RECLAMATION Managing Water in the West ## **High Flow Experiments (HFEs)** Adaptive Management Work Group Meeting August 22-23, 2018 U.S. Department of the Interior Bureau of Reclamation ## **Presentation Purpose** DOI follow up on commitment to AMWG members to evaluate the design and implementation flexibilities in LTEMP ROD and HFE protocol #### LTEMP ROD - Provides framework for implementing Spring and Fall HFEs - Identifies the purpose, goals and objectives for HFEs #### **Areas Considered** - Accounting windows - HFE timing - HFE "deferral" - Decision making process - Modeling - Sediment input estimates - Future sediment input estimate - Existing sediment considerations ## Accounting windows #### LTEMP ROD: Depending on the cumulative amount of sediment input from the Paria River during the spring (December 1 through June 30) or fall (July 1 through November 30) accounting periods and the expected accumulation of sand, the maximum possible magnitude and duration of HFE that would achieve a positive sand mass balance in Marble Canyon, as determined by modeling, will be implemented. (LTEMP ROD, B-18) ## HFE timing - The timing of seasonal HFEs was explicitly considered during the evaluation of the LTEMP FEIS alternatives. - The timing of HFEs for the selected alternative: - sediment-triggered spring HFEs in March or April; - proactive spring HFEs in April, May, or June; and - sediment-triggered fall HFEs in October or November. (LTEMP ROD (C5-C6)) #### HFE "deferral" The decision of whether or not to conduct a HFE is made after considering the modeled sediment conditions and the current status of resources which may include a qualitative consideration of existing sediment in the system. #### **HFE Decision Making Process** - 1. Planning Component - Annual resource status assessment - Annual Agency Reporting - GCDAMP Budget and Work Plan Process - 2. Modeling Component - 3. Decision and Implementation Component - Review Modeling Component - Review Status of Resources - Consultation with agencies and tribes, AMWG and TWG input - Staff Recommendation/DOI GCD Leadership Team Recommendation - DOI Decision #### **Modeling Component** ## Modeling Considerations - Cumulative sand load estimate - Future sediment input estimate - Existing sediment considerations # Discharge and Sediment conditions from the GCMRC web page http://cida.usgs.gov/gcmrc/discharge_qw_sediment/stations/GCDAMP #### **Cumulative Sand Load Estimate** - Uncertainty in sand load - High, Med, Low estimates - In past years, have used the low sand load estimate as a conservative approach - Could use Hi, Med, or Low ## Future sediment input - Uncertainty in future sediment inputs - Typically assume zero future sediment inputs - Can we project inputs for the remainder of the sediment accounting window? - Spring time has longer period of assumed future inputs (mid-Mar – June 30th) compared with fall (mid-Oct – Nov 30th) ## **Existing Sediment Considerations** - Initial conditions: Sediment accounting window starts with baseline of zero at the start of each window - If observations and field data suggest there is additional sediment availability, information could be included: - via modeling assumptions (e.g. use less conservative current / future sand load estimates) - via HFE decision-making process - Important to ensure that sand budget will not be negative at end of experiment Slides presented at Feb 2018 AMWG follow #### **HFE Decision Making Process** - 1. Planning Component - Annual resource status assessment - Annual Agency Reporting - GCDAMP Budget and Work Plan Process - 2. Modeling Component - 3. Decision and Implementation Component - Review Modeling Component - Review Status of Resources - Consultation with agencies and tribes, AMWG and TWG input - Staff Recommendation/DOI GCD Leadership Team Recommendation - DOI Decision #### **Modeling Component** ## Two Types of Spring HFEs TABLE 4 Implementation Criteria for Experimental Treatments of Alternative D | Experimental Treatment | Trigger ^a and Primary
Objective | Replicates | Duration | Annual Implementation
Considerations ^b | Long-Term Off-Ramp
Conditions ^c | Action if Successful | |--|---|---|---|---|---|---| | | | | | | | | | Sediment-Related Experiments ^d | | | | | | | | Spring HFE up to 45,000 cfs in Mar. or Apr. | Trigger: Sufficient Paria
River sediment input in
spring accounting period
(DecJun.) to achieve a
positive sand mass
balance in Marble
Canyon with
implementation of an
HFE
Objective: Rebuild
sandbars | Not conducted
during first 2 years
of LTEMP,
otherwise
implement in each
year triggered,
dependent on
resource condition
and response | ≤96 hr | Potential short-term
unacceptable impacts on
resources listed in
Section 1.3; unacceptable
cumulative effects of
sequential HFEs;
sediment-triggered spring
HFEs will not occur in the
same water year as an
extended-duration
(>96 hr) fall HFE | Sediment-triggered
spring HFEs are not
effective in building
sandbars; or long-term
unacceptable adverse
impacts on the resources
listed in Section 1.3 are
observed | Implement as adaptive treatment when triggered and existing resource conditions allow | | Proactive spring HFE up
to 45,000 cfs (Apr.,
May, or Jun.) | Trigger: High-volume
year with planned
equalization releases
(≥10 maf)
Objective: Protect sand
supply from equalization
releases | Not conducted
during first 2 years
of LTEMP,
otherwise
implement in each
year triggered,
dependent on
resource condition
and response | First test 24 hr;
subsequent tests
could be shorter,
but not longer,
depending on
results of first tests | Potential short-term
unacceptable impacts on
resources listed in
Section 1.3; unacceptable
cumulative effects of
sequential HFEs; will not
be implemented in the
same water year as a
sediment-triggered spring
HFE or extended-duration
fall HFE | Proactive spring HFEs
are not effective in
building sandbars; or
long-term unacceptable
adverse impacts on the
resources listed in
Section 1.3 are observed | Implement as
adaptive treatment
when triggered and
existing resource
conditions allow | | | | | | | | | LTEMP ROD ## Sediment Triggered Spring HFE - Objective: rebuild sandbars - Trigger: Paria River sand input (Dec-Jun), that results in positive sand mass balance in Marble Canyon - uncertainty bounds, future inputs assumption - **Timing**: Mar-April, starting in 2020, if triggered - Magnitude: up to 45,000 cfs (powerplant capacity + full bypass) - Duration: up to 96 hrs - Considerations: status of resources, stakeholder input ## Proactive Spring HFE - Objective: Protect sand supply from equalization releases - Trigger: Projected annual release > 10 maf - 24-Month Study model projected annual release - Timing: April, May, Jun starting in 2020, if triggered - Magnitude: up to 45,000 cfs (powerplant capacity + full bypass) - **Duration**: 24 hrs first test (≤ 24 hrs, subsequent) - Considerations: status of resources, stakeholder input RECLAMATIO # LTEMP EIS projected # of HFEs in 20-year LTEMP period | # Fall HFEs | # Spring HFEs | Total HFEs | |-------------|---------------|------------| | 14.7 | 5.7 | 20.4 | ## Planning Considerations - Follow similar process for fall HFEs - Decision: ~middle of month prior to implementation (e.g., mid-March for April HFE) - hydropower marketing - Convene tech team in ~3 months prior - e.g., Dec-Mar for April HFE - Tribal consultations, TWG/AMWG input ## Planning Considerations (cont'd) - Coordinate maintenance scheduling ~2 yrs out - maximize unit availability for possible HFEs (e.g., a week in late April for sed. triggered, and a couple days in May/June for proactive) - Research and monitoring prior to, during, and after a - spring HFE to get at key science questions - FY18-20 Workplan - Other? ¹ Projected release, based on Jan 2018 Min and Max Probable Infli Projections and 24-Month Study model runs ² Projected release, based on Feb 2018 Most Probable Inflow Projections and 24-Month Study model runs FIGURE 4 Decision Tree for Implementation of Sediment-Related Experimental Treatments under Alternative D (Implementation will be conditional on annual considerations presented in Section 1.3. If off-ramp conditions listed in Table 4 exist, related experimental treatments will be suspended.)