This is the Enable On-Farm Salinity Control Program Worksheet

Instructions for completing On-Farm Worksheet:

- GIS Map that includes polygon data points the Delivery ID of claimed acres.
- Enter the name of the Canal/Lateral/Ditch in the space provided
- Delivery ID (column B) - Enter the Delivery ID from GIS Map
- Landowner name (column C) - List the landowner name of acreage served by the delivery
- Claimable acreage (column D) - Enter the number of acres claimed from GIS Map
- Landowner signature (column E) - Obtain signature of the landowner when the landowner is willing to sign their intent to install a high efficiency irrigation system on the indicated acreage when sufficient volume and pressure are available

To be eligible the Enabled On-Farm Acreage Must

1. Have been irrigated two (2) of the last five (5) years (2012-2017).
2. Have a change in irrigation application system. (i.e. flood to sprinkler)
3. Provide sufficient pressure and appropriate velocity where topography enables it to allow for the future installations of high efficiency on-farm improvements (i.e. sprinkler systems).
4. Where working pressure generated by the pipeline is insufficient booster pumps may be added. Capital costs for pumps and electrical connections would be part of the Reclamation funded project and must be displayed as project costs in Appendix E of the Project Application.
5. For high efficiency, surface irrigation systems; must provide sufficient quantity, quality (low sediment etc.) and timeliness to service precision leveled border-diked fields, buried or above ground drip, surge, or other application systems providing at least 50 percent application efficiency. Irrigation Practice Definitions

For calculating cost/ton for salinity ranking

UF
- 32% efficiency. **Unimproved flood** - earthen ditches, dirt or sod turnouts, poor or no field corrugations, undulating topography, uneven irrigation flows, poor water control. Field has obvious high and low areas, wet and dry areas, uneven greenness/growth and high run-off.

IFPC
- 37% efficiency. **Improved flood, poor condition** - earthen ditches to flexible temporary plastic pipe, no or poorly maintained corrugations, significant cross slopes and undulating topography. Majority of the field appears to have even growth, few obviously wet or dry areas, high run-off.

IFPlus
- 45% efficiency. **Partially improved flood**, wo IFM - earthen ditch to siphon tube, marginal field corrugations, cross slopes and irrigation slopes are variable, some water control. Operator has developed techniques to somewhat evenly irrigate most of the field and significantly reduce run-off.

OIFM
- 45% efficiency. **Old improved flood, Improved flood** - systems w/ IWM beyond their practice life of 15 years. It is assumed that application efficiency has declined by 10% from new condition.
• 55% efficiency. **Improved flood system** with IWM being practiced - pipeline to gated pipe, concrete ditch w/ports or siphon tubes, etc., with IWM practice being applied per acceptable standard.

OPM

• 55% efficiency. **Old periodic move**, Wheel line, side roll, big gun, pod, hand line, etc., beyond its practice life of 15 years. It is assumed that application efficiency has declined by 10% from new condition.

PM

• 65% efficiency. **Periodic Move** – Side-roll sprinklers, hand line, pod, or solid set sprinklers and IWM being applied.

OCM

• 65% efficiency. **Old continuous move**, Center pivot, lateral move, spooled move big gun, etc., beyond its specified practice life of 15 years. It is assumed that application efficiency has declined by 10% from new condition.

CM

• 75% **Continuous move**, Center pivot, lateral move, spooled move big gun, etc. with IWM.

High Tech

• 85% **High Tech** – 85% - Micro Spray, Drip, Center pivot with high efficiency and lowered nozzles (MESA, LEPA, etc.), with IWM being applied.

• All of the values used in this spreadsheet represent broad-scale averages, as opposed to individual field level evaluations. The application efficiencies used represent averages, not the potential peak efficiency set out in the NRCS Engineering Handbook and are generalized to the salinity program.

• Not all states will use all of the symbols in this list. These are a combination of definitions previously used in different states.

• Irrigation efficiency is directly related to the uniformity of water application, control, and run-off. If the field appears to have even color throughout, on the latest NAIP, it is probably at 35% or better efficiency.
<table>
<thead>
<tr>
<th>Delivery</th>
<th>Landowner</th>
<th>Irrigation Method</th>
<th>Irrigated 2 out of the last 5 years</th>
<th>Claimable Acreage</th>
<th>Landowner Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td>out</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in GIS Map</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I have an interest to install a high-efficiency irrigation system when sufficient water quantity, quality, and application requirements are met.