Current Core Monitoring & Research and Development for Long-Term Monitoring Protocols
Core Monitoring Plan for Physical Resources (Aquatic & Terrestrial)

Scott A Wright, Ph.D.
Physical & Modeling Coordinator
Integrated Science Program

September 27, 2004 TWG meeting

U.S. Department of the Interior
U.S. Geological Survey
CMIN tasks/questions (7.3.1): What are the status and trends of water quality releases from Glen Canyon Dam?

Data Acquisition:
- Monthly fore bay sampling of water temperature, conductivity, dissolved oxygen, turbidity, nutrients, major ions, total and dissolved organic carbon, chlorophyll, phytoplankton, and zooplankton.
- 15-minute water temperature at 4 sites in the fore bay.

Data Management, Analysis, Dissemination
- Monthly web-based reports. Annual WY open file reports. Results incorporated into SCORE
- Data accessioned into GCMRC Database

Budget = $110,000/yr (forebay)
$100,000/yr (lake-wide)
CM – Lake Powell Forebay
CM – Surface Water

- **CMIN tasks/questions (7.4.1, 7.4.2):**
 - Determine and track releases from Glen Canyon Dam under all operating conditions.
 - Determine and track flow releases from Glen Canyon Dam, particularly related to flow duration, upramp, and downramp.

- **Data Acquisition:**
 - 15-minute stage and discharge on the mainstem at Lees Ferry, 30-mile, 61-mile, 87-mile, 166-mile and 226-mile.

- **Data Management, Analysis, Dissemination**
 - Telemetry and real-time reporting to the web and transfer to GCMRC Oracle database.
 - Annual reporting in the Arizona Data Report published by WRD.

Budget = $220,000/yr
CM – Surface Water Examples
CM – Quality of Water

- CMIN tasks/questions (8.1.2, 8.1.3, 7.1.1, 7.2.1, 7.3.1):
 - What are the monthly sand and silt/clay-export volumes and grain-size characteristics, by reach, as measured at Lees Ferry, Lower Marble Canyon, Grand Canyon, and Diamond Creek Stations?
 - Track, as appropriate, the monthly sand and silt/clay-input volumes and grain-size characteristics, by reach, as measured or estimated at the Paria and Little Colorado River stations, other major tributaries like Kanab and Havasu creeks, and “lesser” tributaries.
 - Determine the water temperature dynamics in the main channel, tributaries (as appropriate), backwaters, and near-shore areas throughout the Colorado River ecosystem.
 - Determine the seasonal and yearly trends in turbidity, water temperature, conductivity, DO, and pH changes in the main channel throughout the Colorado River ecosystem.
 - What are the status and trends of water quality releases from Glen Canyon Dam?
Data Acquisition

- 15-minute optical and acoustic data, combined with ~monthly water samples, to provide 15-minute sand and silt/clay loads on the mainstem at 30-mile, 61-mile, 87-mile, 166-mile, and 226-mile.
- Event-based water sampling to provide tributary sand and silt/clay inputs from the Paria and Little Colorado Rivers, Kanab and Havasu Creeks. Water temperature every 15-minutes at sites.
- 15-minute water temperature and conductivity measurements on the mainstem at GCD, Lees Ferry, 30-mile, 61-mile, 87-mile, 166-mile, and 226-mile.
- 15-minute dissolved oxygen and pH measurements at Glen Canyon Dam and Lees Ferry.
- Monthly nutrient and major ion samples at GCD and LF.

Data Management, Analysis, Dissemination

- All data served through GCMRC Oracle database.
- Sediment data analyzed to provide “mass balance” updates.
- Analyses and data published in annual open-file reports, SCORE, and scientific journals.

Budget = $720,000/yr
CM – Quality of Water
Examples
CM – Quality of Water
In development

- **Lesser tributary inputs**
 - Currently evaluating methods for measuring sediment inputs from smaller tributaries in Marble Canyon.
 - Some tributaries could become part of core monitoring in the future.

- **Nearshore and backwater temperatures**
 - Currently evaluating methods for monitoring water temperatures in these areas. Should become part of core monitoring very soon.

- **Further monitoring of mainstem and tributary temperature, conductivity, oxygen, major ions, nutrients, carbon**
 - To be developed in coordination with the aquatic food base and downstream fish programs.

Budget = $120,000/yr
CM – Fine sediment storage
In development

- **CMIN tasks/questions (8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.5.1):**
 - Determine and track the biennial fine-sediment, volume, and grain-size changes below 5,000 cfs stage, by reach.
 - Track, as appropriate, the biennial sand bar area, volume and grain-size changes outside of eddies between 5,000 and 25,000 cfs stage, by reach.
 - Track, as appropriate, the biennial sand bar area, volume and grain-size changes within eddies below 5,000 cfs stage, by reach.
 - Track, as appropriate, the biennial sand bar area, volume and grain-size changes within eddies between 5,000 and 25,000 cfs stage, by reach.
 - Track, as appropriate, the biennial sand bar area, volume and grain-size changes above 25,000 cfs stage, by reach.

- **Data Acquisition**
 - Digital imagery and biennial field visits – Changes in high elevation exposed sand area.
 - Currently evaluating reach-based approach for monitoring sandbars in the fluctuating zone and below through the “FIST” project.

Budget = $200,000/yr
CM – Coarse Sediment Inputs
In development

- **CMIN tasks/questions (8.6.1):**
 - Determine and track the change in coarse sediment abundance and distribution.

- **Data Acquisition**
 - Digital imagery and biennial field visits – Monitoring of debris flow activity.
 - Other methods for monitoring debris flow activity and coarse-sediment inputs will be evaluated pending FY05 review of the coarse-sediment inputs research project.
 - FIST project may also yield methods for monitoring coarse sediment in representative reaches below 8,000 cfs.

Budget = $60,000/yr
Core Monitoring Plan for Biological Resources (Aquatic & Terrestrial)

Barbara Ralston, Ph.D.
Biology Coordinator (Acting)

Integrated Science Program

September 27, 2004 TWG meeting
CM - Lees Ferry trout monitoring

- **CMIN tasks/questions (4.1.1-4.1.7):** Determine...pop est. age II +; Proportional stock density; growth rate; +/- whirling disease; spawning habitat quality/quantity; % natural recruitment.

 Acquisition:
 - Creel program – angler use, catch and harvest (surrogate for abundance) CMIN 4.1
 - Monthly sampling
 - Electrofishing – size composition, relative abundance, condition, whirling disease samples. CMIN 4.1.2, 3, 4, 5
 - 3 times/year, 9 fixed and 27 stratified random sample sites.
 - Detects 6-10% linear change in abundance over 5-years.

 Data Mgmt, Analysis, Dissemination
 - Annual reports from principle investigator, results incorporated into SCORE
 - Data accessioned into GCMRC Database

- **FY06 $160,000**
Length-frequency histogram of all Rainbow trout captured in the July 2004 Lee’s Ferry sampling effort.
CM – Downstream Native Fish: humpback chub

- CMIN tasks/questions (2.1.1, 2.1.2): Determine and track year class strength of HBC between 51-150 mm, and Determine abundance and distribution of in LCR and mainstem of all size classes of HBC.

- Acquisition:
 - Spring/Fall abundance estimates in LCR –
 - 15 km w/hoop nets (fish > 150 mm)
 - Mark recapture ASMR model input
 - Spring relative abundance estimates in LCR
 - Lower 1200 m w/ hoopnets
 - All size classes
 - Spring relative abundance estimates in LCR inflow - mainstem
 - 57-65.4 rm w/trammel and hoop nets
 - Mark-recapture data for ASMR model input

- Data Mgmt, Analysis, Dissemination
 - Annual reporting, incorporation into ASMR, SCORE report

- FY06 $315,000
CM – Downstream Native Fish: humpback chub

Estimated Abundance of Humpback Chub in the Little Colorado River Population (>150 mm TL)

Estimated Abundance of Age-1 Humpback Chub by Brood Year
R&D – Downstream HBC and Other Native fish

- CMIN tasks/questions (2.1.1, 2.1.2, 2.6.1): Determine and track abundance and distribution of flannelmouth suckers, bluehead suckers and speckle dace populations in the CRE.

Problem: Non-abundant species and inefficient sampling methods

- Objective:
 - Investigate techniques and technologies to assess abundance and distribution to meet CMINs
 - Sonar and acoustic devices for enumeration
 - Modifying electrofishing gear for warmer water species
 - Add below Diamond Creek as sampling area

- Duration
 - 2-3 years depending on resource availability
 - FY06 825,000
R&D – Non-native fish

- **CMIN tasks/questions (2.4.1):** Determine and track abundance and distribution of non-native predatory fish species in the CRE and their impacts to native fish.

Problem: Efficient sampling methods for cold water predators, but inefficient sampling for warmer water species.

Objective:
- Investigate techniques and technologies to assess abundance and distribution to meet CMINs
 - Sonar and acoustic devices for enumeration
 - Modifying electrofishing gear for warmer water species
 - Current approach is sufficient for cold water species to track 10% change in relative abundance over 5 years
 - Add reach below Diamond Creek to sampling area.
 - Disease & parasite monitoring development

Duration
- 2-3 years depending on resource availability
- **FY06 $825,000** – combined with DS native fish budgets
R&D – Aquatic food base

- CMIN tasks/questions (1.1.1 – 1.5.1): Determine and track composition and biomass of primary producers, benthic invertebrates and drift in Glen Canyon and below the Paria in the CRE.

Problem: Determine if food is limiting to fish community in CRE
- What are the primary sources of food energy
- Necessary step to food base monitoring development

Objective:
- Define food web dynamics in the CRE for fisheries in Glen Canyon and below the Paria including terrestrial invertebrate contribution.
- Following linkage identification, develop monitoring methods that are biologically meaningful, cost effective and meet AMP needs.

Duration
- 2-3 years of research and monitoring development iterations.
- 1 year for implementation process.
- FY06 $300,000
Terrestrial Vegetation Monitoring (in review)

CMIN tasks/questions (6.1.1-6.7.1): Determine and track abundance, composition, distribution and area of marsh, NHWZ, OHWZ, beach, seep and spring communities, and non-native species. Determine and track abundance and distribution and reproductive success of SWWF in the CRE.

Acquisition:
- Yearly vegetation dynamics surveys – cover, species diversity, species richness, native: non-native ratio by stage level
- Yearly or biennial structure data for terrestrial habitat – SWWF, riparian birds
- 5 year interval for vegetation mapping – area, large scale change – for identified communities.
 - Tied to sediment overflight schedule.

Data Mgmt, Analysis, Dissemination
- Annual reports from principle investigator, incorporation into SCORE
- GIS layer available on IMS
- Implementation in 2006

FY06 $250,000
Kanab Ambersnail Monitoring R&D

CMIN tasks/questions (5.5.1, 5.2.1): Determine and track abundance and distribution of KAS @ Vasey’s Paradise. Determine and track size and composition of habitat at Vasey’s Paradise

Acquisition:
- Biannual surveys – overwinter survivorship, yearly reproduction
 - Ground survey habitat
 - Count snails using small plots and adaptive sampling methods
 - Assess less invasive methods for habitat
 - Review long-term data set for population model development for monitoring program

Data Mgmt, Analysis, Dissemination
- Annual reports from principle investigator, incorporation into SCORE
- GIS layer available on IMS
- Implementation in 2006

FY06 $25,000
SWWF and Riparian breeding birds

CMIN tasks/questions (6.7.1): Determine and track abundance, distribution and reproductive success of southwestern willow flycatcher in the CRE

Acquisition:
- Annual surveys –
 - 3 times/year during designated SWWF protocol periods
 - Additional surveys/year at SWWF sites if pairs found for reproductive information
 - Measure Vegetation Structure for bird habitat
 - Combine with breeding bird surveys
 - >64 sites/year + waterfowl in winter
 - Fixed and Randomized
 - Sites tied to vegetation map – areas surveys, point count stations.

Data Mgmt, Analysis, Dissemination
- Annual reports from principle invegstigator, incorporation into SCORE
- GIS layer available on IMS
- Implementation in 2006

FY06 $115,000/ 30,000 just SWWF
Goal 6: Protect and improve the biotic riparian and spring communities, including T & E species and their critical habitat.

CMIN tasks/questions (6.7.1): Determine and track abundance, distribution and reproductive success of southwestern willow flycatcher in the CRE.

Previous efforts were focused on integrated sampling for multiple species.
Remote Sensing Support for Core Monitoring
(Aquatic & Terrestrial)

Thomas Gushue, GIS Coordinator
Integrated Science Program

September 27, 2004 TWG meeting
Remote Sensing Support for Core Monitoring

Multi-spectral, System-wide Overflight

Similar to May 2002 Mission (ISTAR)

Digital sensors collect Red, Green, Blue, Near-Infrared and Panchromatic Data

Pixel Resolutions of 44 cm and 22 cm

DSM – Digital Surface Model
 1-meter resolution
 Elevation values for surface including vegetation tops
Core Monitoring Uses for Digital Imagery Data

Base Imagery for GIS / Mapping Applications

Maps for Field Data Collection

Source for New Layers

Lees Ferry Trout

LCR HBC Monitoring

USGS
Additional Uses for Digital Imagery Data

Downstream Water Quality Sites

FIST

Exposed Sand Area

Campsite Identification

Vegetation Mapping

Downstream Fish Sampling

Mechanical Fish Removal

USGS
Other Remote Sensing technologies

Topographic Data Acquisition

High Resolution LiDAR used to support FIST activities

Very High Resolution LiDAR for Archeological Site Monitoring

Bathymetric Data

Multi-beam sonar to map channel geometry of Colorado River

Used by FIST and other modeling efforts
DASA

“Data Acquisition, Storage, and Analysis”

Remote Sensing Operations
 Aerial overflights, LiDAR missions, Multi-beam sonar

Database Management
 Oracle Server
 Spatial Database Engine (SDE)

Analysis & Mapping
 GIS
 Support for Modeling

Data Access and Availability
 Internet Map Server (IMS)
 GCMRC IMS Web Page

Surface water data downloadable from web site
 Discharge Data Web Page