

The FLAHG Hydrograph

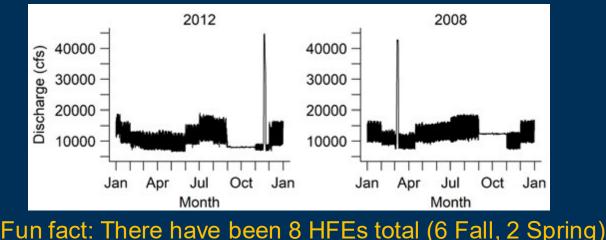
Predicted Effects of the FLow Ad Hoc Group (FLAHG) Hydrograph on LTEMP Resources

Contributors:

US Geological Survey-GCMRC: Theodore Kennedy, Lucas Bair, Bridget Deemer, Kimberly Dibble, Helen Fairley, Paul Grams, Jeff Muehlbauer, Emily Palmquist, Joel Sankey, Dave Topping, David Ward, Charles Yackulic, Mike Yard

Hualapai Department of Cultural Resources: Peter Bungart Western Area Power Administration: Craig Ellsworth Northern Arizona University: Brad Butterfield

I. Background


Disturbance is a critical natural process in streams and rivers (Resh and others 1988, Poff and others 1997). By temporarily disrupting ecosystem structure and changing the availability of substrates and resources, disturbance can help to maintain native biological diversity in streams and rivers (Bunn and Arthington 2002, Carlisle and others 2017). The magnitude of the disturbance, for example the extent of drying at low flow or the proportion of the bed that is mobilized at high flows, is an important determinant of how ecosystems will be affected by a given disturbance (Lake 2000). Additionally, disturbance timing (e.g., spring vs. fall) can also affect the degree of ecosystem change and determine species-specific responses (Lytle and Poff 2004). In fact, a national synthesis of flow and biological data found that healthy communities of native aquatic invertebrates and fish were most often associated with ecosystems that had high flow disturbances in spring (Carlisle and others 2017).

<u>US Geological Survey</u>-Theodore Kennedy*, Lucas Bair, Bridget Deemer, Kimberly Dibble, Helen Fairley, Paul Grams, Jeff Muehlbauer, Emily Palmquist, Joel Sankey, Dave Topping, David Ward, Charles Yackulic, Mike Yard <u>Hualapai Dept of Cultural Resources</u>-Peter Bungart <u>Western Area Power Administration</u>-Craig Ellsworth *-presenting today

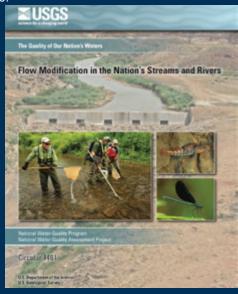
Why a FLow Ad Hoc Group (FLAHG)?

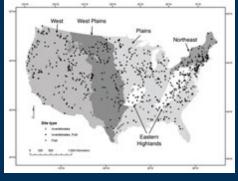
- Limited testing of spring HFEs
 - 2011 HFE protocol initially prohibited spring HFEs
 - LTEMP extended prohibition thru 2019
- Spring sediment trigger unlikely
 - Winter Paria storms↓
 - No 'carryover' in sediment accounting
 - See Grams and Topping, June 2020 TWG presentation

Because Dr. Petty said so!

But spring floods = healthy ecosystems

"...the apparent <u>nationwide importance of high flows in spring</u> (March, April, May) also indicates that the timing...of high flows is critical." ^{Carlisle, D. M., Grantham, T. E., Eng, K., & Wolock, D. M. (2017). Biological relevance of streamflow metrics: regional and national perspectives. *Freshwater Science*, *36*(4), 927-940.}


Ecological Significance of Diminished Spring Freshets


National Water-Quality Assessment US Geological Survey

U.S. Department of the Interior U.S. Geological Survey

Daren Carlisle, June 2020 TWG Presentation

2017 Knowledge Assessment

- TWG Steering Committee Ad Hoc Group (SCAHG) provided oversight
- Science Advisors facilitated
- Teams of experts conducted assessment
 - 11 Resource Areas

Str	Strength of Effect		ection of Effect	Confidence in Strength & Direction Assessments		
	Strong Effect	Û	Positive (Beneficial) Effect	\bigcirc	High	
	Moderate Effect	$\langle \vdots \rangle$	No Effect	\bigcirc	Medium	
	Weak Effect	Û	Negative (Detrimental) Effect	\bigcirc	Low	
	Strength of Effect Unknown		Direction of Effect Unknown	(n/a)		

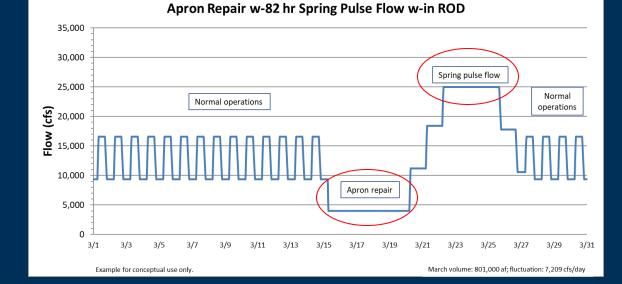
http://gcdamp.com/index.php?title=2017 Knowledge Assessment

2017 Knowledge Assessment: Lots of upside to Spring HFEs

	Archaeological and Cultural	Natural Processes	Humpback chub	Hydropower and Energy	Other Native Fish Species	Recreational Experience	Sediment	Tribal Resources	Rainbow Trout Fishery	Nonnative Invasive Species	Riparian Vegetation
Spring HFE	\bigcirc										
Fall HFE			\bigcirc								

http://gcdamp.com/index.php?title=2017 Knowledge Assessment

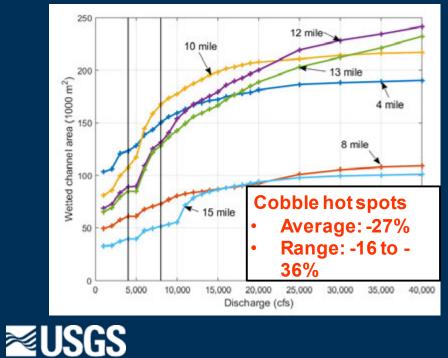
A Path Forward FLow Ad Hoc Group (FLAHG) formed in 2019 "As a starting point, the FLAHG shall consider the benefits of and opportunities for conducting higher spring releases within power plant capacity" –FLAHG charge

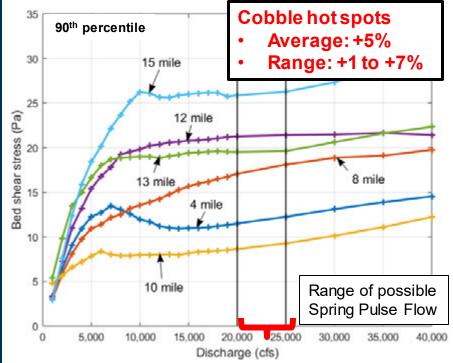


Proposed FLAHG hydrograph

- Spring flow disturbance (March proposed)
- Apron repair is unique opportunity
 - 5 days at 4,000 ft³/s for dam maintenance
 - Low flows = disturbance
- Combine with <u>spring pulse flow</u> disturbance
 - Iow + pulse >> Iow OR pulse alone

- Percent of habitat desiccated at low flow?
- 2) Scour potential at 20,000 cfs vs. 25,000 cfs?




Desiccation & scour potential

Low Flow = Desiccation

Pulse Flow =Scour

In a nutshell	In a nutshell
Large area change btwn 4,000 and 8,000 cfs	Shear stress = shearing force of water on bed
-Change in area = metric of drying potential	-Direct measure of scour potential
<u>Cobble hotspots:</u>	<u>Cobble hotspots:</u>
27% of habitat exposed to drying	~5% increase in scour at 20,000 vs. 25,000 cfs
<u>Reach wide:</u>	Reach wide: ~13% increase in scour
12% of habitat exposed	<u>Fun fact:</u> Since '96, flows of 20,000 cfs or greater have
<u>Fun fact:</u> Flow of 4000 cfs last occurred in early 90s	occurred just ~7% of the time.



Preliminary results subject to review and revision; pers comm Scott Wright

FLAHG hydrograph summary

"The spring timing and combination of drying & scour makes this an especially interesting and promising hydrograph to test"

-general sentiment among co-authors

FLAHG Hydrograph: Essential Context

≈USGS

- Provides 'contrast' to last 5 fall HFEs
 - Many biology projects <u>did not exist</u> in 2008

Only 5 of 16 co-authors involved in AMP in 2008

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
2010	2011	2012	2013	2014	2015	2016	2017	2018	2019

2009-Juvenile chub monitoring (JCM) starts

2010-Gross primary production monitoring starts

2012-Citizen science insect monitoring starts

Preliminary results subject to review and revision

FLAHG Hydrograph: Some Hypothesized Benefits

Tribal Resources

- Improved Ecosystem Health
- Spring timing aligns with
- <u>Earth's calendar</u>
- Natural Processes
 - **Algae and insect diversity**
 - <u>Spring timing aligns with</u> <u>native fish life history</u>
- Recreational Experience
 - ↑Navigation in Western GC
 - ↑Camp-ability of sandbars
 - <u>Spring timing aligns with</u> <u>human calendar</u>

≥USGS

No red flags evident but stayed tuned. More analysis coming...

Preliminary results subject to review and revision

Next Steps for FLAHG

Consider how the FLAHG will use the summary of Predicted Effects (e.g., Knowledge Assessment) in the decision process?

Preliminary results subject to review and revision