science for a changing world

Big Flood,
Small Flood,
Spring Flood,
Fall Flood:

HFE timing affects foodbase response in Lees Ferry

Presenter: Ted Kennedy - GCRMC
Contributors: Mike Dodrill, Jeff Muehlbauer,
Charles Yackulic, Robert Payn




Timeline

Warmest temps since 1970

Dam operations
restricted Timeframe of this talk

Glen Canyon Dam

closed Lake Powell fills

\ Floods
1963 1970 1980 1990 2000 2010 present

Scuds and tlout introduced / \
at Lees Ferry New Zealand

Mudsnail arrive 1rout stocking Quagga arrive
X .P ends

TN, — e \%
ZUSGS :




Lees Ferry Food Web
(2007—2003

Mudsnails
usurping

Midges and
blackflies key
prey items for
trout

Midges and
blackflies only
aquatic insects
present

2 USGS

e o
5 -

s S
e

013 ——s

B0 —

Flows to invertebrates
(g AFDM-m~2-yr~")

o0 —p
W —
10 ——

From Cross and
others, 2011



Controlled flood (HFE) released In
March 2008
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2008 Controlled Flood Enhanced the

Invertebrate Prey Base
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Long term trends In the foodbase
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Long term trends in the foodbase

Longmfonitoring
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Long term trends In the foodbase
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Long term trends In the foodbase
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Long term trends In the foodbase
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Long term trends in the foodbase
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Maybe Fall Floods Don’t Change
Habitat?
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New Method For Quantify

Ing Primary

Production (aka Habitat)
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Turbidity, light, temperature, and hydropeaking control primary
productivity in the Colorado River, Grand Canyon
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Abstract

Dams and river regulation greatly alter the downstream environment for gross primary production (GPP)
because of changes in water clarity, flow, and temperature regimes. We estimated reach-scale GPP in five
locations of the regulated Colorado River in Grand Canyon using an open channel model of dissolved oxy-
gen. Benthic GPP dominates in Grand Canyon due to fast transport times and low pelagic algal biomass. In
one location, we used a 738 days time series of GPP to identify the relative contribution of different physical
controls of GPP. We developed both linear and semimechanistic time series models that account for unmeas-
ured temporal covariance due to factors such as algal biomass dynamics. GPP varied from 0 g O, m 2d'to
3.0 g O m 2d"! with a relatively low annual average of 0.8 g02m 2 d!. Semimechanistic models fit the
data better than linear models and demonstrated that variation in turbidity primarily controlled GPP. Lower
solar insolation during winter and from cloud cover lowered GPP much further. Hydropeaking lowered GPP
but only during turbid conditions. Using the best model and parameter values, the model accurately pre-
dicted seasonal estimates of GPP at 3 of 4 upriver sites and outperformed the linear model at all sites; discrep-
ancies were likely from higher algal biomass at upstream sites. This modeling approach can predict how
changes in physical controls will affect relative rates of GPP throughout the 385 km segment of the Colorado
River in Grand Canyon and can be easily applied to other streams and rivers.
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Macrophytes are resistant/resilient to Fall Disturbance
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What about foodbase response to controlled floods on
other rivers?

River Spol in Switzerland/ltaly
-22 floods in 10 years
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Foodbase response to flood regime

on River Spol
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Conclusions

1) Spring floods are different than Fall floods

-macrophytes and non-insects more
resistant/resilient to disturbance in fall

2) Repeated Fall floods may nevertheless shift
foodbase to new equilibrium
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