Stakeholders’ Perspective: The Upper Basin States (Colorado, New Mexico, Wyoming, and Utah)

Information item only; we will answer questions but no action is requested.

Don Ostler, Executive Director and Secretary, Upper Colorado River Commission (AMWG and TWG alternate for Wyoming and New Mexico)

N/A

The States are the primary water right holders for waters of the Upper Colorado River Basin, and as such are the primary beneficiaries of the Colorado River Storage Project (CRSP) reservoirs including Lake Powell.

This presentation will include the upper basin states’:

- interest in managing water and power generation within the upper basin, and specifically their interest in the operations of Glen Canyon Dam,
- perspective on the Glen Canyon Dam Adaptive Manager Program,
- role as water rights holders,
- interest in hydropower,
- compact obligations and tensions, and
- interests and activities in addressing environmental and other resource issues associated with the operation of this system.
The Upper Colorado River Commission

- Interstate water administrative agency created in the 1948 Upper Basin Compact
- States of CO, UT, NM, WY & Federal Chair
- Responsibilities include:
 - Studies, findings of water deliveries to LB, determine uses in UB, findings of extraordinary drought, determinations of shortage in UB etc
States Are Unique Stakeholders

- Colorado River Water is apportioned to states to manage
- Represent many different stakeholders as a representative government – not a single issue group
- Regularly must balance competing stakeholder needs
- Providing water to meet needs
THE LAW OF THE RIVER

- Colorado River Compact – Foundation
- 15 other major laws, compacts, treaties and court decrees
- Governs all aspects of administering the River
- International relations
- Quality issues
- Environmental issues

Upper Colorado River Commission
1922 Colorado River Compact

- Apportions 7,500,000 ac-ft/yr to both the Upper and Lower Basins in perpetuity
- Lower Basin given the right to increase consumptive use by 1,000,000 ac-ft/yr
- Basin needs must be met from water apportioned to that basin

Upper Colorado River Commission
1922 Colorado River Compact

- Provides that Mexico be supplied with water, first from surplus; and borne equally by the Upper and Lower Basins if no surplus
- Upper Basin shall not cause the flow at Lee Ferry to be depleted below 75,000,000 ac-ft for any ten years
Colorado River Compact

- Provides stability and certainty
- Creates a tension between UB and LB
 - curtailment obligation/lower priority
- Process to deal with variable supply
- Allows flexibility w/i Compact to address new issues – Int. Guidelines/shortage
- Essential for the future
Law of the River Allocations

- 7.5 MAF to Upper Basin (%’s CO 51.75, UT 23, NM 11.25, WY 14)
- 7.5 MAF to Lower Basin (4.4 CA; 2.8 AZ; 0.3 NV)
- 1.0 MAF additional to Lower Basin (i.e., tributary development)
- 1.5 MAF to Mexico

17.5 MAF Total Allocated ‘on paper’

1 1922 Colorado River Compact, 1948 Upper Colorado River Compact
2 Colorado River Compact, 1929 Black Canyon Project Act, 1964 AZ v. CA
3 1922 Colorado River Compact
4 Treaty of 1944
Colorado River Manager

Working on the Colorado River
NOT SO FAST

- The River is over allocated
- Demand now equals or exceeds supply in some areas
- Balance UB new development with risk of shortage
- What might be the impacts of Climate change?
- How will shortages be shared with Mexico for the first time?
- How to insure compact compliance?
Colorado River Issues Cont.

- Concern about sustaining uses at Lake Mead
- How will future growth be accommodated
- What role will agriculture play as the supply imbalance persists
- Endangered species and environmental concerns
- How to preserve long term compact legal positions?
The real Colorado River Manager
Hydrology comparison

- **2000-2014**: 12.3 MAF @ LF
- **1988-2014**: 13.2 MAF @ LF
- **Basin Study CC**: 13.7 MAF @ LF
- **1906-2014 GR**: 14.8 MAF @ LF
- **1120-1172 PH**: 12.7 MAF @ LF
- **1896-1921**: 16.8 maf @ LF

CC – climate change GR – gage period NF PH – paleo-hydrology

Data from Reclamation’s Naturalized Flows database
Current Uses

- **Upper Basin Uses**: 4 to 4.5 maf/yr
- **Lower Basin Uses**: full compact amount
The Basin Fund is Important
Hydropower is an Authorized Purpose

- Operation, maintenance/replacement of CRSP Units
- Repay construction costs with interest to Congress
- Salinity investment and operations
- Cost share of salinity control - $2M/yr
The Basin Fund is Important

- Provides a major portion of GCDAMP $9.5 M/yr
- Cost Share of Upper Colorado and San Juan Recovery Implementation $7M/yr
- Portion of UB State Development Costs
- Lower Cost to Power Customers
Environmental Issues Important to the Upper Basin States

- Colorado River Recovery Implementation Program
- San Juan River Recovery Implementation Program
- Colorado River Salinity Control Program
- Glen Canyon Dam Adaptive Management Program
- Many Others
Environmental Resources – UCRIP/SJRIP/GCAMP

Colorado Pikeminnow

- Historical Distribution
- Present Distribution
- Critical Habitat

Map showing the distribution of the Colorado Pikeminnow across various states and rivers.
Major Threats: Invasive species
Expanding Nonnative Fish Populations

<table>
<thead>
<tr>
<th>River</th>
<th>1988</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gunnison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yampa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Colorado River Salinity Control Program

- Cooperative effort and funding of the federal government and the seven Colorado River Basin States.
- Controls salinity through irrigation improvements, vegetation management, and point source control.
- Combined efforts of the Program have resulted in the control of an estimated 1.3 million tons of salt per year.
- Funded with power revenues from the Colorado River Basin Fund.
Lake Mead in 2000

Lake Mead in Feb, 2011
119 foot
bathtub ring
Drought Contingency Planning

The Basin States and the Bureau of Reclamation are planning for drought response to reduce risks associated with reaching critical reservoir elevations at Lake Powell and Lake Mead. These are low probability events, but with high consequences.
Drought Contingency Planning

- **Colorado River Basin States**
 - Arizona, California, Colorado, Nevada, New Mexico, Utah and Wyoming

- **Upper Colorado River Commission**

- **Department of the Interior**
 - Bureau of Reclamation, National Park Service, Fish and Wildlife Service, Western Area Power Administration (WAPA)

- **Major Water Providers**
 - MWD, CAWCD, SNWA, DW (FRWC), CRCD, SWCD

- **Others** – water rights holders, NGOs, etc.
Lake Powell Storage

Inflows to Lake Powell

Percentage of 30-year average (1971-2000): 12.04 maf

- 2000 – 7.32 maf (62%)
- 2001 – 6.96 maf (59%)
- 2002 – 3.06 maf (25%)
- 2003 – 6.36 maf (51%)
- 2004 – 6.13 maf (49%)
- 2005 – 12.62 maf (105%)

Percentage of 30-year average (1981-2010): 10.83 maf

- 2006 – 8.77 maf (71%)
- 2007 – 8.23 maf (68%)
- 2008 – 12.36 maf (102%)
- 2009 – 10.36 maf (92%)
- 2010 – 8.74 maf (73%)
- 2011 – 16.79 maf (142%)

- 2012 – 4.91 maf (45%)
- 2013 – 5.12 maf (47%)
- 2014 – 10.38 maf (96%)
- 2015 – 10.18 maf (94%)
Lake Mead Storage – Assuming Normal Releases

Lake Mead Elevation Since 2000

- January 2000
- 91% Active Storage
- 12.52 MAF Release WY 2011
- First Shortage Tier

Lake Mead Elevation (EOM) • Projected 24 Month • 8.23 MAF Releases • First Shortage Tier
2007 Interim Guidelines

Lake Powell Operational Tiers

<table>
<thead>
<tr>
<th>Lake Powell Elevation (feet)</th>
<th>Lake Powell Operational Tier</th>
<th>Lake Powell Active Storage (maf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,700</td>
<td>Equalization Tier</td>
<td>24.32</td>
</tr>
<tr>
<td></td>
<td>equalize, avoid spills or release 8.23 maf</td>
<td></td>
</tr>
<tr>
<td>3,636 – 3,666</td>
<td>Upper Elevation Balancing Tier</td>
<td>15.54 – 19.29</td>
</tr>
<tr>
<td>(see table below)</td>
<td>release 8.23 maf;</td>
<td>(2008 – 2026)</td>
</tr>
<tr>
<td></td>
<td>if Lake Mead < 1,075 feet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>balance contents with a min/max release of 7.0 and 9.0 maf</td>
<td></td>
</tr>
<tr>
<td>3,575</td>
<td>Mid-Elevation Release Tier</td>
<td>9.52</td>
</tr>
<tr>
<td></td>
<td>release 7.48 maf;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Lake Mead < 1,025 feet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>release 8.23 maf</td>
<td></td>
</tr>
<tr>
<td>3,525</td>
<td>Lower Elevation Balancing Tier</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td>balance contents with a min/max release of 7.0 and 9.5 maf</td>
<td></td>
</tr>
<tr>
<td>3,370</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Upper Basin Drought Contingency Planning

Goals

- Reduce or eliminate probability of Lake Powell reaching minimum power pool elevation (est. 3490 ft.) through 2026.

- Ensure the continued operation of the 2007 Interim Guidelines through 2026.

- Respect existing framework for administering use of Colorado River water in both the Upper Colorado River Basin and each Upper Division State.

- Combined with expected actions in Lower Basin, increase the synergistic benefits for Basin as a whole.
Upper Basin Plan - Elements

- Expand existing *weather modification programs*.

- **CRSP drought operations** (Aspinall, Flaming Gorge, Navajo and Glen Canyon Dam).

- Develop opportunities for *Upper Basin demand management*.

- Term – Consistent with *term for 2007 Interim Shortage Guidelines*.
WEATHER MODIFICATION

How Cloud Seeding Works

1. A minute amount of silver iodide is sprayed across a propane flame
2. The silver iodide particles rise into the clouds
3. The silver iodide causes cloud moisture to freeze and create ice crystals
4. Ice crystals grow big enough to fall as snow.
EXISTING AND POTENTIAL CLOUD SEEDING LOCATIONS
2006 UCRC Weather Mod Study

- Potential gain from optimized existing seeding operations – 550kaf
- Potential gain from new operations – 650kaf
- Very low cost – $10-$15/ac-ft
Critical Powell Elevations

Critical Power Elevation 3525 ft MSL

Power Intake Elevation 3490 ft MSL
CRSP Drought Operations

- Agree on triggers and operations to implement under emergency conditions to maintain minimum power pool elevation at Lake Powell

- By conserving water (temporarily) in Lake Powell or moving water available from upper CRSP facilities.
Combined efforts bend the curve

Modeled Frequency of Exceedence (1988-2007 ISM)

- Baseline
- Scen10: F50; ROD=M; No DM; 3525
- Scen21: F50; ROD=M, LB DM; 3525
- Scen23: F50; ROD=M; UB + LB DM 0.6MAF; 3525
Combinations of UB and LB DM, together with Extended Operations, gives the best results.
CRSP Drought Operations Details

Challenge

- Identify flexibilities to release water and subsequently recover storage in a manner that:
 - Works within existing Records of Decisions and Biological Opinions for operating each CRSP reservoir.
 - Protects hydropower facilities.
 - Shares the benefits and burdens across the basin.
 - Helps attain contingency planning goals within appropriate timeframe.
Demand Management

- Evaluate alternatives to facilitate temporary, voluntary, and compensated reductions in consumptive use through willing seller/willing buyer arrangements.

- Examples - temporary or rotational fallowing, municipal conservation, interruptible supply agreements, deficit irrigation of crop land, system efficiencies, conservation, etc.
Demand Management

- **Challenge** - Working within the prior appropriation system, and respecting way of life of water rights holders, to facilitate to voluntarily reductions in consumptive use on willing buyer/willing seller basis.

- **Some of the questions** - Feasibility, Accounting, Management and Administration, Interest, Shepherding.

- **Evaluation Mechanisms** - Currently include:
 - System Conservation Pilot Program
 - Water Bank Working Group
Don Ostler, Director
Upper Colorado River Commission
801 531-1150
dostler@ucrcommission.com