

Bug flow optimizations and predictions

Jeff Muehlbauer¹

with content and input from Ted Kennedy¹, Mike Dodrill¹, Craig Ellsworth², and others

¹U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center ²Western Area Power Administration

U.S. Department of the Interior U.S. Geological Survey

FY15-17 Project 5 FY18-20 Project F

Why Bug flows?

- Daily hydropower flows create "tides"
- Insects lay eggs at water line at dusk
- When tide drops, eggs dry, die

Want to avoid this

Kennedy et al. 2016 BioScience

How do we know?

- Water takes time moving through Canyon
- Some places high water at dusk
- Other places low water at dusk

Kennedy et al. 2016 BioScience

™USGS

Midges track these patterns!

Goals of Bug flows

Improve egg-laying conditions for bugs!

Thus:

- Increase abundance of midges
- Increase abundance/diversity of EPT
 - (mayflies, stoneflies, caddisflies)

Make fish fat and happy

What is a Bug flow?

- "Give bugs the weekend off"
- Stable low flows on summer weekends
- Eggs laid on weekends never dry

Have we been here before?

- Past steady flows have occurred
 - But...
- Summer 2000: Looked for effects during flow
 - (no robust monitoring of after-effects)
- 2008-2012: Steady low flows Sept/Oct

Previous fall steady low flows

- Sept/Oct past peak of bug activity
- Not much egg-laying going on

2012-2014 Light trap data

Did we see a fall steady response?

- Not really (no surprise)
- Plus, lots of other things going on
 - HFEs, Phosphorous, light traps just starting, etc.

Light traps

Drift

What is a Bug flow?

- "Give bugs the weekend off"
- Stable low flows on summer weekends
- Eggs laid on weekends never dry

Original Bug flow proposal

- Stable low flows on weekends
- Weekend water level = weekday low level

Nuance in a 225-mile-long canyon

What works at Lees Ferry:

Doesn't work at Diamond Creek:

> 1/2 ft stage change "BAD"

The fix

Take less water out of weekends

Raises weekend baseline downstream

- Can make conditions as ideal as possible:
 - 1. Canyon-wide
 - 2. Or, at certain sites

Tradeoffs!

Bug flows optimization

- Take CRFS model from Sed. guys
 - 218 cross sections throughout Canyon
- Take hydrographs from WAPA
 - "Add" 500 cfs, 1000 cfs, etc. to weekends
- Run a bunch of simulations
- Try to minimize:
 - ΔStage = weekday low weekend steady stage

Canyon-wide optimization

- Σ|ΔStage|
 across all
 cross sections
 (Lower = better)
- H = cfs "added" to weekend
- ~ H1000 best across all months

Canyon-wide optimization

- Σ|ΔStage|
 across all
 cross sections
 (Lower = better)
- H = cfs "added" to weekend
- ~ H1000 best across all months

Site-specific optimizations

Look at sites of particular interest

All individual cross sections

RM 0 (Lees Ferry)

RM 61 (LCR)

RM 157 (Havasu Creek)

RM 200 (Parashant)

RM 225 (Diamond Creek)

Higher "H" needed farther downstream

What do we expect?

- Focusing on light trap data
 - ~ 1000 samples per year, throughout Canyon
 - Robust dataset for tracking response

Kennedy et al. 2016 BioScience

What do we expect?

- 1. More midges
- **2.** More EPT, more diversity?

Predicted response: EPT

- (Mostly caddisflies)
- Abundances increase
 - Come closer to midge counts

Predicted response: EPT

- Less tied to tributaries
 - Again, resemble midges

Predicted response: Midges

- Take existing pattern
- Get amount of time at dusk, with
 < 5" daily Δstage
 - 218 sites
 - Base flow and optimized Bug flow scenarios

Predicted response: Midges

Build a shiny, new model

- Result: Optimized Bug flow improves conditions
 - (Just about everywhere)

Predicted response: Midges

Improved by how much?

26%, canyon-wide

Thanks!

- Bug pickers (for counting the bugs)
- All the bugs (for science)
- Mike Dodrill, Sed guys, and WAPA (for the models and data)
- Y'all (for listening to a 20 minute talk about bug modeling)

