

Recent advances in population modeling, preliminary estimates, and their relevance to BO triggers

Charles B. Yackulic

U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center

Outline

- Review of timing of HBC sampling in and near LCR
- Comparison of methods used for HBC population assessment
- Multistate modeling of HBC background
- Multistate modeling preliminary results
- BO triggers

Monthly schedule

Little Colorado River

Colorado River

Method	Scale	Strengths	Weaknesses
Closed models	Depends	Fairly straightforward.	Biases can not always be addressed, (e.g., population closure).
Open models	Between trips	Not affected by within trip behavioral response.	Estimates of survival and N not available for last time period.

Method	Scale	Strengths	Weaknesses
Closed models	Depends	Fairly straightforward.	Biases can not always be addressed, (e.g., population closure).
Open models	Between trips	Not affected by within trip behavioral response.	Estimates of survival and N not available for last time period.
ASMR / SSMR	Time step: Annual	Estimate parameters even when data is sparse.	Assumes homogeneous population; Parametric assumptions; Well-known biases.
	Spatial structure: No		Well-KIIOWII DIASES.

Method	Scale	Strengths	Weaknesses
Closed models	Depends	Fairly straightforward.	Biases can not always be addressed, (e.g., population closure).
Open models	Between trips	Not affected by within trip behavioral response.	Estimates of survival and N not available for last time period.
ASMR / SSMR	Time step: Annual	Estimate parameters even when data is sparse.	Assumes homogeneous population; Parametric assumptions; Well-known biases.
	Spatial structure: No		
Multistate models	Time step: Monthly (trips)	Includes tag loss; Heterogeneity in rates over space and within year; Movement.	Relatively data hungry; Assumes NSE representative of CR.
	Spatial structure: Yes		

Multistate Model - Background

- 3 spatial locations (LCR, NSE, rest of CR)
- 3 Size groups (4-10cm; 10-20cm; 20cm<)</p>
- Incorporates information from tag loss studies.
- Assumes CR fish don't move around much,
- Assumes that NSE is representative.

Multistate Model - Background

- Parameters of interest
 - Survival (6; ψ_t^{L1})
 - Transition between size classes (4; γ_t^{L12})
 - Movement (6, α_t^{LM1})
 - **Proportion of CR fish in NSE** (τ)
 - Recapture probabilities (82)
- State specific abundances also estimated (derived parameter).

Size Transitions

Movement

State specific abundances

Abundance over 20 cm

BO triggers

Adult humpback chub <7000 fish</p>

OR

- ALL 3
 - LCR pop of ~size class 2 <910 fish</p>
 - Temperature <12° C for 2 consecutive years</p>
 - Survival of size class 1 in JCM drops 25% from preceding year

BO triggers

AND

- Rainbow trout abundance over 760
 - Korman closed model estimates ~450 (330-600)
 - Open models?
- AND
- Brown trout abundance over 50
 - Unknown 8 total fish caught

Acknowledgements

- US Fish and Wildlife Service
- Bill Pine and NSE group
- Mike Yard, Lew Coggins, Josh Korman
- Jim Hines and Jim Nichols
- Arizona Game and Fish
- National Park Service
- Bureau of Reclamation
- Navajo Nation Department of Fish and Wildlife

