Environmental Assessment

Development and Implementation of a Protocol for High-Flow Experimental Releases from Glen Canyon Dam, Arizona, 2011 through 2020

U.S. Department of the Interior
Bureau of Reclamation
Upper Colorado Region
Salt Lake City, Utah

12/30/2011
Mission Statements

The U.S. Department of the Interior protects and manages the nation’s natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska natives, and affiliated island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.
Development and Implementation of a Protocol for High-Flow Experimental Releases from Glen Canyon Dam, Arizona, 2011 through 2020

Proposed agency action: Development and implementation of a protocol for high-flow experimental releases from Glen Canyon Dam, Arizona, 2011 through 2020

Type of statement: Environmental Assessment

Lead agency: Bureau of Reclamation, Upper Colorado Region

Cooperating agencies:
Federal:
 Bureau of Indian Affairs
 National Park Service, Intermountain Region
 U.S. Fish and Wildlife Service, Southwest Region
 U.S. Geological Survey, Pacific Southwest Area
 Western Area Power Administration
State:
 Arizona Game and Fish Commission
Sub-Basin:
 Upper Colorado River Commission
American Indian Tribes:
 Hopi Tribe
 Hualapai Tribe
 Pueblo of Zuni

For further information: Larry Walkoviak, Regional Director
Attention: Dennis Kubly
Bureau of Reclamation, Upper Colorado Region
125 South State Street, Room 6103
Salt Lake City, UT 84138
(801) 524-3715
protocol@usbr.gov

Date of distribution: December 28, 2011
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Relationship between EAs for Non-native Fish Control and High-flow Experimental Protocol</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Relationship between this EA and the Long-Term Experimental and Management Plan</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Purpose of and Need for Action</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Related Actions, Projects, Plans and Documents</td>
<td>13</td>
</tr>
<tr>
<td>1.6 Agency Roles and Responsibilities</td>
<td>16</td>
</tr>
<tr>
<td>1.7 Previous High-Flow Experiments</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Relevant Resources and Issues</td>
<td>21</td>
</tr>
<tr>
<td>2.0 Description of Alternatives</td>
<td>25</td>
</tr>
<tr>
<td>2.1 No Action Alternative</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Proposed Action: Protocol for High-Flow Experimental Releases</td>
<td>27</td>
</tr>
<tr>
<td>3.0 Affected Environment and Environmental Consequences</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Physical Resources</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Biological Resources</td>
<td>69</td>
</tr>
<tr>
<td>3.3 Cultural Resources</td>
<td>113</td>
</tr>
<tr>
<td>3.4 Socio-economic Resources</td>
<td>116</td>
</tr>
<tr>
<td>4.0 Consultation and Coordination</td>
<td>147</td>
</tr>
<tr>
<td>4.1 Tribal Consultation</td>
<td>147</td>
</tr>
<tr>
<td>4.2 Public Scoping and Review Activities</td>
<td>148</td>
</tr>
<tr>
<td>4.3 Cooperating Agencies</td>
<td>149</td>
</tr>
<tr>
<td>5.0 References Cited</td>
<td>150</td>
</tr>
<tr>
<td>Appendix A: Federal Register Notice</td>
<td>177</td>
</tr>
<tr>
<td>Appendix B: Science Plan</td>
<td>178</td>
</tr>
<tr>
<td>Appendix C: Biological Assessment and Supplement</td>
<td>179</td>
</tr>
<tr>
<td>Appendix D: Hydrology Input to Sediment Model</td>
<td>180</td>
</tr>
<tr>
<td>Appendix E: Sediment Budget Modeling Methods Using CRSS Hydrology Output</td>
<td>181</td>
</tr>
<tr>
<td>Appendix F: Methods for Estimating the Impacts of HFEs on Hydropower at Glen Canyon Dam</td>
<td>182</td>
</tr>
<tr>
<td>Appendix G: Letter of Concurrence from Arizona State Historic Preservation Office on Reclamation’s Determination of Eligibility and Effect on Historic Properties Regarding Proposed Adoption of a High-Flow Protocol for Glen Canyon Dam, Coconino and Mohave Counties, Arizona</td>
<td>190</td>
</tr>
<tr>
<td>Figures</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 1. Geographic scope of the proposed action, showing places referenced in the text. Map courtesy of U.S. Geological Survey.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2. Mean daily discharge of the Colorado River at Lees Ferry from January 1, 2008 to December 31, 2010, showing the 2008 HFE, the September-October steady flows, and the intervening releases under modified low fluctuating flows (MLFF).</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3. Planning and budgeting component for the HFE protocol.</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4. The two sand accounting periods and the two high-release periods with average monthly sand loads for the Paria River and the Little Colorado River (adopted from Scott Wright, U.S. Geological Survey, personal communication).</td>
<td>39</td>
</tr>
<tr>
<td>Figure 5. Decision and implementation component of HFE protocol.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 6. Total sandbar volume at 12 sites in Marble Canyon. Source: J. Hazel, preliminary data courtesy of Northern Arizona University.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 7. Occurrence of described HFEs from model runs for moderate sediment with dry, moderate, and wet hydrology in reaches 1 and 2 (Russell and Huang 2010).</td>
<td>65</td>
</tr>
<tr>
<td>Figure 8. Distribution of juvenile humpback chub < 100 mm TL during 2002-2006 by 5-mile increments from RM 30 to RM 230. Principal humpback chub aggregations are indicated.</td>
<td>81</td>
</tr>
<tr>
<td>Figure 9. Estimated adult humpback chub abundance (age 4+) from ASMR, incorporating uncertainty in assignment of age.</td>
<td>83</td>
</tr>
<tr>
<td>Figure 10. Average annual electrofishing catch rate of rainbow trout in the Lees Ferry reach (Glen Canyon Dam to Lees Ferry) for 1991-2010.</td>
<td>87</td>
</tr>
<tr>
<td>Figure 11. Total suitable habitat (purple line, right axis) and breakdown by shoreline types (left axis) used by native fish (top; approximated by humpback chub parameters) and non-native fish (bottom).</td>
<td>90</td>
</tr>
<tr>
<td>Figure 12. Velocity preference criteria for humpback chub in the Colorado River, Grand Canyon.</td>
<td>90</td>
</tr>
<tr>
<td>Figure 13. Colorado River Storage Project management center service territory. Map courtesy of Western Area Power Administration.</td>
<td>117</td>
</tr>
<tr>
<td>Figure 14. Annual impacts in millions of dollars of HFEs during three different hydrological conditions.</td>
<td>124</td>
</tr>
<tr>
<td>Figure 15. An illustration of the variability of impacts of the proposed action on both energy and capacity.</td>
<td>124</td>
</tr>
<tr>
<td>Figure 16. Fishing user days by month in the Lees Ferry reach for 2006 (top) and 2009 (bottom).</td>
<td>126</td>
</tr>
<tr>
<td>Figure 17. Boating in the Grand Canyon, anticipated annual use by month.</td>
<td>128</td>
</tr>
<tr>
<td>Figure 18. Commercial boating recreation use below Diamond Creek (HRR maximum possible).</td>
<td>129</td>
</tr>
<tr>
<td>Figure 19. Noncommercial user days – Diamond Creek to Lake Mead.</td>
<td>129</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Table 1</td>
<td>List of resources and issues evaluated.</td>
</tr>
<tr>
<td>Table 2</td>
<td>Glen Canyon powerplant unit outage schedule – March-April and October- November, 2011-2015 (shaded areas indicate unit outages).</td>
</tr>
<tr>
<td>Table 3</td>
<td>Summary of No Action and Modified Low Fluctuating Flow Preferred Alternative Criteria for the 1996 Record of Decision.</td>
</tr>
<tr>
<td>Table 4</td>
<td>Flow magnitude and duration for 13 possible HFEs used with the sediment/hydrology model.</td>
</tr>
<tr>
<td>Table 5</td>
<td>Type of HFE by month for each of the nine traces of sediment (Low, Moderate, and High) and hydrology (Dry, Moderate, Wet).</td>
</tr>
<tr>
<td>Table 6</td>
<td>Projected volume of water (acre-feet) to be reallocated as a result of the selected HFE.</td>
</tr>
<tr>
<td>Table 7</td>
<td>Resource indicators for important resources potentially affected by BHBFs (Ralston et al. 1998).</td>
</tr>
<tr>
<td>Table 8</td>
<td>Summary of existing information on key aquatic resources for all HFEs from Glen Canyon Dam.</td>
</tr>
<tr>
<td>Table 9</td>
<td>Megawatt hours of lost electrical generation and subsequent additions of CO₂ emitted for every MWh produced.</td>
</tr>
<tr>
<td>Table 10</td>
<td>Sand budgets for each reach during the 2004 and 2008 CFE sand-budgeting periods.</td>
</tr>
<tr>
<td>Table 11</td>
<td>Non-native and native fish species presently found in the Colorado River and lower end of tributaries from Glen Canyon Dam to near Pearce Ferry.</td>
</tr>
<tr>
<td>Table 12</td>
<td>Preferred water velocities (m/s) for non-native fish found in the vicinity of the Little Colorado River.</td>
</tr>
<tr>
<td>Table 13</td>
<td>10-year GCD Electrical Energy Cost for the Proposed Action Alternative.</td>
</tr>
<tr>
<td>Table 14</td>
<td>GCD Electrical Capacity Cost for the Proposed Action Alternatives.</td>
</tr>
<tr>
<td>Table 15</td>
<td>GCD Total Cost of the Proposed Action Alternatives.</td>
</tr>
<tr>
<td>Table 16</td>
<td>Commercial river rafting user days for the 16-mile reach of the Colorado River below Glen Canyon Dam.</td>
</tr>
<tr>
<td>Table 17</td>
<td>Summary of impacts to resources from a single, independent high-flow experiment (HFE).</td>
</tr>
<tr>
<td>Table 18</td>
<td>Summary of impacts to resources from two or more, consecutive high-flow experiments (HFEs) with a magnitude of 41,000-45,000 cfs.</td>
</tr>
</tbody>
</table>
Executive Summary

The Department of the Interior (Interior), acting through the Bureau of Reclamation (Reclamation), is proposing to develop and implement a protocol for high-flow experimental releases (HFEs) from Glen Canyon Dam to better determine whether and how sand conservation can be improved in the Colorado River corridor within Grand Canyon National Park.

This experimental protocol builds on, and was developed following analysis of, a series of high flow experimental releases, particularly those conducted in 1996, 2004, and 2008. This experimental protocol is the next logical scientific investigation as part of the Department’s efforts to improve conservation of limited sediment resources in the Colorado River below Glen Canyon Dam. The information gained through this experimental protocol cannot be developed in any other manner, and is essential to informing future decisions in an adaptive management setting. In the past fifteen years of scientific research and monitoring, scientists have learned much regarding the use of high flow releases from Glen Canyon Dam. This proposed protocol is based on that science and targets future monitoring and research so as to refine our ability to predict the outcomes of future management actions intended to benefit the Colorado River ecosystem.

This protocol will evaluate short-duration, high-volume dam releases during sediment-enriched conditions for a 10-year period of experimentation, 2011–2020, to determine how multiple events can be used to better build sandbars and conserve sand over a long time period. Under the concept of HFEs, sand stored in the river channel is suspended by these dam releases and a portion of the sand is redeposited downstream as sandbars and beaches, while another portion is transported downstream by river flows. These sand features and associated backwater habitats can provide key wildlife habitat, potentially reduce erosion of archaeological sites, enhance riparian vegetation, maintain or increase camping opportunities, and improve the wilderness experience along the Colorado River in Grand Canyon National Park.

The purposes of this action are: (1) to develop and implement a protocol that determines when and under what conditions to conduct experimental high volume releases, and (2) to evaluate the parameters of high-flow releases in conserving sediment to benefit downstream resources in Glen, Marble, and Grand Canyons. This information will be used to inform high-flow experiments over the course of the protocol.

This action is needed to take advantage of future sediment-enriched conditions in the Colorado River with experimental high-flow tests. This action will improve the understanding of the relationships between high dam releases of up to 45,000 cfs and sediment conservation, and it is expected to have long-term benefits for these resources. The information developed through this action will assist Interior in making future decisions on when and how to conduct multi-year, multi-event, high-flow experimental releases and how to evaluate benefits to downstream resources. Reclamation will ensure that other resources would not be unduly or unacceptably impacted or that any such impacts could be sufficiently mitigated.
This protocol for high-flow experimental releases is part of the ongoing implementation of the Glen Canyon Dam Adaptive Management Program (GCDAMP), and is a component of Interior’s compliance with the Grand Canyon Protection Act of 1992 (Public Law 102-575, GCPA). Annual release volumes (the volume of water released in a water year\(^1\)) would follow the 2007 Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead (2007 Colorado River Interim Guidelines; Reclamation 2007a). In addition, releases will continue to follow the Modified Low Fluctuating Flow (MLFF) preferred alternative as adopted by the Secretary of the Interior and described in the 1996 Record of Decision for the Operation of Glen Canyon Dam (Interior 1996), with the added refinement of steady flows in 2012 as identified in Reclamation’s 2008 decision on the operations of Glen Canyon Dam (2008-2012) (Reclamation 2008), and as addressed in relevant U.S. Fish and Wildlife Service biological opinions on the operation of Glen Canyon Dam [2008 Opinion and the 2009 supplemental biological opinion (2009 Supplement)]. The timing of high-flow releases would be March-April and October-November, the magnitude may range from 31,500 cfs to 45,000 cfs, and the duration may range from one hour to 96 hours.

The proposed HFE protocol is a decision-making process that consists of three components: (1) planning and budgeting, (2) modeling, and (3) decision and implementation. First, planning will occur such that an HFE can be conducted if conditions are appropriate. An important aspect of planning is the development and implementation of research and monitoring activities appropriate to monitor the effects of the HFEs as described in a HFE science plan. Second, a hydrology model and sand budget model will be used to evaluate the available volume of water for release from the dam and the sand availability, as delivered primarily by the Paria River, at the onset of each release window. Finally, the decision to conduct an HFE would be based on a determination by scientists and federal managers of the suitability of the hydrology, sediment, and other resource conditions, and a recommendation to Interior.

Impacts of the proposed action were identified and evaluated in comparison to an environmental baseline for four resource categories – physical, biological, cultural, and socio-economic. The impacts were assessed relative to the timing, magnitude, duration, and frequency of HFEs. The predicted impacts of the high-flow experimental release protocol on these resources are summarized as follows:

Water Resources.—The pattern of monthly releases from Glen Canyon Dam would differ slightly from no action, depending on the frequency of high-flow releases, but water year releases would comply with Glen Canyon Dam Operating Criteria (*Federal Register*, Volume 62, No. 41, March 3, 1997), the Record of Decision – Glen Canyon Dam Final Environmental Impact Statement (October 1996) and the Record of Decision – Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead (December 2007). An HFE would only be conducted if it would not alter annual water

\(^1\) A water year is the 12-month period from October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. For example, the year ending September 30, 2007 is called the “2007 water year.”
deliveries or the operational tiers or elevations that would have otherwise been dictated by the 2007 Interim Guidelines in the absence of an HFE.

Water Quality.—HFEs are expected to have minor short-term impacts on water quality of Lake Powell and the Colorado River below Glen Canyon Dam. Dam releases will cause a slight reduction in downstream temperature and a slight increase in salinity, as well as a temporary turbidity increase from scouring. Because effects of an HFE on water quality are short-lived, impacts to water quality from two or more HFEs are not expected to be greater than single HFEs. The impact of HFEs on the water quality of Lake Powell will depend on reservoir elevation, but is not expected to affect the long-term water quality of the reservoir or the Colorado River downstream of Glen Canyon Dam.

Air Quality.—Energy generated from coal or gas-fired powerplants likely will need to make up the amount of hydropower lost from releasing water through the bypass tubes. The amount of CO₂ emissions from the proposed HFEs range from a high of 62,535 metric tons to 651 metric tons, which are estimated to be about 0.02 percent to less than 0.002 percent, respectively, of regional emissions. Two HFEs within the same year would result in an amount of CO₂ emissions from these alternative sources estimated to be about 0.05 percent of regional emissions. The long-term impact depends on the number of consecutive HFEs and the total number over the 10-year experimental period, it is not expected to be substantial because the effects to air quality would likely dissipate quickly between HFEs.

Sediment.—Single HFEs are expected to suspend and redeposit sediment on sandbars and beaches up to the magnitude of the HFE, but that material is expected to erode with ensuing flows. Two consecutive HFEs are expected to have a beneficial impact from the additional sediment stored in sandbars and beaches that may better balance the sediment budget. Effects of more than two consecutive HFEs are less certain, but they may have a long-term beneficial impact if there is additional sediment stored in sandbars, beaches, and eddies up to 45,000 cfs stage. More than two successive HFEs would have the potential for better balancing sediment delivery between upstream and downstream reaches and for long-term conservation of sediment to offset ongoing transport and erosion; however, successive HFEs or intervening periods of degradation without HFEs could offset this positive effect if they negatively impact the sand mass balance. Furthermore, this degradation, if extreme, could impact other resources and it is advisable to ensure that the net amount of sand in the river channel is not overly depleted so as to compromise other ecosystem components. Negative impacts of HFEs likely would be greater in Glen Canyon (above the Paria River) because there is no substantial input of sand and fine sediment to that reach.

Vegetation.—Some riparian vegetation would be lost through scouring or burial by sediment transported during a high-flow release. Both emergent marsh and woody vegetation would recover quickly in the months and years, respectively, following the release and return to no action conditions. If high-flow releases are held frequently, recovery of plants may be slower.
Terrestrial Invertebrates and Herpetofauna.—Some habitat and individual animals will likely be scoured and exported, but these are expected to recover quickly with no population level impacts. Frequent HFEs would likely cause animals to relocate further upslope.

Kanab Ambersnail.—The endangered Kanab ambersnail would likely sustain short-term population and habitat impacts at Vasey’s Paradise, although the allowable incidental take would not be exceeded.

Aquatic Foodbase.—The proposed action would likely result in a temporary reduction in aquatic foodbase production following HFEs, particularly for the mudsnail *Potamopyrgus antipodarum* and the amphipod *Gammarus lacustris*, in the Glen Canyon reach, with increased drift (organic material suspended by river flows) downstream due to increased suspension from higher volume releases. Spring releases would likely stimulate aquatic foodbase production with full biomass recovery taking from less than 4 months to more than a year for some taxa based on 1996 and 2008 experiences, respectively. Fall releases would also scour the foodbase, but recovery could take longer because of the reduced photosynthesis that would occur in the reduced photoperiod and sun angle during the winter following the HFE. Research will need to be gathered on the impacts of seasonal short-term high flows on the aquatic foodbase. Multiple, consecutive HFEs could reduce forms susceptible to high flows and favor flood-resistant forms, possibly resulting in reduced species diversity.

Humpback Chub.—Adult humpback chub are not likely to be impacted by HFEs. Some young-of-year and juveniles could be displaced by experimental high flows from mainstem nursery habitats near the Little Colorado River into less desirable downstream habitat. These young fish may also experience higher rates of predation and competition from increased numbers of trout as an unintended consequence of the HFEs. These impacts are not expected to affect the overall population of humpback chub in Grand Canyon, although the uncertainty of effect increases with the frequency of HFEs. Periodic HFEs are likely to benefit the humpback chub by reshaping and maintaining habitats, stimulating foodbase production, and reducing numbers of flood-susceptible non-native fish. Effects of HFEs will be assessed through research and monitoring contained in the science plan accompanying this environmental assessment (as well as in the relevant non-native fish control actions and science plan described in the non-native fish control EA). Potential effects of trout predation on humpback chub are discussed separately.

Razorback Sucker.—Razorback suckers have been found spawning in the Colorado River inflow within 10 miles of Pearce Ferry, with a total of 40 larvae caught between Pearce Ferry and Iceberg Canyon in 2000, 2001, and 2010. HFEs could displace larvae in spring, but could also create new productive nursery habitats and delivery large amounts of food for all sizes of fish. The proposed action is not expected to have population-level impacts to the razorback sucker. The USFWS has determined that incidental take of razorback sucker is not reasonably certain to occur because razorback suckers are in very low numbers in the action area.

Non-native Fish.—Non-native fish life cycles would be temporarily disrupted. Backwaters would be reformed and subsequently available for use by native and non-native fish after the
Environmental Assessment Protocol for High-Flow Experimental Releases

high-flow. Research data would be obtained on the relationships between flow duration and magnitude and backwater formation.

Trout.—It is likely that some trout eggs, fry, and young would be destroyed or lost downstream during HFEs. There is also some short-term risk that the aquatic foodbase would be reduced, subsequently affecting adult trout for a period following a high-flow release. However, research shows that spring HFEs are followed by higher drift rates, increased production, and improvement in foodbase nutritional quality. The impact of a fall HFE on the trout population is less certain due to a lack of data on trout response to the one fall HFE conducted in November 2004. Based on information learned during prior high-flow releases, high-releases in spring (March to April) would likely increase survival and recruitment of rainbow trout in the Lees Ferry reach because of the cleansing effect on spawning/incubating gravels and stimulated production of higher quality food sources, such as midges (Chironomidae) and black flies (Simulidae). Increased density of trout could result in dispersal of young trout to downstream areas where these fish could subsequently prey on and compete with the endangered humpback chub. A parallel environmental assessment, the non-native fish control environmental assessment, has been developed by Reclamation to identify actions proposed to mitigate or counteract the effects of increased numbers of trout dispersing from the Lees Ferry reach. Proposed actions to address potential impacts to endangered fish, particularly the humpback chub, are further detailed in the non-native fish control biological assessment, which is an appendix to the non-native fish control environmental assessment, and a supplement to both biological assessments, included as part of Appendix C to this document.

Birds.—The proposed action is not likely to adversely impact any bird species, including the endangered southwestern willow flycatcher and California condor.

Mammals.—Wildlife use riparian vegetation as habitat, and some habitat would be temporarily lost during a high-flow release. Patches of bare sand created by the release would add diversity to the new high water zone habitats. Habitat conditions would return to no action levels as riparian vegetation returns to no action conditions. Some loss of young beaver may occur due to flooding of dens during spring HFEs.

Cultural Resources.—Reclamation has determined that historic properties could be adversely affected per 36 CFR 800.6; consultation with SHPOs and THPOs is in progress. Access to sacred sites would be temporarily restricted during the specific period of release of high flows from Glen Canyon Dam, and this constitutes an adverse effect. A resolution of effect for the overall undertaking will be reached by all consulting parties.

Hydropower.—No change to operating criteria for Glen Canyon Dam or 2007 Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead for reservoir operations would occur except during the high-flow release. Many of the HFEs require bypassing the power generating facilities at Glen Canyon with the volume of releases greater than can be passed through the powerplant to produce the high flows and replacement power for the bypassed water must be purchased as a result. Estimated differences
between no action and the proposed action in total cost, including energy cost and capacity cost, ranged from $8.1 to $122.1 million for 10-year periods based on modeling of nine different combinations of hydrology and sand input from the Paria River.

Recreation.—HFEs are expected to increase the area and volume of beaches and sand bars used by river runners for camping. All river-based recreation activities would be affected to some degree by the high-flow release, although little or no impact outside of the flow period is expected. There is some risk of longer-term adverse impacts on trout fishing if high-flow releases are conducted too frequently. A warning system would need to be developed to advise anglers, boaters, and rafters of a planned HFE, particularly if the HFE occurred during the time of a tributary flood as described in the rapid response approach. The Hualapai Tribe has informed Reclamation of potential adverse effects to its commercial operations on the Colorado River. Appropriate monitoring and mitigation measures will be determined as part of the ongoing tribal consultation process.
Mission Statements

The U.S. Department of the Interior protects and manages the nation’s natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska natives, and affiliated island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.
Non-native Fish Control Downstream from Glen Canyon Dam

Proposed agency action: Implementation of non-native fish control downstream from Glen Canyon Dam, Arizona, 2011-2020

Type of statement: Environmental Assessment

Lead agency: Bureau of Reclamation, Upper Colorado Region

Cooperating agencies:
 Federal:
 - National Park Service, Intermountain Region
 - Bureau of Indian Affairs
 - U.S. Fish and Wildlife Service, Southwest Region
 - U.S. Geological Survey, Pacific Southwest Area
 - Western Area Power Administration
 State:
 - Arizona Game and Fish Department
 Tribal:
 - Hualapai Tribe
 - Pueblo of Zuni

For further information: Larry Walkoviak, Regional Director
 Attention: Glen Knowles
 Bureau of Reclamation, Upper Colorado Region
 125 South State Street, Room 6103
 Salt Lake City, UT 84138
 (801) 524-3781
 gknowles@usbr.gov

Date of distribution: December 30, 2011
CONTENTS

EXECUTIVE SUMMARY ... VI

1.0 INTRODUCTION .. 1

1.1 ORGANIZATION ... 1
1.2 PURPOSE OF AND NEED FOR ACTION .. 3
1.3 PROPOSED ACTION .. 3
1.3.1 OPERATION OF GLEN CANYON DAM ... 4
1.4 BACKGROUND .. 5
1.5 STRUCTURED DECISION MAKING PROJECT ... 10
1.6 SELECTED LEGAL AUTHORITIES ... 11
1.7 RELATED ACTIONS, PROJECTS, PLANS AND DOCUMENTS .. 15
1.7.1 1995 GLEN CANYON DAM ENVIRONMENTAL IMPACT STATEMENT AND RECORD OF DECISION 15
1.7.2 HIGH FLOW EXPERIMENT PROTOCOL ENVIRONMENTAL ASSESSMENT ... 15
1.7.3 OTHER AGENCY ACTIONS, PROJECTS, PLANS, AND DOCUMENTS ... 16
1.8 DEPARTMENT OF THE INTERIOR .. 18
1.8.1 BUREAU OF INDIAN AFFAIRS ... 18
1.8.2 BUREAU OF RECLAMATION .. 18
1.8.3 NATIONAL PARK SERVICE .. 19
1.8.4 U.S. FISH AND WILDLIFE SERVICE ... 19
1.8.5 U.S. GEOLOGICAL SURVEY ... 19
1.8.6 DEPARTMENT OF ENERGY .. 20
1.8.7 WESTERN AREA POWER ADMINISTRATION ... 20
1.9 PREVIOUS NON-NATIVE FISH CONTROL EFFORTS ... 20
1.10 ROLE OF ADAPTIVE MANAGEMENT IN NON-NATIVE FISH CONTROL ... 21
1.11 PUBLIC INVOLVEMENT .. 25
1.12 CONSULTATION WITH AMERICAN INDIAN TRIBES .. 26
1.13 RELEVANT RESOURCES AND ISSUES .. 29
1.14 AUTHORIZING ACTIONS, PERMITS OR LICENSES ... 30
1.15 DECISION FRAMEWORK .. 31
1.16 RELATIONSHIP BETWEEN EAS FOR NON-NATIVE FISH CONTROL AND HIGH-FLOW PROTOCOL 31
1.17 RELATIONSHIP BETWEEN THIS EA AND THE LONG-TERM EXPERIMENTAL AND MANAGEMENT PLAN 34
1.18 ISSUES FOR ANALYSIS .. 35

2.0 DESCRIPTION OF ALTERNATIVES ... 45

2.1 NO ACTION ALTERNATIVE .. 45
2.2 PROPOSED ACTION ... 46
2.2.1 OTHER FLOW AND NON-FLOW ACTIONS .. 49
2.3 MITIGATION AND MONITORING .. 50
2.4 ALTERNATIVES CONSIDERED AND ELIMINATED FROM DETAILED STUDY .. 51

3.0 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ... 55

3.1 GENERAL SETTING ... 55
3.2 NATURAL RESOURCES .. 55
3.2.1 FISH ... 56
3.2.1.1 HUMPBACK CHUB .. 57
3.2.1.2 RAZORBACK SUCKER .. 58
3.2.1.3 Non-Listed Native Fishes ... 59
3.2.1.4 Trout ... 59
3.2.1.5 Other Non-Native Fishes .. 61
3.2.1.6 Effects of High Flow Experiments on Fishes 61
3.2.2 Fish and Fish Habitat under No Action .. 63
3.2.3 Fish and Fish Habitat under the Proposed Action 69
3.3 Cultural Resources .. 73
3.3.1 Sacred Sites under No Action ... 74
3.3.2 Sacred Sites under the Proposed Action 74
3.3.3 Historic Properties under No Action ... 74
3.3.4 Historic Properties under the Proposed Action 75
3.4 Socioeconomic Resources .. 75
3.4.1 Recreation under No Action ... 75
3.4.1.1 Fishing under No Action ... 75
3.4.1.2 Recreational Boating under No Action 77
3.4.1.3 Net Economic Use Value of Recreation under No Action 78
3.4.1.4 Nonuse Economic Value under No Action 81
3.4.2 Recreation under Proposed Action ... 82
3.4.2.1 Fishing under Proposed Action .. 82
3.4.2.2 Recreational Boating under Proposed Action 83
3.4.2.3 Net Economic Use Value of Recreation under Proposed Action . 84
3.4.2.4 Nonuse Economic Value under Proposed Action 86
3.5 Indian Trust Assets .. 86
3.5.1 Indian Trust Assets under No Action ... 86
3.5.2 Indian Trust Assets under the Proposed Action 87
3.6 Wild and Scenic Rivers .. 87
3.7 Wilderness .. 87
3.8 Environmental Justice Implications under No Action 88
3.9 Environmental Justice Implications under the Proposed Action 88

4.0 Consultation and Coordination .. 89

4.1 Consultation .. 89
4.2 Public Scoping Activities ... 89
4.3 Agency Cooperation .. 89

5.0 References Cited ... 91

6.0 Appendices ... 103

Appendix A: Non-Native Fish Management Below the Glen Canyon Dam Report from a Structured Decision Making Project .. 103
Appendix B: Science Plan .. 104
Appendix C: Biological Assessment ... 105
Appendix D: Supplement to Biological Assessment 106
Appendix E: Biological Opinion ... 107
Appendix F: Letter to State Historic Preservation Office with Concurrence Stamp .. 108
Figures

1. Geographic scope of the proposed action, showing places referenced in the text 2
2. Distribution of juvenile humpback chub (Gila cypha) .. 6
3. Annual population estimates of adult humpback chub (age 4+) 40
4. Estimated adult humpback chub abundance (age 4+) from ASMR 58
5. Average annual electrofishing catch rates of rainbow trout in the Lees Ferry 1991–2010 60
6. Expected predation of young humpback chub by trout in the absence of non-native fish removal ... 65
7. Expected losses of adult humpback chub (age 4+) due to predation by trout in the absence of non-native fish removal .. 66
8. Fishing user days by month in the Lees Ferry reach .. 76
9. Whitewater boating in the Grand Canyon, annual use by month 78
10. Numbers of anglers served by one fishing guide business 86

Tables

1. List of resources and issues evaluated ... 30
2. Non-native fish species presently found in the Action Area .. 58
3. Mohave and Coconino Counties, Arizona – Baseline Socioeconomic Data 79
4. Navajo Roadside Vending and Employment ... 80
5. Estimates of Nonuse Value ... 81
6. List of persons, agencies, and organizations consulted for purposes of this Environmental Assessment ... 90
Executive Summary

The Bureau of Reclamation (Reclamation), Upper Colorado Region, proposes to conduct research, monitoring and specific actions to control non-native fish in the Colorado River downstream from Glen Canyon Dam in an effort to help conserve native fish. The non-native fish control efforts would be located within Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP), Coconino County, Arizona. The purpose of the action is to minimize the negative impacts of competition and predation on an endangered fish, the humpback chub (Gila cypha) in Grand Canyon. The action is needed because competition and predation by non-native fishes, and in particular rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), may be contributing to a reduction in survival and recruitment of young humpback chub and threatening the potential recovery of the species. Rainbow trout and brown trout are not native to the Colorado River Basin and have been introduced into the region as sport fish. The action also addresses the concerns of American Indian tribes over the taking of life associated with non-native fish control.

Because non-native fish, particularly rainbow and brown trout, are known to prey on and compete with the endangered humpback chub, the U.S. Fish and Wildlife Service (USFWS) 2008 Final Biological Opinion on the Operation of Glen Canyon Dam (2008 Opinion; U.S. Fish and Wildlife Service 2008) included a conservation measure that addressed non-native fish control. That conservation measure provided that Reclamation would continue non-native fish control efforts through the Glen Canyon Dam Adaptive Management Program (GCDAMP) and anticipated removal of non-native trout at the confluence of the Colorado River mainstem and the Little Colorado River (LCR), as well as other control methods. The conservation measure was further guided by the USFWS 2009 Supplement to the 2008 Final Biological Opinion on the Operation of Glen Canyon Dam (2009 Supplement; U.S. Fish and Wildlife Service 2009) and the 2010 Reissuance of the Incidental Take Statement on the 2009 Supplemental Biological Opinion on the Operation of Glen Canyon Dam 2008-2012 (2010 ITS; U.S. Fish and Wildlife Service 2010a).

Concerns have been expressed by several of the American Indian tribes that are represented on the Adaptive Management Work Group (AMWG), particularly the Pueblo of Zuni, about the taking of life within a place that is sacred to the tribes and fundamental in several creation stories. Reclamation worked with the U.S. Geological Survey (USGS) USGS Patuxent Wildlife Research Center to conduct a Structured Decision Making (SDM) Project to evaluate various potential methods of controlling non-native fish in the Grand Canyon (SDM Project) for this Environmental Assessment (EA). The purpose of the SDM Project was to use a structured approach to develop and provide substantive input to Reclamation for use in preparation of this EA concerning management of non-native fish below the Glen Canyon Dam. The project served to enlist the cooperating agencies and GCDAMP Tribes in alternative
development and analysis. The final report is provided as an appendix to this EA (Appendix A) and has been used to formulate, analyze, and select alternatives in this EA.

The proposed action is to develop further scientific information regarding native and non-native fishes in the Colorado River and take actions to help conserve the endangered humpback chub by controlling numbers of rainbow trout, brown trout, and other non-native fishes, if necessary. The proposed action would likely increase survival of young humpback chub as well as the three other native fish species that occur in the action area, the flannelmouth sucker (*Catostomus latipinnis*), bluehead sucker (*Catostomus discobolus*), and the speckled dace (*Rhinichthys osculus*). The flannelmouth and bluehead suckers are species that are declining throughout their range and are part of a rangewide conservation plan for native fishes among six western states.

Modeling conducted during the SDM Project indicated that the Proposed Action would have no effect on the Lees Ferry trout population. However, if the proposed action were to reduce total numbers of adult rainbow trout in Lees Ferry, it could result in a healthier, more sustainable population of rainbow trout, with a more balanced age-structure and larger trout of better condition.

Non-native fish control treatments evaluated in the SDM Project and EA processes included flow and non-flow actions to control non-native fish. Although all of these treatments could have desirable effects, based on similar prior actions, there is some uncertainty about the outcome of each treatment if applied individually or in combination with others. The SDM Project was used to identify this uncertainty and analyze the performance of potential actions in reducing non-native fish predation on humpback chub and other objectives, such as cultural resources, hydropower, and recreation. Through the SDM process, and through further analysis in this EA, the proposed action was selected because it best meets the purpose and need to reduce non-native fish predation on humpback chub, reduce uncertainty on aspects of non-native fish control, limit costs of implementing non-native fish control, address concerns by GCDAMP Tribes about the taking of life, and provide the least impact to other resources. A Science Plan to evaluate the proposed action, including a strategy for long-term application and monitoring, is included as an Appendix to this EA (Appendix B).

This Environmental Assessment evaluated the no action and the proposed action relative to the purpose and need for the action. The proposed action was chosen based on its performance in the SDM Project, as will be explained further in “Description of Alternatives” and “Affected Environment and Environmental Consequences” sections. The proposed action is to utilize boat-mounted electrofishing to remove non-native fishes. In any one year, up to 10 non-native fish removal trips would be conducted in the Colorado River below Lees Ferry from the Paria River to Badger Creek Rapid. Removal in the vicinity of the Little Colorado River would only be conducted if monitoring and modeling data indicate that a trigger has been reached as defined in the 2011 USFWS Final Biological Opinion on the Operation of Glen Canyon Dam including High Flow Experiments and Non-Native Fish Control (2011 Opinion; U.S. Fish and
Wildlife Service 2011). In this way, fish would only be removed if there is a clear necessity to do so (triggers are reached). Fish would also be removed alive and stocked into other waters to satisfy tribal concerns, or, and only if live removal fails, fish removed would be euthanized for other beneficial use. Up to 6 removal trips would be conducted in the Colorado River near the Little Colorado River from Kwagunt Rapid to Lava Chuar Rapid in each year of the proposed action. The period of the proposed action is up to 10 years, from 2011-2020. The proposed action would be implemented in accordance with a Science Plan designed to utilize adaptive management to learn from implementing non-native fish control actions. Reclamation would continue to evaluate non-native fish control actions through the GCDAMP during the proposed action. Additional flow and non-flow actions not analyzed here would continue to be evaluated and may be added through adaptive management, such as flow actions to suppress recruitment of rainbow trout in Lees Ferry. These actions may require additional environmental compliance.