Smallmouth Bass Population Modeling and Implications

Drew Eppehimer¹, Charles B. Yackulic¹, Kate Behn¹, Maria Dzul¹, Pilar Rinker², Brian Healy¹, and Laura Tennant³

> 1 US Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center 2 US Fish and Wildlife Service 3 Grand Canyon National Park

> > Annual Reporting Meeting Jan 23, 2024 Phoenix, AZ

Preliminary data, subject to change, do not cite

Acknowledgements

Interagency Smallmouth Bass Taskforce

Glen Canyon Dam Adaptive Management Program

L. Bruckerhoff, J. Wang, K. Young, B. Mihalevich, K. Bestgen, & J. Schmidt

P. Budy, B. Friesen, D. Ward, B. Healy, W. Pine, R. Valdez, A. Schultz, G. Anderson, G. Chong, & E. Rumpf

Southwest Climate Adaptation Science Center

Introduced fishes do not pose equal risks

- NPS Risk Levels (2021 update):
 - Smallmouth Bass (Very High)
 - Walleye (Very High)
 - Brown Trout (Very High)
 - Green Sunfish (High)
 - Rainbow Trout (High)
 - Common Carp (Med.-low)
 - Fathead Minnow (Low)

2023 Grand Canyon Nonnative Fishes

*Does not include NPS targeted SMB removals

Preliminary data, subject to change, do not cite

Grand Canyon Nonnative Fishes

Nonnative species that have increased in catch more than 100% in last 3 years compared to 2000-2019:

Grand Canyon Nonnative Fishes

Nonnative species that have increased in catch more than 100% in last 3 years compared to 2000-2019:

Routine, Interagency Monitoring

200

225

Diamond Cr.

150

Javasu

125

175

Jorado River

2003 - 2021: 22 SMB caught 12 from Lees Ferry

275

*Spatial distribution of effort differs through time

250

Figure: J. Boyer, AZGFD D. Rogowski, AZGFD

Paria River

25

50

75

Angel

Bright

Smallmouth Bass

capture locations

100

0

Glen Canyon Dam

Glen Canyon Dam

Smallmouth bass modeling

1. Propagule Pressure from Lake Powell -Entrainment (fish passage through dam) Elevation dependent

2. Population Growth

-Reproduction, survival, recruitment Thermal suitability Elevation dependent

Smallmouth bass modeling

Propagule Pressure from Lake Powell

 Entrainment (fish passage through dam)
 Elevation dependent

2. Population Growth

-Reproduction, survival, recruitment Thermal suitability Elevation dependent

Modeling: Smallmouth Bass Propagule Pressure Conceptual Model of Entrainment Risk

Modeling: Smallmouth Bass Propagule Pressure

Modeling: Smallmouth Bass Propagule Pressure

Modeling: Smallmouth Bass Propagule Pressure

Out of sample prediction for 2022 and 2023 entrainment

Smallmouth bass modeling

Propagule Pressure from Lake Powell Entrainment (fish passage through dam) Elevation dependent

2. Population Growth

-Reproduction, survival, recruitment Thermal suitability Elevation dependent

(Assumes Allee Effect threshold is surpassed)

Population Growth Rate (lambda)

Based on thermal suitability

Daily River Temperature (mainstem only)

-Lake Powell depth profiles

-Lake Powell elevation

-Downriver temp model (Dibble et al. 2021)

Smallmouth Bass and Temperature

-Spawn/hatch (16C spawning threshold)

-Age 0 growth

-Age 0 overwinter survival

Parameters were derived from Breton et al. (2015) and Bruckerhoff et al. (in prep)

Inflow strength changes thermal profile

Bigger inflows = warmer water deeper

Depth to 16C can change by >100ft!

Lake Powell temperature model

Lake Powell temperature model

Example: 12 maf inflow

Temp (C)

Predicted vs observed water temperature

Out of sample prediction for Lees Ferry 2023

Figure: Bestgen & Hill, 2016

Temperature (C)

Data: Shuter et al, 1980; Figure: Dudley & Trial, 2014

Lambda

Lambda

Lees Ferry 7.48 maf outflows

Lees Ferry Match inflows and outflows Lambda

Downriver warming

Testing assumptions and learning from two years of data collection

- Suitable water temperatures
- Sufficient food
- Sufficient spawning habitat
- Suitable water turbidity

Spawning initiation (observed eggs in nest)

Temperature (°C)	Location	Туре	Citation
15	Nagano, Japan	Lake	Peterson & Kitano, 2022
15	Oregon, USA	River	Rubenson & Olden, 2019
15.2	Ontario, CA	Lake	Turner & MacCrimmon, 1970
15.5	Saskatchewan, CA	Lake	Rawson, 1938
16.2	Oklahoma, USA	River	Dauwalter & Fisher, 2007

Temperature (C)

Data: Shuter et al, 1980; Figure: Dudley & Trial, 2014

Data: Nonnative fish database

Preliminary data, subject to change, do not cite

Data: Shuter et al, 1980; Figure: Dudley & Trial, 2014 Preliminary data, subject to change, do not cite

Testing assumptions and learning from two years of data collection

• Suitable water temperatures

- <u>Sufficient food</u>
- Sufficient spawning habitat

• Suitable water turbidity

Smallmouth Bass Diets

2022 Fall Juvenile SMB from the mainstem Total n=53, non-empty n= 40

Smallmouth Bass Diets

2023 Summer Juvenile SMB from the mainstem Total n=42, non-empty n= 25

Smallmouth Bass Diets

2023 Summer Adult SMB (mainstem and slough) Total n=10, non-empty n= 6

Testing assumptions and learning from two years of data collection

• Suitable water temperatures

- Sufficient food
- Sufficient spawning habitat

• Suitable water turbidity

Science for a changing world

Preliminary data, subject to change, do not cite

What about downriver spawning habitat?

No discharge-velocity model exists

Potential surrogate: cobble, gravel, talus, or debris fan adjacent to an eddy

Analysis currently underway

Testing assumptions and learning from two years of data collection

• Suitable water temperatures

- Sufficient food
- Sufficient spawning habitat

• Suitable water turbidity

Colorado River Turbidity

Preliminary data, subject to change, do not cite

Conclusions

- Smallmouth Bass entrainment model predicted catch of adults in 2022 and 2023 and suggests entrainment was only modestly elevated.
- Smallmouth Bass lambda model predicted reproduction in 2022 and 2023, and growth was consistent with model assumptions.
- Smallmouth bass diet are consistent with literature but have provided some system specific surprises.
- Studies to address uncertainties are ongoing.

Photo Credit: Richard McLeish

Drew E. Eppehimer deppehimer@usgs.gov

Charles B. Yackulic cyackulic@usgs.gov

