

Potential implications of a warmer future for the Colorado River ecosystem

Kimberly L. Dibble

Annual Reporting Meeting Phoenix, AZ January 13, 2020

U.S. Department of the Interior U.S. Geological Survey

Presentation Outline

Drivers of water temperature in the CRe

What drives water temperatures in Grand Canyon and across the CRe?

Present and future river temperatures

How will climate change, drought, and reservoir storage decisions influence future river temperatures?

Implications of warmer temperatures on fish

How has river temperature shaped post-dam aquatic communities, and how may they change in the future?

FY18-20 Project Elements, Study Objectives, and LTEMP Resource Goals

- Project Element E1: Temperature and nutrients in the CRe – patterns, drivers, and improved predictions
 - Study Objective: Modify previous models for predicting CRe temperatures to reflect exponential (rather than linear) warming.
- LTEMP Resource Goals: Identify processes that drive spatial and temporal variation in nutrients and temperature within the CRe and establish quantitative and mechanistic links among these ecosystem drivers, primary production, and higher trophic levels.
 - Natural Processes (#3), Humpback Chub (#1), Other Native Fish (#1), Rainbow Trout Fishery (#2)
- Builds off data collected during Project Element H.4 (FY13-14) and Project Element 9.8 (FY15-17 Workplan)

Lake Powell thermal stratification

Vernieu et al. 2005

Lake Powell elevation as a driver of temperature

Dibble et al., In Review, Ecol Apps

Dibble et al., In Review, Ecol Apps

Lake Powell storage strongly influences river temperature downstream from Glen Canyon Dam

Warmer reservoir releases contain less nutrients

Deemer and Yackulic, Unpub. Data

Deemer and Yackulic, Unpub. Data

Phosphorus concentrations are elevated in bottom water Warmor withdrawals may decrease nutrient availability **—** fi

Warmer withdrawals may decrease nutrient availability ➡ fish

To model future river temperatures, we modified the current CR temperature model

Ecological Applications, 25(8), 2015, pp. 2168–2179 © 2015 by the Ecological Society of America

FY13-14; Project Element H.4

Flow management and fish density regulate salmonid recruitment and adult size in tailwaters across western North America

KIMBERLY L. DHBLE, ^{1,3} CHARLES B. YACKULIC,¹ THEODORE A. KENNEDY,¹ AND PHAEDRA BUDY²

¹U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, Flagstaff, Arizona 80001 USA
²U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, Utah 84322 USA

Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

Kimberly L. Dibble · Charles B. Yackulic · Theodore A. Kennedy

FY15-17; Project Element 9.8 Dibble et al. 2018, EBF

Western North American dams included in synthesis

FY 2013-14 & FY 2015-17 Workplans = Data on Hand + USGS WaterSmart Funding

Wikimedia Commons, Creative Commons Copyright, Author: Shannon1; https://commons.wikimedia.org/wiki/File:Coloradorivermapnew1.jpg

Current thermal regime

Upper Basin

- Short tailwaters
- Warm summer thermal regime

Lower Basin

- Long tailwaters
- Cold summer thermal regime

≥USGS

Fish community distribution and abundance

Photos: J. Tomelleri

Fish community dynamics relative to current thermal regime

Cold-water non-native salmonids common to abundant in tailwaters

Warm-water non-native fish common to abundant in Upper Basin

Warm-water native fish rare or extirpated in basin

Humpback chub abundant in Grand Canyon despite cold water temperatures

Humpback Chub decadal scale trends in abundance relative to temperature

Decadal Scale Trends in

Photos: J. Tomelleri

Warm-water non-native fish in Upper Basin

Upper Colorado River Endangered Fish Recovery Program & San Juan River Basin Recovery Implementation Program Fact Sheet 2017, https://www.coloradoriverrecovery.org/general-information/general-publications/stand-alone-2017-web.pdf

What are basin-wide expectations for the future?

Increased air temperature (2.6°C)

Decreased flow (17%)

Udall and Overpeck 2017 **

** High emissions: business-as-usual, SRES A2 and RCP8.5; Moderate emissions: somewhat reduced by mitigation, SRES A1B and RCP4.5

Potential future Lake Powell release temperatures (LTEMP EIS)

Dibble et al., In Review, Ecol Apps

Drier hydrology traces based on mean annual inflows indicate release temperatures in summer have the potential to reach ~20 °C

To what degree will changes in air temperature, discharge, and storage drive future river temperatures?

Increased air temperature (2.6°C)

Decreased Colorado River flow (17%)

Decreased reservoir storage

Future thermal regime

Effects of warmer water on rainbow trout

Warmer temperatures = smaller adult trout with current foodbase

Effects of warmer water on humpback chub

VanHaverbeke et al. 2018, Southwestern Naturalist

Warm-water non-native fish invasion into GC?

Dibble et al., Unpub. Data

Potential ecological outcomes of a warmer CRe

Potential mainstem spawning and higher growth of native fish

Humpback Chub

Razorback Sucker

Potential boost in invertebrate taxa; better food base

Caddisflies

Midges

Potential nutrient decline (warmer, epilimnetic), implications for food base

Diatoms

Midges

Potential rainbow trout decline, replacement by piscivorous non-native fish

Smallmouth Bass

Northern Pike

Acknowledgements

Funding

- USBR Glen Canyon Dam Adaptive Management Program
- USGS WaterSMART Program

Coauthors

- Charles Yackulic, USGS
- Jack Schmidt, Utah State University
- Ted Kennedy, USGS
- Kevin Bestgen, Colorado State University

Data

- Colorado Division of Water Resources
- U.S. Army Corps of Engineers
- U.S. Bureau of Reclamation, Hydromet
- USDA NRCS National Water and Climate Center
- Upper Colorado River Endangered Fish Recovery Program
- USFWS San Juan River Basin Recovery Implementation Program
- USGS BioData and WaterWatch
- Tom Gushue, USGS, GIS Support

