollars per acre-foot, are summarized in Table 14.\(^{43}\) The unit cost range for conserved water from email reports is $250 to $590 per acre-foot; for paper reports, it is $290 to $570 per acre-foot. The mid-point unit costs for email and paper reports are $380 and $400 per acre-foot, respectively.\(^{44}\)

\(^{43}\) Unit cost estimates have been rounded to the nearest $10.

\(^{44}\) While email reports have slightly lower unit costs, paper reports offer somewhat more water savings. The economic advantage of one over the other depends on the avoided cost of saved water. For example, if 10,000 reports can be provided by email at a cost of $5/report and by mail at a cost of $6.50/report, and the expected savings for email and mail reports are 0.0161 and 0.01315 acre-feet, respectively, which is the midpoint of the expected savings range, then the paper reports would cost $15,000 more than the email reports but also save 29.5 acre-feet more. An avoided cost of saved water of $508 or more would give the economic advantage to paper over email reports, since the value of the incremental water savings would exceed their incremental cost. If the avoided cost of saved water was less than $508 (but still above the unit cost for email reports), the economic advantage would be with the email reports. In reality, most utilities are likely to start with either all paper or a mix of paper and email reports, since delivery of email reports requires a utility to have working email addresses for its targeted
Even at the upper-end of the cost range, the unit costs are competitive with most other options for water demand management. A review of unit costs from conservation master plans conducted for the California Water Foundation in 2012 found unit costs to typically range from $450 to $950 per acre-foot, with a central tendency in the neighborhood of $700 per acre-foot (M.Cubed, 2012). The unit costs for HWRs are mostly below this range, especially in the case of email HWRs.

Table 14. Unit Cost of Saved Water from HWRs Program in $/AF

<table>
<thead>
<tr>
<th>Email Reports</th>
<th>Average Annual Water Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.5%</td>
</tr>
<tr>
<td>Annual Cost/</td>
<td>$4.00</td>
</tr>
<tr>
<td>Household</td>
<td>$4.50</td>
</tr>
<tr>
<td>$5.00</td>
<td>$490</td>
</tr>
<tr>
<td>$5.50</td>
<td>$540</td>
</tr>
<tr>
<td>$6.00</td>
<td>$590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Reports</th>
<th>Average Annual Water Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.5%</td>
</tr>
<tr>
<td>Annual Cost/</td>
<td>$5.50</td>
</tr>
<tr>
<td>Household</td>
<td>$6.00</td>
</tr>
<tr>
<td>$6.50</td>
<td>$490</td>
</tr>
<tr>
<td>$7.00</td>
<td>$530</td>
</tr>
<tr>
<td>$7.50</td>
<td>$570</td>
</tr>
</tbody>
</table>

The unit costs in Table 14 are also competitive with most other options for new water supply. Costs vary significantly by type of supply. For recycled water, costs can range from the low hundreds to over $2,000 per acre-foot. A review of 26 Bay Area recycled water projects found an average cost of about $1,100 per acre-foot (M.Cubed, 2007). Costs for desalination range even higher. Recent cost estimates for five proposed desalination projects in Southern California range from $1,191 to $2,340 per acre-foot (California Natural Resources Agency, 2013). The California Department of Water Resources (DWR) estimates the implicit cost of water supply from proposed new conveyance for the Delta at between $302 to $408 per acre-foot at the Delta. Additional costs would accrue for transmission, treatment (for urban users), and distribution, which could add up to several hundred dollars to the price paid by urban water users, putting the cost of the water at the residential customers, which is often not the case. As the program is implemented, customers can be directed to the web portal to select the type of delivery -- email or paper -- according to preference.
point of use (which is the appropriate cost when comparing to demand management costs) in the $500 to $700 range.45 The unit cost of HWRs, even at the upper end of the range, are competitive or more than competitive with each of these supply options.

Targeting reports to households in the upper percentiles of consumption would lower the unit costs even further. Recall that we estimate households in the upper quartile of water use save, on average, about 1\% more than households in the inter-quartile range. For households in this category, the mid-point unit cost of HWRs would be $310 and $340 per acre-foot for paper and email reports, respectively.

E. PROGRAM INTEGRATION

Another important consideration that goes into a utility's decision to implement a specific demand management program is how well it integrates with or enhances the existing programs it offers. From the perspective of EBMUD conservation staff, the Pilot highlighted several key advantages of an SNB efficiency program in terms of overall customer service and extension of its existing programs.

In terms of customer service, EBMUD staff reported finding the customer analytics accessed through what WaterSmart calls the Utility Dashboard to be extremely useful. This gave them detailed information on home water use and household attributes which they could access when interacting with customers over the phone to address questions about water use, bills, or other issues. With this information at their fingertips they could better determine how to help the customer and better direct customers to other programs that could help them reduce their water use. In this regard, EBMUD staff believe an SNB efficiency program like the one tested in the Pilot will help them achieve a long-term goal of having more specific and relevant dialog about water use with their customers.

The Utility Dashboard also gave EBMUD staff the ability to update or extend the customer profile data in real time. This proved to be important during the Pilot when customers called with questions about the water score they received on the HWR. With the Utility Dashboard, staff could

45 These estimates are based on the assumption of no cost overruns for the conveyance facilities relative to current cost estimates, which would be unusual for a large public infrastructure project of this sort. For less sanguine estimates of implicit supply cost of new Delta conveyance, see \url{http://hydrowonk.com/blog/2013/09/16/what-would-be-californias-water-supply-situation-without-the-bdep-and-what-it-means-for-tunnels/}.

59 M.CUBED
quickly determine whether the score that was generated was based on accurate information on household attributes. If the information was inaccurate, EBMUD staff could update the information while on the phone with the customer.

EBMUD staff also reported the ability to customize the HWRs gave them options for crafting content and messaging that could evolve with their overall program direction and objectives. In particular, as EBMUD shifts the focus of its conservation programs to landscape water savings, staff anticipate using HWRs to emphasize outdoor water use efficiency and to channel more customers into landscape audit and rebate programs.

The potential scalability of an SNB efficiency program is also viewed as important to EBMUD staff. The ability to ramp up or down the program at little cost gives them options for either targeting specific customer groups with HWRs or rolling them out on a much broader scale, potentially as part of a drought response. With respect to drought management, EBMUD staff expect HWRs will play an increasingly important role by giving them the ability to customize drought response messages, more effectively communicate the importance of curbing water use, and even possibly developing customer-specific water shortage allocations.

Overall, EBMUD staff reported that an SNB efficiency program like the one tested in the Pilot will give them new and better ways to provide customer service related to water use efficiency and to more effectively market and channel customers into complementary conservation programs.

VI. SUMMARY OF OUTCOMES AND IMPLEMENTATION LESSONS

A. PILOT OUTCOMES

To summarize the results of the evaluation, our principal findings on Pilot outcomes are as follows:

1. We find strong evidence that households in the Pilot's treatment groups reduced their water use in response to the HWRs. We estimate mean treatment effects of 4.6% and 6.6% for the Random Group and Castro Valley Group experiments, respectively. Our estimates of mean treatment effect bracket the 5% mean effect estimated by WaterSmart using a less robust DID methodology. The consistency of results between the DID estimates and our results is useful corroborating information.
2. We also find evidence that the magnitude of the effect scales with level of household
water use. Households in the top quartile of water use save, on average, 1% more, while
households in the bottom quartile of water use save, on average, 3% less, than households
in between these two categories. This suggest utilities should consider giving households
in the bottom quartile of use lower priority for receiving HWRs if they are not going to
be universally provided.

3. Paper reports delivered by mail appear to be more effective in terms of water savings
than electronic reports delivered by email. On average, households receiving paper
reports were found to save about 1% of mean household use more than households
receiving email reports. Whether this translates into an economic advantage for an
implementing utility, however, will depend on the cost of delivering mail versus email
reports as well as the avoided cost of water saved.

4. We estimate that the unit cost of saved water is likely to range between $250 and $590
per acre-foot for email reports and between $290 and $570 per acre-foot for paper
reports. The mid-point unit costs for email and paper reports are $380 and $400 per
acre-foot, respectively. Even at the upper-end of the cost ranges, the unit costs are less
than the cost of most other options for water demand management and new water supply,
indicating SNB efficiency programs could provide very cost-effective water savings.

5. We find strong evidence that households in the Pilot's treatment groups were significantly
more likely to participate in audit and rebate programs offered by EBMUD than
households in the control groups. Looking at both audit and rebate programs together,
we estimate that households receiving HWRs were 2.3 times more likely to participate in
a program than households not receiving reports. The effect appears to be strongest for
audit programs, where we estimate households getting HWRs were 6.2 times more likely
to participate. The effect is less strong for rebate programs (1.7 times more likely), but
statistically significant. The results suggest that SNB efficiency programs can provide an
effective conduit for channeling customers into other conservation programs the utility is
promoting.

6. Our analysis indicates that households receiving a water score of 3 (Take Action!) are in
fact more likely to do just that. The magnitudes of the treatment effects for both average
daily use and program participation are positively correlated with water score. While our

46 Unit cost estimates have been rounded to the nearest $10 throughout this report.
results should not be interpreted to imply that there is value to adjusting the scores to place more households in the score = 3 category, they do suggest that targeting HWRs to homes that fall within this category is likely to yield better results in terms of average water savings and boosting program participation rates.

7. We do not find evidence that HWRs improve household knowledge of water use in the conventional sense of being able to quantitatively estimate average daily use. The proportion of homes stating they did not know their water use was essentially the same between households in the control and treatment groups. Similarly, the tendency to underestimate daily water use was also generally the same between control and treatment households. It may be that over time this will change and as households receive more HWRs they will begin to incorporate this information into their general understanding of how they use water.

8. We do find evidence that households receiving HWRs view them as providing useful and actionable information for managing their water consumption. Households in the treatment group were 52 to 80% more likely to score EBMUD as "Excellent" in terms of explaining household water use, showing ways to save money on water bills by conserving water, and giving useful tips and tools needed to use water efficiently. Thus, HWRs appear to be effective at delivering information on ways to use water efficiently that households can, and judging by the measured effects on daily water use and program participation, do act upon.

B. IMPLEMENTATION LESSONS

Implementation lessons from the Pilot are still emerging and we expect them to evolve as more experience is gained with SNB efficiency programs. Some preliminary lessons from the Pilot include:

1. Good data management provides one of the most important keys to successful implementation of SNB efficiency programs. If the program is outsourced to a third-party company, this requires the establishment of robust protocols for data handling, quality control, and security. Privacy issues are of paramount concern since HWRs rely on customer-specific information that needs to be safeguarded from improper use.

2. Regular communication between utility staff and the SNB efficiency program service provider is essential. Throughout the Pilot, staffs of EBMUD and WaterSmart met on a
routine basis to review progress and interim results, discuss challenges, and plan next steps. These meetings allowed them to bring to the table emerging issues and to address them before they became significant problems.

3. Surveying households prior to implementation to gather additional information on household characteristics and water use attitudes provides essential information for binning customers into cohorts and tailoring the messaging of the initial HWRs. It is important to make sure sufficient resources have been set aside for this task. EBMUD staff reported being caught somewhat off guard by the high rate of responses and resources required to process the survey data, but also noted its importance to successfully launching the Pilot.

4. Prior to implementation it is also important to educate customer service representatives about the new program and train them on how to respond to or direct customers with inquiries or complaints about the information in their HWR. In the Pilot, the most common complaint was from customers receiving a water score of 3 who felt they had been scored incorrectly. EBMUD worked with its customer service representatives to turn these calls from complaints to opportunities for customer outreach by first verifying with the customer the information upon which the score was based and second by providing them information on ways to more effectively use water around the home and to alert them to audit and rebate programs that may directly benefit them.

5. It is important to experiment with how information is presented in the HWR. In the Pilot, EBMUD quickly discovered that customers responded negatively when told their use was being compared to their neighbor's but seemed to be okay if told their use was being compared to similarly situated homes.

6. Phasing implementation afforded EBMUD and WaterSmart the opportunity to fine-tune the process as they gained feedback and experience with producing and delivering the reports and responding to customer inquiries. Phasing enabled them to implement an adaptive management approach to implementing the program.

VII. RECOMMENDATIONS FOR FUTURE RESEARCH

These are early days for the application of SNB efficiency programs to residential water use and there is still much to be learned in terms of efficacy, cost, and implementation. Some questions that future research can help address include:
1. Are treatment effects persistent or do they fade with time? Literally, only time will tell. As noted in Section II.D, empirical evaluations of home energy reports have found the treatment effect to persist and even strengthen over three years. These studies, however, have only considered a relatively short amount of time. Whether something similar will be the case for HWRs is an important topic of inquiry. There are several related questions: (1) Do effects persist even if HWRs are discontinued, perhaps because of induced changes in water using appliances and fixtures? (2) Do HWR savings grow, stay constant, or decline with time? (3) Does so-called demand hardening impose a limit on the changes in household water use that can reasonably be expected from HWRs?

2. To what extent are water savings driven by changes in outdoor water use? Our preliminary models provided some evidence of stronger treatment effects associated with reports received in the fall and winter than in the spring and summer. This may indicate a lagged response to receiving information about high summer water use, but the phasing of the Pilot, which resulted in the largest block of Castro Valley homes not getting their first HWR until October or November, could also be involved.

3. Does the frequency in which HWRs are provided matter? Our results found that providing HWRs on a bi-monthly basis yielded significant reductions in water use. Would providing reports more (less) frequently result in a larger (smaller) effect on water use? In the case of home energy reports, Allcott (2011) concluded more frequent reports did yield larger savings, but not by enough to justify the added expense. But he did not consider the potential cost advantage of providing reports less frequently just to households in the lower percentiles of use.

4. Are differences in water savings and program participation associated with the HWR water score due primarily to the injunctive messaging or other underlying factors?

5. What is a reliable range of water savings to expect from SNB efficiency programs if implemented broadly across the state? At present we have very few data points from which to gauge this. Only a handful of pilot implementations have been completed and while they seem to suggest initial water savings in the range of 4 to 6% more evaluations of outcomes under varied conditions are needed to know if this range is stable.
BIBLIOGRAPHY

ACKNOWLEDGEMENTS

"Data! Data! Data! ... I can't make bricks without clay." Sherlock Holmes exclaimed in *The Adventure of the Copper Beeches*. This cry is familiar to every statistician the world over. Fortunately in our case we had the staffs from EBMUD and WaterSmart to ensure we had the data we needed for this evaluation. We owe particular thanks to Ora Chaiken and Chad Haynes of WaterSmart and Mike Hazinski, Dave Wallenstein, and Richard Harris of EBMUD. Whenever we cried "Data! Data! Data!" they responded and got us what we needed. We would also like to thank Bill Jacoby and Mike Myatt of the California Water Foundation who shepherded this project in its beginning phases, and Ronnie Cohen, also with California Water Foundation, who kept it on track once we were underway. We also owe thanks to our funders, California Water Foundation and EBMUD, who gave us the necessary resources to do this work. All of these individuals and organizations have contributed to this project in essential ways, but only the authors are responsible for the content of this report.
APPENDIX 1: Random Group Experiment Sample Distribution by Pressure Zone

<table>
<thead>
<tr>
<th>Group</th>
<th>Pressure Zone</th>
<th>% Residential Accts</th>
<th>% of Randomly Sampled Accts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>A</td>
<td>A0A</td>
<td>4.29%</td>
<td>5.59%</td>
</tr>
<tr>
<td>A</td>
<td>A11A</td>
<td>0.04%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A11C</td>
<td>0.18%</td>
<td>0.03%</td>
</tr>
<tr>
<td>A</td>
<td>A1A</td>
<td>1.56%</td>
<td>1.29%</td>
</tr>
<tr>
<td>A</td>
<td>A1B</td>
<td>0.07%</td>
<td>0.09%</td>
</tr>
<tr>
<td>A</td>
<td>A2A</td>
<td>2.69%</td>
<td>1.96%</td>
</tr>
<tr>
<td>A</td>
<td>A2AA</td>
<td>0.11%</td>
<td>0.03%</td>
</tr>
<tr>
<td>A</td>
<td>A2B</td>
<td>1.08%</td>
<td>2.06%</td>
</tr>
<tr>
<td>A</td>
<td>A2C</td>
<td>0.16%</td>
<td>0.25%</td>
</tr>
<tr>
<td>A</td>
<td>A2D</td>
<td>0.14%</td>
<td>0.21%</td>
</tr>
<tr>
<td>A</td>
<td>A2E</td>
<td>1.93%</td>
<td>2.12%</td>
</tr>
<tr>
<td>A</td>
<td>A3B</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>A</td>
<td>A4A</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A4AA</td>
<td>0.03%</td>
<td>0.09%</td>
</tr>
<tr>
<td>A</td>
<td>A4B</td>
<td>0.33%</td>
<td>0.25%</td>
</tr>
<tr>
<td>A</td>
<td>A4BA</td>
<td>0.09%</td>
<td>0.15%</td>
</tr>
<tr>
<td>A</td>
<td>A4BB</td>
<td>0.08%</td>
<td>0.06%</td>
</tr>
<tr>
<td>A</td>
<td>A4C</td>
<td>0.24%</td>
<td>0.12%</td>
</tr>
<tr>
<td>A</td>
<td>A4D</td>
<td>0.05%</td>
<td>0.12%</td>
</tr>
<tr>
<td>A</td>
<td>A4G</td>
<td>0.04%</td>
<td>0.09%</td>
</tr>
<tr>
<td>A</td>
<td>A4K</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A4L</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A4M</td>
<td>0.20%</td>
<td>0.31%</td>
</tr>
<tr>
<td>A</td>
<td>A4N</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>A</td>
<td>A5A</td>
<td>0.76%</td>
<td>0.52%</td>
</tr>
<tr>
<td>A</td>
<td>A5B</td>
<td>0.06%</td>
<td>0.06%</td>
</tr>
<tr>
<td>A</td>
<td>A5C</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A7B</td>
<td>0.11%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A</td>
<td>A7C</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>A</td>
<td>A7D</td>
<td>0.67%</td>
<td>0.49%</td>
</tr>
<tr>
<td>A</td>
<td>A9B</td>
<td>0.16%</td>
<td>0.12%</td>
</tr>
<tr>
<td>A</td>
<td>A9D</td>
<td>0.38%</td>
<td>0.21%</td>
</tr>
<tr>
<td>B</td>
<td>B11A</td>
<td>0.06%</td>
<td>0.12%</td>
</tr>
<tr>
<td>B</td>
<td>B11B</td>
<td>0.49%</td>
<td>0.31%</td>
</tr>
<tr>
<td>B</td>
<td>B11C</td>
<td>0.18%</td>
<td>0.15%</td>
</tr>
<tr>
<td>B</td>
<td>B11D</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>B</td>
<td>B13A</td>
<td>0.27%</td>
<td>0.21%</td>
</tr>
<tr>
<td>B</td>
<td>B2A</td>
<td>2.38%</td>
<td>1.81%</td>
</tr>
<tr>
<td>B</td>
<td>B2AA</td>
<td>0.19%</td>
<td>0.34%</td>
</tr>
<tr>
<td>B</td>
<td>B3A</td>
<td>2.01%</td>
<td>2.27%</td>
</tr>
<tr>
<td>B</td>
<td>B4AA</td>
<td>0.17%</td>
<td>0.37%</td>
</tr>
<tr>
<td>B</td>
<td>B4B</td>
<td>0.08%</td>
<td>0.15%</td>
</tr>
<tr>
<td>B</td>
<td>B4C</td>
<td>0.04%</td>
<td>0.06%</td>
</tr>
<tr>
<td>B</td>
<td>B5A</td>
<td>1.00%</td>
<td>0.46%</td>
</tr>
<tr>
<td>B</td>
<td>B5B</td>
<td>0.05%</td>
<td>0.09%</td>
</tr>
<tr>
<td>B</td>
<td>B5C</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
<tr>
<td>B</td>
<td>B5D</td>
<td>0.25%</td>
<td>0.37%</td>
</tr>
<tr>
<td>Group</td>
<td>Pressure Zone</td>
<td>% Residential Accts</td>
<td>% of Randomly Sampled Accts</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Control</td>
</tr>
<tr>
<td>B</td>
<td>B7A</td>
<td>0.85%</td>
<td>0.77%</td>
</tr>
<tr>
<td>B</td>
<td>B7B</td>
<td>0.14%</td>
<td>0.37%</td>
</tr>
<tr>
<td>B</td>
<td>B7C</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>B</td>
<td>B9A</td>
<td>0.17%</td>
<td>0.09%</td>
</tr>
<tr>
<td>B</td>
<td>B9AA</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>B</td>
<td>B9B</td>
<td>0.17%</td>
<td>0.34%</td>
</tr>
<tr>
<td>B</td>
<td>B9CA</td>
<td>0.03%</td>
<td>0.06%</td>
</tr>
<tr>
<td>B</td>
<td>B9D</td>
<td>0.18%</td>
<td>0.09%</td>
</tr>
<tr>
<td>C</td>
<td>C1A</td>
<td>0.98%</td>
<td>1.04%</td>
</tr>
<tr>
<td>C</td>
<td>C2A</td>
<td>1.81%</td>
<td>2.33%</td>
</tr>
<tr>
<td>C</td>
<td>C2B</td>
<td>0.46%</td>
<td>0.68%</td>
</tr>
<tr>
<td>C</td>
<td>C2C</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>C</td>
<td>C4A</td>
<td>1.47%</td>
<td>1.57%</td>
</tr>
<tr>
<td>C</td>
<td>C4B</td>
<td>0.28%</td>
<td>0.49%</td>
</tr>
<tr>
<td>C</td>
<td>C4C</td>
<td>0.52%</td>
<td>0.83%</td>
</tr>
<tr>
<td>C</td>
<td>C4D</td>
<td>0.02%</td>
<td>0.03%</td>
</tr>
<tr>
<td>C</td>
<td>C5C</td>
<td>0.20%</td>
<td>0.43%</td>
</tr>
<tr>
<td>C</td>
<td>C5D</td>
<td>0.22%</td>
<td>0.21%</td>
</tr>
<tr>
<td>C</td>
<td>C5E</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>C</td>
<td>C6A</td>
<td>0.15%</td>
<td>0.28%</td>
</tr>
<tr>
<td>C</td>
<td>C6B</td>
<td>0.10%</td>
<td>0.15%</td>
</tr>
<tr>
<td>C</td>
<td>C7A</td>
<td>0.05%</td>
<td>0.06%</td>
</tr>
<tr>
<td>C</td>
<td>C8A</td>
<td>0.27%</td>
<td>0.31%</td>
</tr>
<tr>
<td>D</td>
<td>D11B</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D5A</td>
<td>2.26%</td>
<td>3.62%</td>
</tr>
<tr>
<td>D</td>
<td>D5AA</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D5AB</td>
<td>0.06%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D5AC</td>
<td>0.04%</td>
<td>0.12%</td>
</tr>
<tr>
<td>D</td>
<td>D5AD</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D5AE</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D7A</td>
<td>0.89%</td>
<td>1.14%</td>
</tr>
<tr>
<td>D</td>
<td>D7AB</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D7B</td>
<td>0.42%</td>
<td>0.46%</td>
</tr>
<tr>
<td>D</td>
<td>D7BA</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D7C</td>
<td>0.05%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D7F</td>
<td>0.18%</td>
<td>0.12%</td>
</tr>
<tr>
<td>D</td>
<td>D7J</td>
<td>0.10%</td>
<td>0.15%</td>
</tr>
<tr>
<td>D</td>
<td>D7K</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D7KA</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D9A</td>
<td>0.05%</td>
<td>0.03%</td>
</tr>
<tr>
<td>D</td>
<td>D9C</td>
<td>0.16%</td>
<td>0.25%</td>
</tr>
<tr>
<td>D</td>
<td>D9E</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>D</td>
<td>D9J</td>
<td>0.03%</td>
<td>0.00%</td>
</tr>
<tr>
<td>E</td>
<td>E3A</td>
<td>1.81%</td>
<td>1.87%</td>
</tr>
<tr>
<td>E</td>
<td>E3AA</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>E</td>
<td>E3AE</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
<tr>
<td>E</td>
<td>E5B</td>
<td>0.27%</td>
<td>0.34%</td>
</tr>
<tr>
<td>E</td>
<td>E5C</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>E</td>
<td>E7AA</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Group</td>
<td>Pressure Zone</td>
<td>% Residential Accts</td>
<td>% of Randomly Sampled Accts</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Control</td>
</tr>
<tr>
<td>E</td>
<td>E7B</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>E</td>
<td>E9A</td>
<td>0.02%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F10A</td>
<td>0.04%</td>
<td>0.03%</td>
</tr>
<tr>
<td>F</td>
<td>F11A</td>
<td>0.03%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F13A</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F3A</td>
<td>3.46%</td>
<td>5.03%</td>
</tr>
<tr>
<td>F</td>
<td>F4A</td>
<td>2.24%</td>
<td>3.41%</td>
</tr>
<tr>
<td>F</td>
<td>F5B</td>
<td>1.04%</td>
<td>1.32%</td>
</tr>
<tr>
<td>F</td>
<td>F5BA</td>
<td>0.10%</td>
<td>0.09%</td>
</tr>
<tr>
<td>F</td>
<td>F5BF</td>
<td>3.59%</td>
<td>5.28%</td>
</tr>
<tr>
<td>F</td>
<td>F5BG</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F7B</td>
<td>0.03%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F7D</td>
<td>0.05%</td>
<td>0.12%</td>
</tr>
<tr>
<td>F</td>
<td>F7E</td>
<td>1.31%</td>
<td>1.50%</td>
</tr>
<tr>
<td>F</td>
<td>F7G</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>F8A</td>
<td>0.51%</td>
<td>0.74%</td>
</tr>
<tr>
<td>F</td>
<td>F9A</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
<tr>
<td>G</td>
<td>G0A</td>
<td>33.54%</td>
<td>24.59%</td>
</tr>
<tr>
<td>G</td>
<td>G1AA</td>
<td>10.60%</td>
<td>9.91%</td>
</tr>
<tr>
<td>G</td>
<td>G1AB</td>
<td>1.61%</td>
<td>1.10%</td>
</tr>
<tr>
<td>G</td>
<td>G1BA</td>
<td>1.16%</td>
<td>1.17%</td>
</tr>
<tr>
<td>H</td>
<td>H1A</td>
<td>3.09%</td>
<td>3.87%</td>
</tr>
<tr>
<td>F</td>
<td>F7F</td>
<td>0.09%</td>
<td>0.18%</td>
</tr>
<tr>
<td>F</td>
<td>F9B</td>
<td>0.03%</td>
<td>0.09%</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>