Lake Mead’s elevation has dropped more than 100 feet since 2000
Lower Basin Drought Impacts

- Critical Mead Elevations
 - Water Quantity
 - 2007 Interim Guidelines Shortages
 - Worst Case
 - Nevada’s Ability to Deliver Water
 - Delivery Constraints at Glen Canyon Dam
 - Water Quality
 - Power Generation at Hoover Dam
- ICS Benefits to Mead Elevations
The Basin States developed a framework to manage shortages, utilizing Lake Mead water elevations as triggers.

Nevada/Arizona’s share of Colorado River shortages

- **1,075 ft.**
 - Nevada: 13,000 af / Arizona: 320,000 af

- **1,050 ft.**
 - Nevada: 17,000 af / Arizona: 400,000 af

- **1,025 ft.**
 - Nevada: 20,000 af / Arizona: 480,000 af
 - *Initiate reconsultation for shortage below 1,025 ft.*
Lake Mead Elevation Projections

- **Representation of Ongoing Drought**
- **August 24-Month Study**
 - *(7.48 MAF release in 2014 and 2015)*

Shortage Conditions Begin

Elevation of Intake 1
• Powell’s release becomes constrained below elevation 3,490 because only the bypass tubes are available to deliver water

<table>
<thead>
<tr>
<th>Powell Elevation</th>
<th>Maximum Annual Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>3490</td>
<td>10,599,360.00</td>
</tr>
<tr>
<td>3480</td>
<td>10,483,520.00</td>
</tr>
<tr>
<td>3470</td>
<td>10,193,920.00</td>
</tr>
<tr>
<td>3460</td>
<td>9,788,480.00</td>
</tr>
<tr>
<td>3450</td>
<td>9,093,440.00</td>
</tr>
<tr>
<td>3440</td>
<td>8,282,560.00</td>
</tr>
<tr>
<td>3430</td>
<td>7,413,760.00</td>
</tr>
<tr>
<td>3420</td>
<td>6,371,200.00</td>
</tr>
<tr>
<td>3410</td>
<td>5,096,960.00</td>
</tr>
<tr>
<td>3400</td>
<td>3,475,200.00</td>
</tr>
<tr>
<td>3390</td>
<td>2,316,800.00</td>
</tr>
<tr>
<td>3380</td>
<td>1,158,400.00</td>
</tr>
<tr>
<td>3370</td>
<td>-</td>
</tr>
</tbody>
</table>
Impact of Drought on Nevada’s Ability to Deliver Allocation

Current Intake’s could be lost if elevation continues to drop.

Pumping Station 1 = 1050 ft lake elevation.
Pumping Station 2 = 1000 ft lake elevation.

Pumping station 2 can currently handle delivery of current allocation

Long term plans include a pumping station 3
Water Quality Concerns from Lowering Lake Levels

- As Lake Mead lowers the warmer surface waters get closer to the Intakes.
- Using water below the thermocline avoids the presence of pollutants from the Las Vegas Wash.
- Third Intake will provide better water quality and less expensive treatment processes to meet Safe Drinking Water standards (to remove pollutants).
Intentionally Created Surplus (ICS)

Storage in Lake Mead as of December 31, 2012

<table>
<thead>
<tr>
<th>State</th>
<th>Storage (AF)</th>
<th>Feet*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevada</td>
<td>512,804</td>
<td>5.7</td>
</tr>
<tr>
<td>California</td>
<td>579,786</td>
<td>6.4</td>
</tr>
<tr>
<td>Arizona</td>
<td>103,050</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td>1,195,640</td>
<td>13.3</td>
</tr>
</tbody>
</table>

*90,000 acre feet storage per 1 foot of storage at elevation 1,100
Lake Mead Elevations Impact on Power Generation

- Hoover will be able to pass water and generate power down to low Lake Mead elevations
 - The efficiency and power output will be decreased
 - Cavitation damage and rough zones will increase

- Lower lake levels will force multiple units online thereby decreasing efficiency
 - 5 wide head turbines with better regulation capability will be operational by 2017
Hoover Dam Power Production

• Generator Description
 – 17 turbine generators
 – 2 at 62 MW; 15 at 130 MW unit capability
 – 2,074 MW combined installed capacity (full lake level)

• Lake Mead Elevation of 1050 feet
 – 1371 MW estimated capacity

• Lake Mead Elevation of 1000 feet
 – 1046 MW estimated capacity

• Lake Mead Elevation of 950 feet
 – 696 MW estimated capacity