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Outline

1. Conceptual model describing factors that control 
rainbow trout growth and abundance.

2. Effect of HFEs on rainbow trout growth in Glen Canyon

3. Effects of HFEs on rainbow trout growth and abundance 
in Marble Canyon



Conceptual Model for Rainbow Trout in 
Glen Canyon and Marble Canyon

Growth

Food (drift)

Reservoir Inflow
Flow Regime
from Dam

RecruitmentSurvival of
Adults

Sexual Maturation
& # of eggs/female

Current and Future Abundance

Long-Term 
Patterns in 

Climate

Nutrients
[P]

Top-Down
Competition

Effects

Reservoir Elevation

Operating Rules

turbidity Paria

Korman, J., M.D. Yard, and T.A. 
Kennedy. 2017. Trends in rainbow 
trout recruitment, abundance, 
survival, and growth during a 
boom-and-bust cycle in a tailwater
fishery. Trans. Am. Fish. Soc. 
146:1043-1057.



Trends in Growth and Condition (200 mm trout)
2012                                               2013                                               2014

Fat

Skinny

HFE                                                    HFE

Good

Poor
Before        After Before      After

Preliminary data 
subject to review, 
do not cite

Presenter
Presentation Notes
LFModel/WEGrow_RE/PlotBaseGrow.R



Trends in Growth and Condition (200 mm trout)
2012                 2013              2014                2015                  2016             2017

Fat

Skinny

HFE              HFE HFE no HFE            HFE no HFE

Good

Poor
B     A B     A

B    A

B   A

Preliminary data 
subject to review, 
do not cite

Presenter
Presentation Notes
LFModel/WEGrow_RE/PlotBaseGrow.R



Effect of N
utrients and B

iom
ass on G

row
th

2012                 2013               2014                2015                  2016           2017
H

FE              H
FE

H
FE

no H
FE              H

FE
no H

FE

B
    A

B
    A

B
    A

B
    A

Prelim
inary data 

subject to review
, 

do not cite

Apr1 2-Jul 12 

Jul1 2-Sep1 2 

Se p1 2-0ct1 2 

Oct1 2-Dec 12 

Dec 12-Jan 13 

J an 13-Apr1 3 

Apr13-Jul 13 

J ul1 3-Sep1 3 

Sep 13-0ct1 3 

Oct1 3-Dec 13 

Dec 13-J an 14 

J an 14-Apr1 4 

Apr1 4-Jul 14 

Jul1 4-Sep1 4 

Sep 14-0ct1 4 

Oct1 4-Dec 14 

Dec 14-J an 15 

J an 15-Apr1 5 

Apr1 5-Jul 15 

Jul1 5-Sep1 5 

Se p1 5-0ct1 5 

Oct15-Dec 15 

Dec 15-Jan 16 

J an 16-Apr1 6 

Apr16-Jul 16 

J ul1 6-Sep1 6 

Sep 16-0ct1 6 

Oct16-Jan 17 

J an1 7-Apr1 7 

Apr17-Jul1 7 

Jul1 7-Sep1 7 

Sep1 7-0ct1 7 

Mean Monthly Growth Rate (g) 

0 C,11 

~ 
~ 
~ 
~ .....__, 

-1111 
~ 
t-, 
~ 
I + 
~ 

..... 
0 

..... 
C,11 

• • • D ~ 
Q.) :§: Tl (/) (/) :, 

- · Q.) ~ "O G) :, - 3 ::::::! • .;., 
1n ~ :;:i a 
.... (D (O :[ 

..., ::r 

I ' I 

I :=.-- + 

i'\.) 
0 

0 (1) ~ 
::::::! , :::0 0 = ""O ~ 

,-----~ 

0 +:. 0 0) 0 co O ---" 0 ---" 0 
· o · o · o · n · l'\J · ,1::>, 0 0 0 0 .. 0 ,, 0 
0 0 0 0 0 ~ 
0 N ~ ~ ~ 0 

Population Biomass ('OOOs kg) and SRP (ug/L) 

S' OJ ;. o· 
:::! , 3 
~ ~ 
~ ~ -

Presenter
Presentation Notes
LFModel/WEGrow_RE/PlotBaseGrow.R



Summary of HFE Effects on 
Rainbow Trout Growth in Glen Canyon

Fall-Winter 
Growth

HFE Years Non-HFE 
Years

Poor ’12 ’13 ‘14
Good ‘16 ’15
% Good Years 1 of 4 = 25% 1 of 1 = 100%

• Fall HFEs appear to reduce trout growth in fall and winter in Glen Canyon when assessed 
based on differences among years.

• BUT many limitations to this annual assessment:
• Only 1 non-HFE year (no replication)
• Poor growth immediately before HFEs occurred  in 2 of 3 poor growth years (‘13, ‘14)
• Confounding of HFE effect with nutrients and competition

• Nutrients released from GCD and trout competition appear to have a bigger effect on growth 
than fall HFEs

• More years of mark-recapture data will allow us to quantify the likely modest effect of HFEs 
on trout growth. 

• Effects of HFEs on expanding macrophyte community in Glen Canyon and subsequent effect 
on food base and trout growth requires a much longer time period to evaluate.
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Modelling Rainbow Trout Growth and Effects of 
HFEs in Marble Canyon

• Predict growth as a function of dam-
influenced covariates based on a 
linear regression model fit to more 
than 10,000 growth observations

• Data available from 18 trip intervals 
(Apr ’12 - Sep ’16) in 5 reaches

• Covariates:

• Discharge
• Water temperature (metabolism)
• Turbidity – Feeding efficiency
• Light
• Competition (trout abundance)
• Drift (food)

• Most covariates influenced by GCD 
operations directly or through 
secondary effects
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Very Modest Increases in Turbidity 
Substantially Reduce Trout Feeding Efficiency
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Turbidity-Feeding Efficiency on Growth Observed in 
all Reaches Downstream of Paria in all Years
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Limiting Rainbow Trout Growth in Marble Canyon in
Winter and Spring will Reduce Condition and Abundance

200 mm

Preliminary data 
subject to review, 
do not cite

Poor winter-spring growth (low P)
High turbidity

Warm water 
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Trout Population Collapsed Due to Very Low 
Condition Factor in Fall 2014

High abundance

System-wide collapse
due to poor condition

Preliminary data 
subject to review, 
do not cite

immigration

Local recruitment due to good condition in ‘12 and ‘13
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Rapid Reduction in Rainbow and Brown Trout 
Abundance in Marble Canyon due to elevated Turbidity 

and Temperature and Low Phosphorous
2003-2006 mechanical removal study

Coggins et al. 2011. Nonnative Fish 
Control in the Colorado River in Grand 
Canyon, Arizona: An Effective Program 
or Serendipitous Timing?



Simulation of Turbidity Before and After 2013 HFE
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HFEs Reduce Turbidity after the High Flow
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HFEs Improve Trout Feeding Efficiency After                  
the High Flow2013
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Predicted Effect of HFEs on 
Trout Growth in Marble Canyon

Very low condition attained
~1 yr. earlier under the 
‘without HFEs’ scenario

Preliminary data 
subject to review, 
do not cite

Large Paria sediment
input in 2013Smaller Paria

sediment
input in 2012
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Estimated Change in Trout Abundance in Marble Canyon 
& below LCR without  HFEs in ‘12 and ‘13

Estimated period of reduced 
trout abundance without ‘12/’13 HFE
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With fewer HFEs

HFEs or TEFs (Tailwater Extension Flows)?
Paria Sediment. Use it for Beaches or Trout Control?

With frequent HFEs

tailwater location bigger tailwater = 
more trout at LCR



 Frequent HFEs clean the bed in Marble Canyon reduce turbidity 
 promote trout growth  help sustain high levels of trout 
abundance.

 The idea that turbidity has a strong influence on trout distribution in 
Grand Canyon, and that it can be used for trout control, is not new!

 Valdez and Ryel 1995; Melis et al. 2015; Yard et al. 2016; Korman et al. 2016.
 Turbidity curtain identified as best option for trout control in non-native EA 

(Runge et al. 2011)

 This study provides two new pieces of information (>10,000 growth 
observations and updated sediment model) that allows us to predict 
how GCD flow effect turbidity and trout in Marble Canyon.

Conclusions
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HISTORY OF GCDAMP’s ASSESSMENT OF “CRe
TURBIDITY MANAGEMENT” TO CONSERVE NATIVE FISH

 Spring 2002 – HBC “911” Emergency Response – fish biologists report declining trend in adult HBC, the 
finding results in AMWG’s humpback chub ad hoc committee and consideration of a dozen experimental 
“management strategies” intended to arrest the decline and conserve humpback chub - one of which is to 
determine feasibility of importing “fine-sediment” from Lake Powell source areas to the CRe, near the Paria
River confluence w/ the Colorado River = turbidity cover for native fish when Paria does not contribute 
enough fines to meet a “200 FNU” condition in the main channel of Marble / Eastern Grand Canyons.

 2004-5 – Mechanical Removal project reports abrupt decline in rainbow trout throughout Marble and Grand 
Canyons at start of Year-3 MR treatment, and this step-change (shown in Coggins et al, 2011, Fig 7, p. 468) 
coincides with long string of Paria and 

 LCR floods / sediment inputs that occurred from mid-September 2004 through January 2005; including the 
largest winter Paria River flood in January 2005, since December 1966.

 2007 – Sediment Augmentation - Randle et al. (2007) deliver final technical feasibility report to AMWG, which 
declares that sources of fine sediment from the delta of Navajo Creek within Lake Powell could, in fact, be 
transported around Glen Canyon Dam & delivered to the CRe to manage turbidity of Marble and eastern 
Grand Canyons, but at a cost ranging from $150 (silt/clay only) – 400 (silt/clay/sand) million w/ annual 
maintenance of ~$9 million if an extra 1 Tg of sand were also to be augmented for sandbars as well. 
(estimated costs provide a means to value Paria River sediment provided as “ecosystem service” 
compliments of Mother Nature.

 Fall 2010 – Non-Native Trout Control EA / SDM Workshop – fish experts identify 19 options for controlling 
trout below Lees Ferry, with concept of “turbidity curtain” being rated the most effective long-term strategy 
(see Runge et al., 2011, p. 29, Table 3, hybrid option E [Sediment curtain (single strategies: 3b, 5e, 6, 13): #13 
is long-term strategy to emigration; #5 is the short-term strategy to emigration while infrastructure is being 
built; #3 is needed in short-term to reduce extant RBT population. Assumptions: RBT and BNT limit HBC 
recovery, Lees Ferry is the source of RBT, removal @ PBR or sediment curtain])



 Triggering criteria for a fall HFE could include trout abundance 
in Marble Canyon. If abundance is high and Paria sediment input 
is large, not conducting an HFE has the following benefits:

 Result in a system-wide (Paria-LCR and probably beyond) reduction in trout by 
partially restoring natural turbidity regime.

 Reduce hydropower losses.

 Reduce reliance on mechanical removal and other lethal approaches to trout 
control like Trout Management Flows (+ for tribes, fisherman, cost).

 Increase probability for spring-timed HFEs
 modify sediment accounting period.
 May be beneficial for trout and food base in Glen Canyon
 Create beaches just prior to main boating season.

 We have already implemented such a “Do No Harm” approach for 
fall HFEs (green sunfish in 2015).

Implications for Management
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 Improve calibration of shifting rating curve sediment 
transport model (Wright).

 Quantify effect of turbidity on drift in Marble Canyon.
 Current estimate of trout growth reduction without HFEs is likely too 

low  because it assumes higher turbidity does not reduce invertebrate 
biomass (Yackulic/Deemer/Kennedy).

 Model net effect of reduced trout abundance and higher 
turbidity on Humpback Chub at the LCR (Dzul/Yackulic).

 Need to improve trout monitoring in Marble Canyon if 
managers decide to use trout abundance as one of the HFE 
triggers

Future Work
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