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Abstract.—We present a new model to estimate capture

probabilities, survival, abundance, and recruitment using

traditional Jolly–Seber capture–recapture methods within

a standard fisheries virtual population analysis framework.

This approach compares the numbers of marked and un-

marked fish at age captured in each year of sampling with

predictions based on estimated vulnerabilities and abundance

in a likelihood function. Recruitment to the earliest age at

which fish can be tagged is estimated by using a virtual

population analysis method to back-calculate the expected

numbers of unmarked fish at risk of capture. By using

information from both marked and unmarked animals in

a standard fisheries age structure framework, this approach is

well suited to the sparse data situations common in long-term

capture–recapture programs with variable sampling effort.

Estimating population size is a key component in

developing management plans for a wide variety of

fisheries. Estimates of population size are often used to

evaluate the population status of threatened or endan-

gered species and are a key aspect of most commercial or

recreational fisheries stock assessments. The techniques

used to estimate population size generally fall into two

broad areas, the traditional open- and closed-population

capture–recapture models (e.g., Lincoln�Petersen,

CAPTURE, Jolly–Seber, etc.; see review by Pine et al.

2003) and age- or size-structured virtual population

analysis (VPA)�type methods (Hilborn and Walters

1992). Here we present a new model, called age-

structured mark�recapture analysis (ASMR), that com-

bines attributes of both the traditional Jolly–Seber

models (Jolly 1965; Seber 1965; Williams et al. 2002)

and VPA-type methods widely used in fisheries stock

assessments. We develop this model using data from

a long-term tagging program (1989–2002) for hump-

back chub Gila cypha in the Grand Canyon reach of the

Colorado River. Explicit details of this tagging program

are found in the companion paper to this manuscript

(Coggins et al. 2006, this issue).

Overall Model Structure

The ASMR estimation method proposed here is

developed in two stages. First, we develop a model for

predicting the numbers of marked and unmarked fish at

risk of capture over time and age, conditional on survival

rate and the marking data. Then we use these predicted

numbers at risk to capture along with capture probability

parameters to predict the numbers of captures and

recaptures that will be observed. After that, we develop

a likelihood function for these observations to be

maximized by varying the unknown survival, vulnera-

bility, and capture probability or terminal abundance

parameters. By using a virtual population analysis

method to back-calculate the expected number of

unmarked fish at risk of capture, the method avoids

treating unmarked fish by age that were alive at the start

of sampling and new recruits entering the unmarked

population each year as unknown parameters.

The expected numbers of unmarked (Û
a,t

) and

marked (M̂
a,t

) fish by age (a ¼ 2, . . ., A) and year

(t ¼ 1, . . ., T) at risk of capture and recapture are

assumed to have varied as follows:

Ûaþ1;tþ1 ¼ ŜaðÛa;t � ma;tÞ ð1Þ

M̂aþ1;tþ1 ¼ ŜaðM̂a;t þ ma;tÞ; ð2Þ

where Ŝ
a

is the average annual survival rate of an age-

a fish and m
a,t

is the number of age-a fish marked in

year t. Note that equations (1) and (2) assume that
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every unmarked fish captured received a tag (the same

m
a,t

is used both to decrement Û and to increment M̂).

Note further that multiple recaptures of individual fish

within each year are counted as only one recapture

event (this model works on annual steps).

To make specific predictions of Û and M̂ for

comparison with the data, we must estimate boundary

conditions M̂a,1 for all a, Û
a,1

for all a in year 1, and

new recruits Û
2,t

for t . 1. The initial numbers of

marked fish are obviously M̂
a,1
¼ 0 for all a. There are

two choices for dealing with the Û boundary

conditions: (1) ‘‘forward propagation,’’ in which the

initial abundance at age and recruitment (Û
a,1

and Û
2,t

)

are treated as unknowns to be estimated; and (2)

‘‘backward propagation,’’ in which the oldest age in

each year (Û
A,t

) and all ages in the terminal year (Û
a,T

)

are treated as the unknowns and the other Û
a,t

are

calculated using the backward recursion or a VPA

equation based on solving equation (1) for Û
a,t

given

Û
aþ1,tþ1

, that is,

Ûa;t ¼ ðÛaþ1;tþ1=ŜaÞ þ ma;t: ð3Þ

In using the backward propagation approach in ASMR,

it is safe to treat Û
A,t

as 0 for all t if A is sufficiently

beyond the oldest age that fish can attain, and we are

left with estimating the number of unmarked fish in the

terminal year, Û
a,T

.

Using the predictions of the numbers at risk of

capture from equations (1–3), we then calculate the

expected numbers of unmarked and marked fish

captured by age and year as follows:

m̂a;t ¼ Ûa;t p̂a;t ð4Þ

r̂a;t ¼ M̂a;t p̂a;t; ð5Þ

where p̂
a,t

is the estimated age- and time-specific

capture probability. We assume, conditional on Ŝ
a

and

p̂
a,t

, that the observations m
a,t

and r
a,t

represent

independent samples from Poisson distributions with

means given by equations (4) and (5). This is the same

as assuming independent binomial sampling of in-

dividuals in each Û- and M̂-age subpopulation with

sample capture probability p̂
a,t

. Ignoring terms in-

volving only the data, the Poisson assumption leads to

the log-likelihood function

logeLðm; rjhÞ ¼
XA

a¼1

XT

t¼1

½�m̂a;t þ ma;tlogeðm̂a;tÞ�

þ
XA

a¼1

XT

t¼2

½�r̂a;t þ ra;tlogeðr̂a;tÞ� ð6Þ

where h is the parameter vector to be estimated.

Following Lorenzen (2000), we defined an age-

dependent survival function based on a von Bertalanffy

growth function (von Bertalanffy 1938). This formula-

tion allows mortality to decrease with age to a minimum

defined by M̂
adult

, the instantaneous mortality rate

suffered by fish that have reached asymptotic length.

We obtained an independent estimate of the von

Bertalanffy k from growth data presented in the

USFWS humpback chub recovery goals (USFWS

2002; see below). The resulting ‘‘Lorenzen model’’

(Lorenzen 2000) allows age-specific survival to be

estimated with one unknown parameter, M̂
adult

, as

Ŝa ¼
ekðaþ1Þ � 1

eka � 1

� �M̂
adult=k

: ð7Þ

The two remaining model specification issues are

estimation of the unmarked fish in the terminal year to

initialize the back propagation (i.e., Û
a,T

) and estima-

tion of the age- and time-specific capture probabilities

p̂
a,t

. We define three alternative formulations of the

ASMR model to incorporate various options.

Specific Models

ASMR 1

In ASMR 1, we calculate the age- and time-specific

capture probability as p̂
a,t
¼ p̂

t
v̂

a,t
, where v̂

a,t
is the age-

and time-specific vulnerability to capture gear and p̂
t
is

the conditional maximum likelihood estimate of annual

capture probability, which is calculated as

p̂t ¼
XA

a¼1

ðma;t þ ra;tÞ=
XA

a¼1

v̂a;tðÛa;t þ M̂a;tÞ: ð8Þ

Following standard fisheries virtual population analysis

techniques (Hilborn and Walters 1992), we estimate the

abundance of unmarked fish in the terminal year to

initialize the back propagation as Û
a,T
¼m

a,T
/p̂

a,T
. This

leaves the parameter vector h¼ (v̂
a,t

, M̂
adult

, and p̂
T
) to

be estimated using nonlinear search routines to

maximize equation (6). To further restrict the problem,

it is possible to assume that v
a,t
¼ 1 for all ages older

than a specified age (i.e., all fish older than a specified

age are equally vulnerable to capture). It is also

possible to estimate identical v̂
a,t

schedules for blocks

of years that have similar sampling intensities (see

Coggins et al. 2006).

ASMR 2

ASMR 2 differs from ASMR 1 only in the

initialization of the terminal abundances and in the

calculation of the terminal capture probability. Instead

of estimating an overall terminal capture probability

(p̂
T
), we directly estimate terminal abundances (Û

a,T
).

ASMR 2 maximizes equation (6) by varying h¼ (v̂
a,t

,

M̂
adult

, and Û
a,T

).
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ASMR 3

ASMR 3 differs from formulations 1 and 2 in that

more flexibility is allowed in the estimation of age- and

time-specific capture probabilities (p̂
a,t

). As in ASMR

2, Û
a,T

is estimated directly; however, we use the

conditional maximum likelihood estimate for the p̂
a,t

matrix, that is,

p̂a;t ¼
ma;t þ ra;t

Ûa;t þ M̂a;t

: ð9Þ

This formulation eliminates the need to specify annual

vulnerability schedules at the expense of a much larger

parameter set. ASMR 3 maximizes equation (6) by

varying h ¼ (M̂
adult

and Û
a,T

).

One strength of the overall ASMR approach is that it

allows the estimation of recruit abundance for years

preceding the onset of data collection by using age-

specific survival rates and initial-year abundance as

follows:

Û2;2�a ¼
Ûa;1

P
a�1

i¼2
Ŝi

: ð10Þ

This is an important aspect of the ASMR and

a distinction from the ‘‘recruitment’’ parameter esti-

mated by Jolly–Seber type methods (discussed below).

Assignment of Apparent Age at First Capture

We reparameterized the polynomial length-at-age

relationship contained in the humpback chub Endan-

gered Species Act recovery goals and based on fish

collected in Grand Canyon (USFWS 2002) to a von

Bertalanffy growth function necessary for the Lorenzen

mortality curve. We then used the inverse von

Bertalanffy growth function to assign apparent age as

a function of length, that is,

a ¼ � 1

k
loge 1� l

l‘

� �
� a0; ð11Þ

where k¼ 0.12, a
0
¼ 0.87, and l

‘
¼ 455. We conducted

sensitivity analyses on the effect of growth parameter

misspecification on abundance and recruitment trends.

Model Performance

We tested the estimation methods by generating

simulated capture–recapture data from known numbers

of fish Û
a,1

and Û
2,t

from ages 2–30 and years 1989–

2002 subject to individual binomial capture, survival,

and recapture events over age and time with known v
a,t

and annual capture probabilities (p̂
t
). These tests

indicate that the method gives unbiased estimates of

the p̂
t
, Û

a,1
up to at least age 10, the Û

2,t
for all t, v̂

a,t
for

the time periods mentioned above, and age-specific

survival rates Ŝ
a

up to at least a ¼ 20. The simulated

recruitment and initial stock estimates Û
2,t

and Û
a,1

are

precise (,10% error) for the period from the early to

the mid 1990s and become imprecise for the late 1990s

to 2002. Most Ŝ
a

estimates are precise for all a.

We cannot assign an accurate age to each humpback

chub at first capture. The recapture size data indicate

that growth rates are extremely variable; for example,

the average size of an age-10 humpback chub is around

300 mm TL, but fish of this size can be anywhere

between about 6 and 15 years of age. When we assign

a fish an ‘‘age’’ at first capture, that age may well be

predictive of the subsequent size-dependent survival

rate (Lorenzen model) but is probably not the correct

age for assigning the fish to a cohort. This means that

the year-class strengths or apparent cohort sizes Û
a,1

and Û
2,t

estimated by the procedure outlined above are

not the numbers of fish recruiting or initially present by

cohort but rather some smoothed or running average of

the actual cohort strengths. The estimation method

should still be able to detect longer-term trends in

abundance and recruitment, but it is less able to detect

subtle changes in year-class strength.

The use of VPA back propagation for calculating Û
a,t

does not cause the ASMR method to overestimate adult

abundance. To evaluate this, we replaced equation (3)

with the forward prediction equation (1) for Û
a,t

and

included the initial unmarked abundances Û
a,1

(a¼2, . .

., 30) and Û
2,t

(t . 1) in the set of unknown parameters

to be estimated by maximizing equation (6). This

resulted in essentially the same abundance and adult

mortality estimates as the back propagation method.

While the proposed estimation method is unbiased

when supplied with accurate ages at first capture, tests

with simulated data that include initial aging error

indicate that it produces estimates of p̂
T

and M̂
adult

that

are biased downward by about 7% and 11%, re-

spectively. However, it still tracks the simulated

recruitment patterns over time and does not create

a spurious simulated trend in back-calculated recruit-

ments before the first year of sampling (Figure 1).

As a measure of uncertainty, we sampled the

posterior distribution of the parameter estimates using

Markov chain�Monte Carlo (MCMC) techniques for

each ASMR formulation. Following Gelman et al.

(2000), we constructed 95%-credible intervals from

MCMC parameter chains of length 1,000 from 200,000

MCMC trials, retaining every 100th trial and disre-

garding the first half of the chain. We assessed

convergence using Gelman and Rubin’s potential scale

reduction factor (R Development Core Team 2005).

Discussion

The abundance and mortality trends from the ASMR

and Jolly–Seber models are similar (Coggins et al.
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2006), although the two approaches use distinct

methods to derive the parameter estimates. The ASMR

model predicts the number of both unmarked and

marked fish available for capture using marking data

and survival estimates. This reconstructed annual

abundance at age is then used along with age- and

time-specific capture probabilities to predict the

number of both marked and unmarked fish captured

during each sampling effort. Finally, predicted captures

are compared with the observed capture data to

estimate model parameters (i.e., survival and capture

probabilities or terminal abundance). This approach

differs from Jolly–Seber models, which primarily rely

on recaptures of previously tagged individuals for

survival and population size estimation. While Jolly–

Seber models can be parameterized to include both

age- and time-dependent factors (i.e., ‘‘Jolly�age’’

models; Pollock 1981), we have found that capture–

recapture data sets of long-lived species with many

age-classes (30 in this example with humpback chubs)

and low capture probabilities across ages and years

(generally ,0.2) often contain many years with few or

no individuals in several year-classes. In general, we

have found that age-structured Jolly–Seber models do

not perform well in these situations without parameter

constraints because of obviously sparse data. Because

of the large amount of additional age-structure in-

formation and assumptions built into the ASMR model

related to both the tagged and untagged animals,

ASMR models may fit sparse data situations better than

unconstrained Jolly–Seber models if ASMR model

assumptions are met. However, as with traditional VPA

models, ASMR abundance estimates can become

unstable with low overall capture probabilities.

A primary purpose of ASMR is to evaluate the

recruitment responses of individual year-classes in

response to adaptive management experiments related

to water manipulation and exotic species removal.

ASMR differs from Jolly–Seber methods in estimating

recruitment by reconstructing year-classes based on

age-specific survival rates and initial abundances. In

Jolly–Seber methods, ‘‘recruitment’’ into an age-class is

a combination of immigrants and survivors from the

previous time period; thus recruitment can occur with

each year-class. With ASMR, recruitment is only

allowed into the first year-class by design.

ASMR assumes that the relationship between age

and survival is governed by the size of the animals, as

described by Lorenzen (2000). We examined this

assumption within ASMR by individually estimating

each age-specific survival rate and found good

agreement with the Lorenzen function in the overall

shape and magnitude of the survival rates. However,

incorporating the Lorenzen function provides a sub-

FIGURE 1.—Estimated recruitment over time for simulated data sets assuming stable recruitment before 1989 and error in age

assignment due to variation in the simulated growth patterns. Individual growth variation was simulated by setting length at age

for each simulated fish i to l
i
(a)¼ (l

‘
þ d

i
)(1� e�k[i þ 0.42)), with the deviations in asymptotic length d

i
normally distributed with

mean zero and standard deviation 30. Each symbol type represents results for a different simulated data set incorporating

stochastic error in age assignment.
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stantial benefit by shrinking the size of the parameter

set. Though it is theoretically possible to introduce this

functional form into a traditional Jolly–Seber model,

we find the ASMR method more flexible in accom-

modating these types of fisheries-specific model

structure for evaluating hypotheses related to various

functional forms. Additionally, the incorporation of

a biologically reasonable assumption related to the

effect of size on natural survival rate probably allows

ASMR models to interpret periods of sparse data more

efficiently than traditional Jolly–Seber models.

Two other important methodological differences

exist between ASMR and Jolly–Seber-type methods.

First, ASMR uses ‘‘summary’’-type statistics of

captures and recaptures as opposed to the individual-

capture-history approach used in applications such as

MARK. We acknowledge that the individual-capture-

history approach may provide some additional in-

formation on survival and capture probability (Nichols

and Pollock 1983) and facilitate the use of individual

covariates such as length. Future formulations of

ASMR models will examine the use of individual

capture histories.

A second key difference between the two methods is

the use of a Poisson distribution to estimate the number

of captures and recaptures in the ASMR method in

contrast to the multinomial approach used in Jolly–

Seber methods. Binomial distributions can be modeled

as a series of independent Poisson distributions, both

leading to the same maximum likelihood estimates

(Sandland and Cormack 1984). The use of a Poisson

distribution may lead to estimates of population size

that have a slightly lower variance, but the difference is

probably very small (C. Schwarz, Simon Fraser

University, personal communication). The use of

independent Poisson distributions to model recaptures

is slightly different, as the same fish could be

recaptured multiple times (i.e., the Poisson distribu-

tions are not independent). However, the likelihoods

used for the recaptures do approximate generalized

estimating equations, where Poisson distributions are

commonly used when modeling counts. A drawback to

the ASMR approach is that this routine does not easily

lend itself to routine statistical model selection

procedures (e.g., the likelihood ratio test or Akaike

information criterion, as used in MARK). This is

because the fitting routines employed are a combination

of Poisson likelihood functions and relatively simple

estimating equations. The model selection criteria

assume that the estimating functions are pure like-

lihoods and not a combination approach as used here

(C. Schwarz, Simon Fraser University, personal

communication). Future work with ASMR models

should include exploring appropriate model selection

procedures.
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