Are there any more surprises?
Bioeconomic modeling and adaptive management

Lucas S. Bair, U.S. Geological Survey, Grand Canyon Monitoring and Research Center, Southwest Biological Science Center
Adaptive Management Workgroup, Glen Canyon Dam Adaptive Management Program Webinar, August 20, 2020
Schools of Adaptive Management

Resilience-Experimentalist

- Uncertainty is difficult to anticipate in advance
- Experiments provide accelerated learning about the system

Decision-Theoretic

- Uncertainties are explicitly estimated and included in predictive models
- Resolve uncertainty to the degree that such resolution will improve management

Chub and Trout Modeling

Bair, L.S., et al., 2018, Identifying cost-effective invasive species control to enhance endangered species populations in the Grand Canyon, USA. Biological Conservation, 220, 12-20, https://doi.org/10.1016/j.biocon.2018.01.032
Modeling Objective

Develop a bioeconomic model to identify cost-effective management strategies for rainbow trout that achieve conservation objectives for the humpback chub.
Bioeconomic Model Results
Model Extensions: Translocations

https://azdaislysun.com/humpback-chub-translocation/image_4012f028-bd72-5db2-8e53-da13956bfc8f.html
Humpback Chub Translocation

Preliminary data – do not cite
Model Extensions: Trout Management Flows

https://www.nytimes.com/2016/05/22/opinion/unplugging-the-colorado-river.html
TMF Model Results

![Graph showing Humpback Chub Abundance over Rainbow Trout in Juvenile Chub Monitoring Reach with different flow scenarios: Mechanical Removal and Trout Management Flow.]

Preliminary data – do not cite
Future Applications: Brown Trout
Are there any more surprises?