

Project O Review and Revisions

Michael Moran

Grand Canyon Monitoring and Research Center Southwest Biological Science Center

Craig Ellsworth

Chair, Budget Ad Hoc Group (BAHG)
Western Area Power Administration

Technical Work Group Meeting October 14, 2020

Project O Review and Comments

- Evaluation of TWP during August AMWG meeting resulted in recommendation to remove Project O and submit as stand-alone proposal funded primarily under the Experimental Fund
- TWP version of Project O was to be revised and submitted ahead of October TWG meeting for review and approval
- Following AMWG, review comments on Project O were requested from stakeholders by mid-September which was later extended to September 25, 2020

Project O Revision

- Throughout September 2020 GCMRC Project O PIs:
 - Convened and participated in internal and external meetings to review and discuss comments and revisions to Project O
 - Prepared written responses to stakeholder comments
 - Revised Project O

Project O Revision continued

- Document of aggregated stakeholder comments with GCMRC written responses to comments was sent back to stakeholders on October 5, 2020
- Revised Project O was sent to TWG for review on October 7, 2020

Project O BAHG Review

- BAHG held 3 meetings; September 21 and 24, and October 8, 2020
- The outcome of these meetings included the following items:
 - 1. A prioritization of Project O elements based on resource and budget considerations, and
 - Identification of funding sources for Project O elements by year

Project O BAHG Prioritization

Table 1. Project O Element Prioritization Recommended by BAHG

Tier 1 - Project O elements considered very important for understanding the effects of the proposed spring disturbance flow

- Project Element O.1. Does Disturbance Timing Affect Food Base Response?
- Project Element O.5. Mapping Aquatic Vegetation Response to a Spring Pulse Flow

Tier 2 - Project O elements considered important for understanding the effects of the proposed spring disturbance flow

- Project Element O.2. Bank Erosion, Bed Sedimentation, and Channel Change in Western Grand Canyon
- Project Element O.6. Brown Trout Early Life Stage Response to a Spring Pulse Flow
- Project Element O.7. Native Fish Movement in Response to a Spring Pulse Flow

Tier 3 - Project O elements considered somewhat important for understanding the effects of the proposed spring disturbance flow

- Project Element O.3. Aeolian Response to a Spring Pulse Flow
- Project Element O.4. Riparian Vegetation Physiological Response
- Project Element O.8. Do Disturbance Flows Significantly Impact Recreational Experience?
- Project Element O.11. Decision Analysis

Tier 4 - Project O elements not prioritized (.

(....because they are funded through the TWP)

- Project Element O.9. Are There Opportunities to Meet Hydropower and Energy Goals with Spring Disturbance Flows? (funded in TWP FY2021-23)
- Project Element O.10. Sandbar and Campsite Response to Spring Disturbance Flow (funded in TWP FY2021-23)

Project O BAHG Funding Source Recommendations

- Funding from Experimental Fund not appropriate for the following:
 - 1. Multi-year commitments because the decision to use of the Experimental Fund is made on a year-by-year basis,
 - Monitoring for experiments or activities that occur with a level of regularity or certainty would lend themselves to be more appropriately planned for and funded through the TWP instead of the Experimental Fund, and
 - Salaries for positions lasting more than one year as this may lead to unreasonable expectations of work security
- Prioritization of Project O should occur in context of other requests from the Experimental Fund

Project O Major Changes

In response to stakeholder comments and BAHG recommendations, GCMRC made the following changes to Project O:

- Modified wording in the introductory material
- Change in funding request from 3 years to 2 years
- Change in funding source request
 - O.11 funding requested from C.4 Science Advisors
 - FY2022 funding requested from carryover (O.1, O.2)

Project O Budget Requests* – FY2021

Fiscal Year 2021										
Project O Is Timing Really Everything? Evaluating Resource Response to Spring Disturbance Flows	Salaries	Travel & Training	Operating Expenses	Logistics Expenses	Cooperative Agreements	To other USGS Centers	Burden	Total	Funding Source	
							14.00%			
O.1. Does disturbance timing affect food base response?	\$54,183	\$13,000	\$1,000	\$5,000	\$0	\$12,000	\$10,246	\$95,429	Reclamation C.5	
O.2. Bank erosion, bed sedimentation, and channel change in western Grand Canyon	\$6,835	\$2,000	\$3,000	\$29,687	\$13,875	\$0	\$6,229	\$61,626	Reclamation C.5	
O.3. Ae olian response to a spring pulse flow	\$0	\$1,000	\$10,000	\$0	\$0	\$0	\$1,540	\$12,540	Reclamation C.5	
O.4. Riparian vegetation physiological response	\$6,512	\$350	\$7,500	\$3,000	\$0	\$0	\$2,431	\$19,792	Reclamation C.5	
O.5. Mapping aquatic vegetation response to a spring pulse flow	\$1,709	\$375	\$9,000	\$8,067	\$20,000	\$0	\$3,281	\$42,432	Reclamation C.5	
O.6. Brown trout early life stage response to a spring pulse flow	\$9,373	\$10,850	\$0	\$32,151	\$0	\$0	\$7,332	\$59,707	Reclamation C.5	
O.7. Native fish movement in response to a spring pulse flow	\$0	\$250	\$9,900	\$23,073	\$10,000	\$0	\$4,951	\$48,174	Reclamation C.5	
O.8. Do disturbance flows significantly impact recreational experience?	\$0	\$0	\$0	\$0	\$10,000	\$0	\$300	\$10,300	Reclamation C.5	
O.9. Are there opportunities to meet hydropower and energy goals with spring disturbance flows? (funded in N.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	GCMRC N.1	
O.10. Sandbar and campsite response to spring disturbance flow (funded in B.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	GCMRC B.1	
Total Experimental Management Fund (C.5)	\$78,612	\$27,825	\$40,400	\$100,978	\$53,875	\$12,000	\$36,310	\$350,000		
O.11. Decision analysis	\$11,075	\$0	\$0	\$0	\$0	\$27,930	\$1,550	\$40,555	Reclamation C.4	
Total Science Advisors Program Fund (C.4)	\$11,075	\$0	\$0	\$0	\$0	\$27,930	\$1,550	\$40,555		

Project O Budget Requests* – FY2022

Fiscal Year 2022										
Project O Is Timing Really Everything? Evaluating Resource Response to Spring Disturbance Flows	Salaries	Travel & Training	Operating Expenses	Logistics Expenses	Cooperative Agreements	To other USGS Centers	Burden	Total	Funding Source	
							22.00%			
O.1. Does disturbance timing affect food base response?	\$110,297	\$0	\$0	\$0	\$0	\$12,000	\$24,265	\$146,563	Unspent FY21 funds from Reclamation C.5	
O.2. Bank erosion, bed se dimentation, and channel change in western Grand Canyon	\$109,400	\$1,500	\$0	\$0	\$25,885	\$0	\$25,175	\$161,959	Unspent FY21 funds from Reclamation C.5	
O.3. Ae olian response to a spring pulse flow	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.4. Riparian vegetation physiological response	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.5. Mapping aquatic vegetation response to a spring pulse flow	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.6. Brown trout early life stage response to a spring pulse flow	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.7. Native fish movement in response to a spring pulse flow	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.8. Do disturbance flows significantly impact recreational experience?	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	NA	
O.9. Are there opportunities to meet hydropower and energy goals with spring disturbance flows? (funded in N.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	GCMRC N.1	
O.10. Sandbar and campsite response to spring disturbance flow (funded in B.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	GCMRC B.1	
Total Experimental Management Fund (C.5)	\$219,697	\$1,500	\$0	\$0	\$25,885	\$12,000	\$49,440	\$308,522		
O.11. Decision analysis	\$11,296	\$10,500	\$5,000	\$0	\$0	\$28,667	\$5,895	\$61,359	Reclamation C.4	
Total Science Advisors Program Fund (C.4)	\$11,296	\$10,500	\$5,000	\$0	\$0	\$28,667	\$5,895	\$61,359		

