Bug flow optimizations and predictions

Jeff Muehlbauer

with content and input from
Ted Kennedy, Mike Dodrill, Craig Ellsworth, and others

1U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center
2Western Area Power Administration

FY15-17 Project 5
FY18-20 Project F
Why Bug flows?

- Daily hydropower flows create “tides”
- Insects lay eggs at water line at dusk
- When tide drops, eggs dry, die

Kennedy et al. 2016
BioScience
How do we know?

- Water takes time moving through Canyon
- Some places high water at dusk
- Other places low water at dusk

Kennedy et al. 2016
BioScience

Midges track these patterns!
Goals of Bug flows

- Improve egg-laying conditions for bugs!

Thus:

- Increase abundance of midges

- Increase abundance/diversity of EPT
 - (mayflies, stoneflies, caddisflies)

- Make fish fat and happy

Yum
What is a Bug flow?

- “Give bugs the weekend off”
- Stable low flows on summer weekends
- Eggs laid on weekends never dry

Unpublished data, subject to change, do not cite.
Have we been here before?

- Past steady flows have occurred
 - But…

- Summer 2000: Looked for effects *during* flow
 - (no robust monitoring of after-effects)

- 2008-2012: Steady low flows Sept/Oct
Previous fall steady low flows

- Sept/Oct past peak of bug activity
- Not much egg-laying going on

2012-2014 Light trap data

Unpublished data, subject to change, do not cite.
Did we see a fall steady response?

- Not really (no surprise)
- Plus, lots of other things going on
 - HFEs, Phosphorous, light traps just starting, etc.

Unpublished data, subject to change, do not cite.
What is a Bug flow?

- “Give bugs the weekend off”
- Stable low flows on summer weekends
- Eggs laid on weekends never dry

Unpublished data, subject to change, do not cite.
Original Bug flow proposal

- Stable low flows on weekends
- Weekend water level = weekday low level
Nuance in a 225-mile-long canyon

- What works at Lees Ferry:

- Doesn’t work at Diamond Creek:

 \[\text{Relative stage (ft)} \]
 \[\text{RM 0 (Lees Ferry)} \]
 \[\text{RM 225 (Diamond Creek)} \]

> \(\frac{1}{2} \text{ ft stage change “BAD”} \)

Unpublished data, subject to change, do not cite.
The fix

- Take less water out of weekends

 Raises weekend baseline downstream

 Can make conditions as ideal as possible:
 1. Canyon-wide
 2. Or, at certain sites

Tradeoffs!

Unpublished data, subject to change, do not cite.
Bug flows optimization

- Take CRFS model from Sed. guys
 - 218 cross sections throughout Canyon

- Take hydrographs from WAPA
 - “Add” 500 cfs, 1000 cfs, etc. to weekends

- Run a bunch of simulations

- Try to minimize:
 - ΔStage = weekday low – weekend steady stage

Unpublished data, subject to change, do not cite.
Canyon-wide optimization

- $\sum |\Delta \text{Stage}|$ across all cross sections (Lower = better)
- $H =$ cfs “added” to weekend
- $\sim H1000$ best across all months

Unpublished data, subject to change, do not cite.
Canyon-wide optimization

- $\sum |\Delta \text{Stage}|$ across all cross sections (Lower = better)
- $H =$ cfs “added” to weekend
- $\sim H1000$ best across all months

Unpublished data, subject to change, do not cite.
Site-specific optimizations

- Look at sites of particular interest
 - All individual cross sections
 - RM 0 (Lees Ferry)
 - RM 61 (LCR)
 - RM 157 (Havasu Creek)
 - RM 200 (Parashant)
 - RM 225 (Diamond Creek)

- Higher “H” needed farther downstream

Unpublished data, subject to change, do not cite.
What do we expect?

- Focusing on light trap data
 - ~ 1000 samples per year, throughout Canyon
 - Robust dataset for tracking response

Unpublished data, subject to change, do not cite.

Kennedy et al. 2016
BioScience
What do we expect?

1. More midges
2. More EPT, more diversity?

Unpublished data, subject to change, do not cite.
Predicted response: EPT

- (Mostly caddisflies)

- Abundances increase
 - Come closer to midge counts
Predicted response: EPT

- Less tied to tributaries
 - Again, resemble midges

Unpublished data, subject to change, do not cite.
Predicted response: Midges

- Take existing pattern
- Get amount of time at dusk, with < 5” daily Δstage
 - 218 sites
- Base flow and optimized Bug flow scenarios

Unpublished data, subject to change, do not cite.
Predicted response: Midges

- Build a shiny, new model

- Result: Optimized Bug flow improves conditions

 - (Just about everywhere)
Predicted response: Midges

- Improved by how much?
 - 26%, canyon-wide

Unpublished data, subject to change, do not cite.
Thanks!

- Bug pickers (for counting the bugs)
- All the bugs (for science)
- Mike Dodrill, Sed guys, and WAPA (for the models and data)
- Y’all (for listening to a 20 minute talk about bug modeling)