

Modeling Long Term Effects of HFEs on Trout and HBC

Charles Yackulic

Southwest Biological Science Center Grand Canyon Monitoring and Research Center

U.S. Department of the Interior U.S. Geological Survey

Humpback chub population dynamics

Outline

General patterns – a rough sketch

Temperature / Trout / Recruitment

A historical perspective of lambda

LCR – typical values based on 2009-2012 data

A.) Quick growth to adulthood

Colorado River – typical values based on 2009-2012 data

LCR – typical values based on 2009-2012 data

Colorado River – typical values based on 2009-2012 data

Outline

General patterns – a rough sketch

Temperature / Trout / Recruitment

A historical perspective of lambda

Fitted relationship between monthly size transition rate (~growth) of juvenile HBC and temperature at two different **RBT** densities.

Fitted relationship between monthly size transition rate (~growth) of larger HBC size classes and temperature.

Backcasting

- Relationships I just showed based on 2009 2013 data.
- How well do these relationships explain behavior between 1990 & 2009?

Back-casted predictions are reasonably close to ASMR estimates (keep in mind that ASMR is known to smooth trends).

Outline

General patterns – a rough sketch

Temperature / Trout / Recruitment

A historical perspective of lambda

The problem with time lags

The problem with time lags

Population growth rate (λ)

Trying to address title in Agenda

Five questions regarding RBT recruitment/flow and movement

- Is it the seasonality of HFE's that matter or the amount of mouths already in the system (or fish condition)?
- Does the magnitude of HFE's matter?
- Is it the large discharge or steadiness associated with equalization that led to 2011 response, or both?

Five questions regarding RBT recruitment/flow and movement

- How are movement rates downstream affected by extrinsic (e.g., turbidity) and intrisic factors (e.g., fish condition)?
- Is their a tipping point where Marble Canyon begins to maintain a large self-sustaining RBT population?

Acknowledgements

- US Fish and Wildlife Service
- Near Shore Ecology Group
- NO/JCM crews
- Mike Yard , Josh Korman, Lew Coggins, Maria Dzul
- Glen Canyon Adaptive Management Group
- Bureau of Reclamation
- Navajo Nation Department of Fish and Wildlife
- National Park Service
 USGS

