Integrating LTEMP into GCDAMP Processes¹

October 18, 2016

¹This draft presentation was prepared to facilitate the agenda item of the same name. The purpose of the agenda item is for the TWG to engage in a preliminary conversation about its potential role in the future, when the LTEMP is decided. The presentation focuses on the LTEMP FEIS Preferred Alternative, but because the Secretary of the Interior has not issued a ROD, the presentation is based on a hypothetical outcome and therefore is for discussion purposes only. The presentation is not a product of the Department of the Interior.

Components of the Process¹

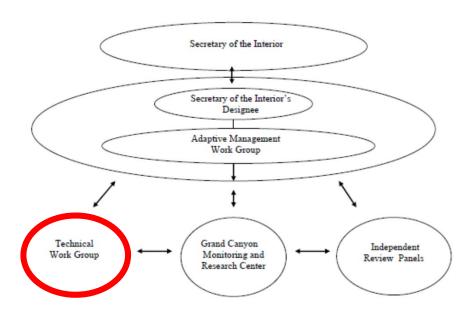
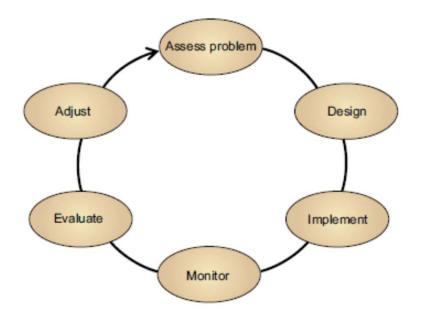
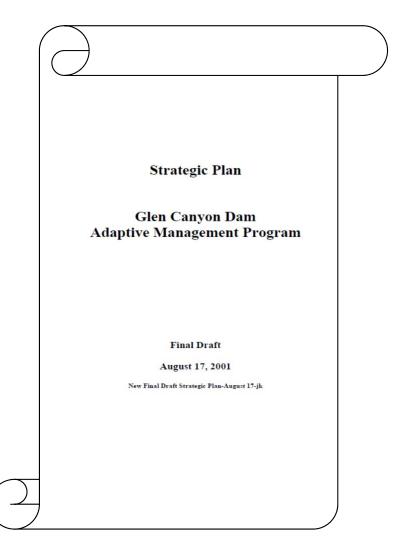
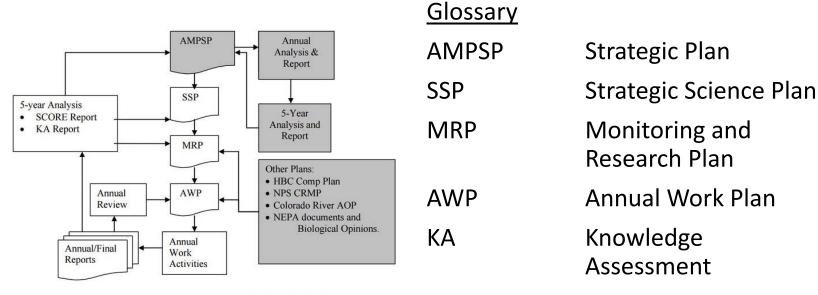




Figure 1. Organizational components of the Glen Canyon Dam Adaptive Management Program.

¹Strategic Plan Glen Canyon Dam Adaptive Management Program approved by AMWG on January 17, 2002


Overall Process^{1,2}

¹Williams, B.K., R.C. Szaro, and C.D. Shapiro. 2009. Adaptive Management: The U.S. Department of the Interior Technical Guide ²Strategic Plan Glen Canyon Dam Adaptive Management Program approved by AMWG on January 17, 2002

Planning and Implementation Process^{1,2}

Figure 2. Collaborative science planning and implementation process. The Glen Canyon Dam Adaptive Management Program and the U.S. Department of the Interior have lead responsibility for the shaded boxes. The Grand Canyon Monitoring and Research Center has lead responsibility for the boxes that are not shaded.

SCORE

State of the Colorado

River Ecosystem

¹Strategic Science Plan to Support the Glen Canyon Dam Adaptive Management Program, Fiscal Years 2007-2011 approved by AMWG on April 29, 2009 ²Monitoring and Research Plan to Support the Glen Canyon Dam Adaptive Management Program, Fiscal Years 2007-2011 approved by AMWG on April 29, 2009

TWG Roles and Responsibilities

- Technical assistance to the AMWG¹ enabling the AMWG to²:
 - Advise the Secretary in meeting environmental and cultural commitments
 - Recommend resource management objectives for development and implementation of a long-term monitoring plan
 - Review and provide input on the annual report to Congress
 - Annually review long-term monitoring data to provide advice on the status of resources and whether the DFC's and AMP Strategic Plan goals and objectives are being met.
 - Monitor and report on all program activities undertaken

TWG Roles and Responsibilities

- Consult with GCMRC in developing criteria and standards for monitoring and research programs¹
- Develop research management questions for the design of monitoring and research administered by GCMRC¹
- Provide information, as necessary, for preparing annual resource reports and other reports, for the AMWG¹
- Prepare a triennial budget development timeline and process that can be used in the future²
- Review FY17 budget after issuance of the LTEMP ROD³

 $^{^{\}mathrm{1}}$ Glen Canyon Dam Technical Work Group Operating Procedures, June 27, 2013

²Memorandum from Anne J. Castle dated May 7, 2014

³Approved by AMWG on August 24, 2016

TWG Roles and Responsibilities from LTEMP Preferred Alternative (§ 2.2.4)

Explicit

- DOI to seek TWG consensus on annual hydrograph (§ 2.2.4.1)
- DOI to host annual reporting meeting for stakeholders (§ 2.2.4.4)
- DOI to meet with TWG to discuss contemplated annual experimental actions (§ 2.2.4.4)

Potential ???

- Advice on implementing the condition-dependent adaptive design
- Advice on annual implementation considerations
- Advice on long term off-ramp conditions
- Advice on work planning and budgeting

Annual Hydrograph

"Reclamation will seek consensus on the annual hydrograph through...regular meetings of the...TWG..." (p. 2-46)

TABLE D-6 Monthly Release Volumes (in ac-ft) by Water Year Release for Alternative D

	Water Year Release (maf)											
Month	7	7.48	8.23	9	9.5	10.5	11	12	13	14		
October	480,000	480,000	642,583	642,583	642,583	642,583	642,583	642,583	642,583	642,583		
November	500,000	500,000	641,532	641,532	641,532	641,532	641,532	641,532	641,532	641,532		
December	600,000	600,000	715,885	715,885	715,885	715,885	715,885	715,885	715,885	715,885		
January	664,609	723,467	763,000	858,351	919,662	1,042,283	1,103,594	1,226,216	1,348,837	1,471,459		
February	587,262	639,271	675,000	758,457	812,632	920,983	975,159	1,083,510	1,191,860	1,300,211		
March	620,206	675,132	713,000	801,004	858,219	972,648	1,029,863	1,144,292	1,258,721	1,373,150		
April	552,170	601,070	635,000	713,134	764,072	865,949	916,887	1,018,763	1,120,640	1,222,516		
May	571,506	622,119	657,000	738,108	790,830	896,274	948,996	1,054,440	1,159,884	1,265,328		
June	598,005	650,965	688,000	772,331	827,497	937,830	992,997	1,103,330	1,213,663	1,323,996		
July	651,718	709,434	749,000	841,702	901,823	1,022,067	1,082,188	1,202,431	1,322,674	1,442,918		
August	652,434	710,214	750,000	842,627	902,814	1,023,190	1,083,377	1,203,753	1,324,128	1,444,503		
September	522,090	568,328	600,000	674,286	722,451	818,776	866,939	963,265	1,059,593	1,155,919		

Annual Hydrograph

TABLE D-7 Monthly Release Volumes (in ac-ft) by Water Year Release for Alternative D with Low Summer Flows

	Water Year Release (maf)											
Month	7	7.48	8.23	9	9.5	10.5	11	12	13	14		
October	480,000	480,000	642,583	642,583	642,583	642,583	642,583	642,583	642,583	642,583		
November	500,000	500,000	641,532	641,532	641,532	641,532	641,532	641,532	641,532	641,532		
December	600,000	600,000	715,885	715,885	715,885	715,885	715,885	715,885	715,885	715,885		
January	664,609	723,467	763,000	858,351	919,662	1,042,283	1,103,594	1,226,216	1,348,837	1,471,459		
February	587,262	639,271	675,000	758,457	812,632	920,983	975,159	1,083,510	1,191,860	1,300,211		
March	620,206	675,132	713,000	801,004	858,219	972,648	1,029,863	1,144,292	1,258,721	1,373,150		
April	730,640	795,346	840,007	943,631	1,011,033	1,145,837	1,213,239	1,348,044	1,482,848	1,487,603		
May	756,226	823,198	869,423	976,676	1,046,439	1,185,964	1,255,726	1,395,252	1,534,777	1,537,189		
June	791,289	861,367	909,735	1,021,961	1,094,958	1,240,952	1,313,949	1,459,944	1,487,603	1,487,603		
July	427,856	465,748	491,901	552,582	592,052	670,992	710,463	789,403	908,217	1,126,373		
August	427,856	465,748	491,901	552,582	592,052	670,992	710,463	789,403	908,217	1,126,373		
September	414,056	450,723	476,033	534,756	572,953	649,349	687,544	763,936	878,920	1,090,039		

Annual Reporting Meeting

"these meetings will present the best available scientific information and learning from previously implemented experiments and ongoing monitoring of resources" (p. 2-57)

- What is the scope of the meeting?
- Should the meeting be organized by:
 - Resource?
 - Work plan project?
 - Strategic Plan goal?
 - DFC?
 - LTEMP Resource Goal?
 - Experimental outcome?

- Can the meeting serve other purposes?
 - Knowledge assessment
 - Cooperative agreement reporting
 - AMWG program reporting
 - Content development for report to Congress

Discussion of Annual Experiments

"DOI will meet with the TWG to discuss the experimental actions being contemplated for the year" (p. 2-57)

- Should this occur in January?
- Should there be additional check-ins with the TWG later in the year?
- Will more than a listing of potential experiments be discussed?
- Should potential outcomes be discussed?
 - If so, which outcomes should be simulated?
 - If so, which tools would be useful to simulate outcomes?
 - If so, should simulated outcomes be compared to monitoring results in subsequent Annual Reporting Meetings¹?

Experimental Scenarios in Year 1-2¹

Scenario	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1												
2											HFE	
3											Ext. Dur. HFE	
4						Bug I	Flows					
5						Bug I	Flows				HFE	
6					Bug Flows						Ext. Dur. HFE	
7						TN	ΛF					
8						TN	ИF				HFE	
9						TN	ИF				Ext. Dur. HFE	
10			N	Mechanica	ıl Removal							
11		Mechanical Removal									HFE	
12			P	Mechanica	ıl Removal						Ext. Dur. HFE	

¹Year 3-10 include Spring HFE's and Proactive Spring HFE's and Year 11-20 include LSF's

Scenario	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
13						Bug F	lows					
13						TN						
14						Bug F				HFE		
						TN						
15						Bug F					Ext. Dur.	
					TMF						HFE	
16					Bug Flows							
				Mechanica	i Removai		.,					
17				N A o ob o mi o o	l Domoval	Bug F	lows				HFE	
				Mechanica	i Kemovai		loves				Evt Dur	
18				Mechanica	l Domoval	Bug F	lows				Ext. Dur. HFE	
				iviecijaliica	ii Keiliovai	TN	ΛE				TIFE	
19				Mechanica	l Removal		/11					
				· · · · · · · · · · · · · · · · · · ·	TMF							
20			-	Mechanica	l Removal						HFE	
						TN	⁄IF			Ext. Dur.		
21			1	Mechanica	l Removal						HFE	
						Bug F	lows					
22						TN	⁄IF					
			ı	Mechanica	l Removal							
						Bug F						
23						TN	ΛF			HFE		
			1	Mechanica	l Removal							
			Bug Flows					Ext. Dur.				
24						TN	ΛF				HFE	
				Mechanica	l Removal							

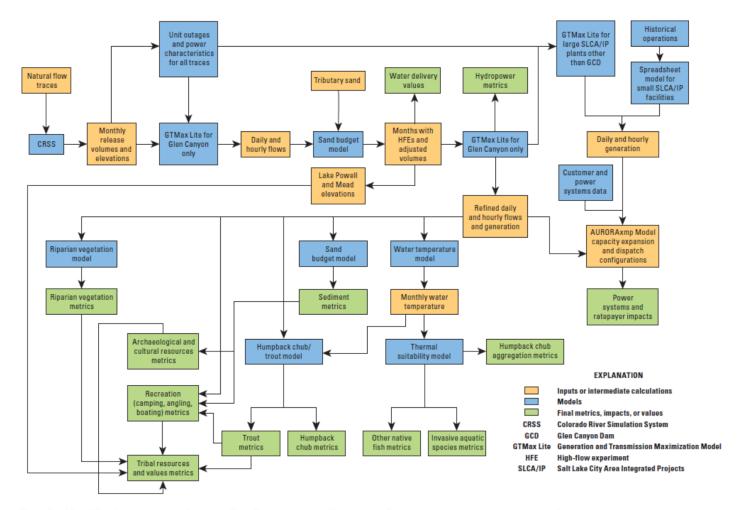


Figure 2. Model flow for the analysis of the Long-Term Experimental and Management Plan long-term strategies against the performance metrics.

¹Appendix C, Page C-37 from LTEMP FEIS

An Example of a Scenario Outcome

July:

 $T_{LCR} = T_o + 3.791 / (0.000461 \times Apr Projected Release_{TLL})^{0.63} \times (36.31 - T_o),$ where: $T_o = 249.4 - (0.0668 \times Apr Projected EOM Elev_{TLL}) + (3.766E-7 \times Apr Projected CY Inflow)$

where:

TLCR = temperature at the Little Colorado River Confluence, °C

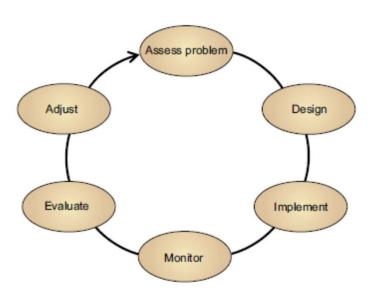
To = Lake Powell release temperature, °C

EOM Elev = Lake Powell projected end-of-month elevation, ft

CY Inflow = Lake Powell projected calendar year inflow, ac-ft

Release = Lake Powell projected monthly release volume, ac-ft

	Outcome							
	July 2017							
Scenario	Colorado River Temperature							
	at LCR Confluence (°C)	Etc.	Etc.					
1	15							
2	15							
3	15							
4	15							
5	15							
6	15							
7	15							
8	15							
9	15							
10	15							
11	15							
12	15							
13	15							
14	15							
15	15							
16	15							
17	15							
18	15							
19	15							
20	15							
21	15							
22	15							
23	15							
24	15							


Calculation described in Appendix D, Page D-22 to D-23 from LTEMP FEIS

Potential Roles and Responsibilities ???

Condition-dependent adaptive design

- Input on deciphering what it is¹
- Advice on Science Plan
- Advice on experimental plans
- Advice on how to balance learning with achieving desirable outcomes

Adaptive Management

¹Searching the term "condition-dependent adaptive design" in Google yields two results, the Executive Summary for the LTEMP DEIS and FEIS. We are truly charting a new course!

Potential Roles and Responsibilities ???

Annual implementation considerations

- Input on monitoring sufficiency
- Input on resource conditions
- Input on identifying unacceptable impacts
- Is the Annual Reporting Meeting the forum for providing input?

Long term off-ramp conditions

- Input on if objectives are being met (are treatments producing the desired effect?)
- Input on if there are unacceptable adverse impacts

TABLE 2-9 Implementation Criteria for Experimental Treatments of Alternative D

Experimental Treatment	Trigger and Primary Objective	Replicates	Duration	Annual Implementation Considerations ^a	Long Term Off-Ramp Conditions ^b	Action if Successful
Sediment Treatments Spring HFE up to 45,000 cfs in Mar. or Apr.	Trigger: Sufficient Paria River sediment input in spring accounting period (DecMar.) to achieve a positive sand mass balance in Marble Canyon with implementation of an HFE Objective: Rebuild sandbars	Not conducted during first 2 years of LTEMP, otherwise implement in each year triggered, dependent on resource condition and response	⊴96 hr	Potential unacceptable impacts on water delivery or key resources such as humpback chub, sediment, riparian ecosystems, historic properties and traditional cultural properties, Tribal concerns, hydropower production and the Basin Fund, the rainbow trout fishery, recreation, and other resources; unacceptable cumulative effects of sequential HFEs; spring HFEs will not occur in the same water year as an extended-duration HFE (>96 hr)	HFEs were not effective in building sandbars; or unacceptable adverse impacts on the trout fishery, humpback chub population, or other resources	Implement as adaptive treatment when triggered and existing resource conditions allow
Proactive spring HFE up to 45,000 cfs (Apr., May, or Jun.)	Trigger: High-volume year with planned equalization releases (≥10 maf) Objective: Protect sand supply from equalization releases	Not conducted during first 2 years of LTEMP, otherwise implement in each year triggered, dependent on resource condition and response	First test 24 hr; subsequent tests could be shorter, but not longer, depending on results of first tests	Same as spring HFEs	Same as spring HFEs	Implement as adaptive treatment when triggered and existing resource conditions allow

Potential Roles and Responsibilities ???

- The Work Plan and Budget is an important policy tool for integrating LTEMP into GCDAMP processes. It should include:
 - "long-term monitoring programs and activities that will ensure that Glen Canyon Dam is operated in a manner consistent with section 1802" of the Grand Canyon Protection Act.
 - "any necessary research and studies to determine the effect of the Secretary's actions under section 1804(c) on the natural, recreational, and cultural resources of" GCNP and GCNRA.
- TWG input on content and organization
- TWG input on priorities

Other Thoughts¹

- Does the TWG need specific direction from the AMWG?
- Are the LTEMP Resource Goals integrated into GCDAMP processes?
- How can experimental monitoring be implemented without disrupting long-term monitoring? How is it budgeted?

¹This is here just to see if you're reading these footnotes. Your reward for doing so is to learn that pteronophobia is the fear of being tickled by feathers.