

2020 GCDAMP Annual Reporting Meeting Overview - Part 2a

Michael Moran Grand Canyon Monitoring and Research Center Southwest Biological Science Center

Adaptive Management Working Group Meeting February 12, 2020

U.S. Department of the Interior U.S. Geological Survey

Outline

- Part 1
 - Humpback Chub
 - Native and Nonnative Fishes
 - Bug Flows
- Part 2
 - Nutrients and Temperature as Ecosystem Drivers and Lake Powell
 - Riparian Vegetation
 - Warm-Water Invasive Fishes
 - Trout
- Part 3
 - Sediment
 - Archaeological Site Monitoring
 - Socioeconomics and Hydropower

Project E – Nutrients and Temperature as Ecosystem Drivers

PI – Charles Yackulic

- GCMRC scientists and their cooperators measure nutrients and temperature to better understand how these affect the Grand Canyon ecosystem
- What are the effects of dam operations on nutrients and temperature as ecosystem drivers?

Gross Primary Production

- Measuring dissolved oxygen as a surrogate for gross primary production (GPP)
- GPP is a measure of overall energy capture
- GPP has been linked to insect (primary consumer) density

Take Away: GPP is a good measure of the base of the food web

Preliminary data, do not cite

Controls on Aquatic GPP

- Temperature
- Sunlight
- Turbidity
- Discharge
- Nutrients such as nitrogen, CO2, and Soluble Reactive Phosphorus (SRP)

SRP – believed to be primary limiting factor in CO River

https://wetlandinfo.des.qld.gov.au/wetlands/management/pressures/lacust rine-palustrine-threats/nutrients/state.html

SRP Versus GPP

- Statistically significant relation between SRP from Lake Powell penstock and GPP at river mile 60
- Other factors influence GPP including turbidity, discharge, and geographic position in the canyon

Preliminary data, do not cite

Take Away: SRP is an important factor for GPP in the CO River but not the only one

Lake Powell Conditions Affect SRP

- SRP at the Glen Canyon Dam penstock is directly related to phosphorus input (loading) to Lake Powell
- Phosphorus loading explains ~55% of the variability in SRP

Take Away: In Lake Powell, SRP is influenced by phosphorus input

Preliminary data, do not cite

Can We Predict Phosphorus in Lake Powell?

- Calcite precipitation in reservoirs such as Lake Powell can trap phosphorus via co-precipitation
- Phosphorus bound to calcite could be released from sediment by changes in water pH

LIMNOLOGY and OCEANOGRAPHY Limnol. Ocamogr. 9999, 2020, 1–17 Published 2019. This article is a U.S. Government work and is in the public domain in the USA. doi: 10.1002/f00.11399

Calcite precipitation in Lake Powell reduces alkalinity and total salt loading to the Lower Colorado River Basin

Bridget R. Deemer ^O,^{1*} Edward G. Stets,² Charles B. Yackulic¹ ¹U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona ²U.S. Geological Survey, Water Mission Area, Boulder, Colorado

Could SRP Be Controlled Through Dam Operations?

- SRP is almost always equivalent or higher in concentration below the penstock elevation
- Reasons unclear but may be related to SRP use in primary production in Lake Powell
- Difficult to capitalize on this through dam operations

Preliminary data, do not cite

Nutrients and Temperature Conclusions

- SRP is a limiting factor in Grand Canyon and exerts influence on the base of the food web
- SRP input to the CO River in Grand Canyon is controlled by inputs of phosphorus and reactions in Lake Powell
- The ability to control SRP in Grand Canyon through dam operations is unclear

Project C - Riparian Vegetation Monitoring

PI – Joel Sankey/Brad Butterfield

- GCMRC scientists and their cooperators document the amount and types of vegetation found along the river corridor and determine plant cover, species richness, and diversity
- What are the effects of dam operations on riparian vegetation?

Ground-Based Vegetation Monitoring

Project Element C.1

Science for a changing world

Preliminary data, do not cite

Imagery-Based Vegetation Monitoring

Project Element C.2

- Remote sensing provides a powerful way to evaluate environmental changes throughout the entire river corridor
- Overflight data are used universally used in the GCDAMP

Products From Modern Overflights

	Multispectral imagery	Digital topography	
Website content and virtual online maps.	Cartographic products - River map books - Publication maps	Colorado River Centerline and River Mile System	Flowlines – Extracted from low-flow water's edge (~8,000 CFS) in overflight imagery - Modelled from overflight topography and water surface elevation data(Magirl, 2008)
Land cover classification - water, sand, vegetation	Vegetation species classification	Campsite delineation – Campsite atlas	Topography data - Topographic change detection - Hydrologic flow modeling.

Recently Published Overflight Product

- **Riparian vegetation species** \bullet classification map
- Entire river corridor from Glen ullet**Canyon to Pearce Ferry**
- 26 species and 7 additional generalized vegetation classes
- Overall accuracy 71%

Take Away: Overflight data critical for many GCMRC and GCDAMP products

Durning and others, 2017

Vegetation Responses To Hydrologic Variables

Project Element C.3

- Niche models have been developed
- Responses of plants to hydrologic variables
- These have been used to identify habitat suitability

Take Away: Vegetation is likely to colonize most bare sand

Preliminary data, do not cite Kasprak et al. In prep

Manipulative Experiments Outside the Canyon

- Experiments help to identify plant responses to flow conditions by strictly controlling variables
- These experiments help refine model predictions of plant responses

Other Methods of Learning About Vegetation Responses to Flows

Grand Canyon in Context

- Compare to other systems
- Harness 'big' data
- Flow regime for species

Physiological Measurements in the Canyon

- Water isotopes
- Transpiration and photosynthesis

February 12, 2020

Response to changes in flow

<u>Take Away</u>: Combining existing regional data and local physiological measurements are needed to predict how plants will change

Vegetation Monitoring Conclusions

- Salt cedar has been declining throughout the canyon while native species close to the river are increasing
- Niche modeling suggests that riparian vegetation has the potential to colonize most bare sand in the Grand Canyon
- Monitoring (C.1) tracks current conditions while manipulative experiments and comparisons with other river systems (C.3) provide data for predictions.

Questions

