Assessing Vegetation Response to Dam Operations using the Response Guild Approach

Barbara E. Ralston, USGS in collaboration with David Merritt, USFS, Patrick Shafroth, USGS, Todd Chaudhry, NPS Lori Makarick, NPS, Dustin Perkins, NPS

U.S. Department of the Interior
U.S. Geological Survey
Overview

- Review general knowledge about riparian plant species downstream from Glen Canyon Dam
 - Highlight known responses of vegetation to Glen Canyon Dam releases

- Explain monitoring using Response Guild Approach
 - Identified Guilds for the Colorado River
 - Linkages with National Parks in Upper Basin
 - Implementation of monitoring
 - Preliminary results from October 2012 sampling trip

- Conceptual-frame based modeling

- Tamarisk Beetle Status
Inter-annual and seasonal variability in hydrology

- **Flood timing** → Seed dispersal/germination
- **Duration** → Scour, cover, occupancy space
- **Magnitude** → Area of disturbance
- **Frequency** → Species selection/successional processes

Surface water-ground water interactions –

- **Minimum discharge** → Distance to water – upland, woody riparian species
- **Daily range** → Inundation duration – marsh species, woody riparian species
The Early Years

Stanton Photo 1890, Cardenas Creek, National Archives and Records Administration.

Predam flood stage 2407m³/s

Mesquite
Plants along the Colorado River – historic assemblage

Hydrologic gradient
- **Low**
- **High**

Disturbance adapted
- **Low**
- **High**

Ephemeral

- **Mesquite/Apache Plume**
- **Arrowweed**
- **Tamarisk**
- **Coyote willow**
- **Gooding's Willow/Cottonwoods**
- **Desert broom**
- **Hackberry**
- **Brickellia**

USGS
Period I – Flood reduction and flow stabilization

1965

1973

Marsh Development

Woody Vegetation Expansion
Period II – Prolonged flooding, sediment reworking & export, vegetation removal & re-establishment
Period IV 2000-2012 – Reduced fluctuations, minimum annual delivery (drought) and equilization flows (MLFF, LSSF, HFE operations)

Continued vegetation expansion
113 Years Later with 40 Years of Regulation

Tamarisk mixed w/ Goodding's willow

Postdam vegetation expansion

Predam flood stage 2407 m³/s

Arrowweed, Baccharis/Coyote willow

Tamarisk mixed w/ Goodding's willow

Repeat photograph 2003, Cardenas Creek (USGS Desert Laboratory Repeat Photography Collection).
Plants along the Colorado River – post regulation

Disturbance adapted

Low

Hydrologic gradient

Low

High

Mesquite/Apache Plume

Tamarisk

Camelthorn

Horsetails

Coyote willow

Cattails

Common reed

Horseweed

Seepwillow

Goodding’s Willow/
Cottonwoods

Desert broom

Brickellia

Hackberry

Cattails

Common reed

Coyote willow

Camelthorn

Tamarisk

Horsetails

Hydrologic gradient

Low

High

Disturbance adapted
General vegetation response

- Riparian woody vegetation is expanding
- HFEs of present magnitude/duration do not remove woody vegetation
- Coarsening sandbars favor drought adapted vegetation → shoreward migration of woody species
- Basin hydrology, daily fluctuations and maximum daily discharge affects woody vegetation expansion.
- Operations that scour sandbars followed by reduced flows → tamarisk colonization
- At lower stage elevations, increased frequency of HFEs may favor clonal species that are burial adapted over seed production
Monitoring vegetation response to dam operations

Riparian Vegetation-Flow Response Guilds Framework

Groups of species that have shared life history traits and respond similarly to physical variables (e.g., hydrologic regime, geologic setting/substrate properties, ambient temperature)

Life history
Reproductive strategy
Morphology
Fluvial disturbance
Water balance

Selection and Adaptation

Acer negundo/
Prosopis glandulosa

Phragmites australis

Tamarix ramosissima

Juncus bufonius
Traits

- Longevity (life span)
- Annual, short- and long-lived perennial, biennial

Relevant Flow Component

- Frequency of extreme floods
- Anoxia
- Timing of floods
- Flow duration
Reproductive Strategy Guilds

Traits
- Vegetative-Sexual-Combined
- Timing in synchrony with flow component (dispersal, flower, fruit)

Relevant Flow Component
- Magnitude of extreme flow
- Timing of high & low flow
- Rate of drawdown
- Duration of inundation
Morphology Response Guilds

Traits
- Growth form (e.g., herbaceous-woody, graminoid-shrub-tree)
- Rooting depth (phreatophytic)
- Root morphology (lateral-taproot, shallow-deep)
- Size at maturity (canopy height, vegetation volume)

Relevant Flow Component
- Flow duration
- Magnitude and duration of low and high flow
- Water table depth and inter- and intra-annual variability
- Flow permanence, groundwater depth, flow variability
Green and Yampa rivers, Colorado-Utah

Merritt, unpublished
Disturbance-adapted hydric, herbaceous perennials

- Mesic, salt tolerant
- Drought-tolerant, upland species
- Hydric, perennial graminoids
- Disturbance-adapted hydric, herbaceous perennials
- Ruderal, mesic, herbaceous
- Shallow rooted, mesic herbaceous perennials

Merritt, unpublished do not cite
Guilds Identified for Colorado River in Grand Canyon

14 biological attributes

- Growth rate
- Height at maturity
- Life span
- Resprout ability
- Anaerobic tolerance
- Drought tolerance
- Fire tolerance
- Salinity tolerance

- Vegetative reproduction
- Spread rate
- Root-depth
- Shade tolerance
- Moisture usage (inundation/duration)
- Fire tolerance
- Sexual reproduction
Sampling Approach

NAU Sandbar Sites - (Sampled in October 2012)

Random Sites - TBD

Inactive Flood Plain (IF)
Active Flood Plain (AF)
Active Channel (AC)

3- 1m² plots per zone – location surveyed
3 transects per geomorphic feature
Preliminary Results

- 22 sites, 847 plots sampled
- 73 species identified in Marble Canyon
 - 10 (AF), 0 AC
- 50 species Eastern Grand Canyon
 - 8 (AF), 0 AC
- 44 in Western Grand Canyon
 - 7 (IF), 0 AC

Richness, diversity, frequency of guilds, Cover, native/nonnative ratio
Developing a Conceptual Model for Vegetation Response

Landscape characteristics
- Low elevation sandbar
- Accumulates silts & clays – return channel side
 Greater surface/gw dynamics

Ecological States
- Open sandbar
- Clonal Marsh Vegetation
- Facultative Woody riparian vegetation
- Clonal/Perennial/Annual Marsh Vegetation
- Obligate Woody riparian vegetation

Operations that cause switches between states & rules of response
- Open sandbar
- Facultative Woody riparian vegetation
- Obligate Woody riparian vegetation
- Clonal/Perennial/Annual Marsh Vegetation
Reattachment bar

1. Bare Sand
2. Woody riparian
3. Clonal Wetland
4. Perennial Marsh

Flow paths:
- T1 from Bare Sand to Clonal Wetland
- T4 from Bare Sand to Woody riparian
- T5 from Clonal Wetland to Woody riparian
- T2 from Perennial Marsh to Clonal Wetland
- T3 from Perennial Marsh to Woody riparian
- T6 from Woody riparian to Bare Sand
- T7 from Woody riparian to Perennial Marsh
Yearly Distribution (2007 - 2012) of Tamarisk Leaf Beetle (Diorhabda spp.)

Data Collected By:
- New Mexico State University
- Northern Arizona University
- Oklahoma State University
- Owyhee National Wildlife Refuge
- Southern Nevada Water Authority
- SU RV State University
- Tamarisk Coalition
- Texas A&M University
- Texas Parks and Wildlife Department
- University of Arizona
- University of California Santa Barbara
- US Army Corps of Engineers
- US Geological Survey
- US Fish & Wildlife Service
- Partners for Fish & Wildlife Program

Map Production Funded By:
The Walton Family Foundation
Colorado Water Conservation Board

Map Published By:
Tamarisk Coalition on: 11/08/12
Grand Canyon National Park: Northern Tamarisk Beetle (*Diorhabda carinulata*)
Defoliation:
August, 2011

Map: L. Jamison

Percent Defoliation
- Absent (0%)
- Low (1-33%)
- Medium (34-66%)
- High (67-100%)

Defoliated tamarisk
Native vegetation
Impacts & implications of beetle-induced tamarisk mortality

• Ecosystem patterns & processes
 • Spatio-temporal scales
 • Flora & fauna
 • Nutrient dynamics, fire & hydrology

• Management implications
 • Natural & cultural resources
 • Recreation & visitor experience
 • Monitoring, mitigation & rehabilitation
 • Dam operations