<u>Agenda Item</u>

Basin Hydrology and Operations

<u>Action Requested</u> Information item only

Presenter

Katrina Grantz, Hydraulic Engineer, Bureau of Reclamation, Upper Colorado Region

Previous Action Taken

N/A

Relevant Science

N/A

Background Information

The presentation is intended to provide pertinent information to AMWG members on current water supply and forecasted hydrologic conditions within the Upper Colorado River Basin. The presentation will focus on projected reservoir conditions and operations at Lake Powell/Glen Canyon Dam for the remainder of water year 2013 and provide a provisional outlook for water years 2014 and 2015.

The presentation will cover the implementation of the *Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations of Lake Powell and Lake Mead* and the potential for an annual release volume of 7.48 maf from Lake Powell in water years 2014 and/or 2015. Such information is provided to assist the AMWG in developing recommendations to the Secretary on the operation of *Glen Canyon Dam for water year 2014.*

RECLANATION Managing Water in the West

Upper Basin Hydrology and Projected Operations Water Years 2013 and 2014

Adaptive Management Work Group August 8-9, 2013

U.S. Department of the Interior Bureau of Reclamation

Presentation Overview

- Current status upper basin reservoirs
- August inflow forecasts
 - Water year 2013 and water year 2014
- July* modeling projections
 - *August modeling is currently underway
 - releases and reservoir elevations
 - long-term modeling projections
- Scheduled Glen Canyon powerplant maintenance

Upper Basin Current Status

Data Current as of: 08/06/2013

2013 April – July Observed Unregulated Inflow

Reservoir	Volume (kaf)	Percent of Average ¹
Fontenelle	317	44
Flaming Gorge	361	37
Blue Mesa	346	51
Navajo	267	36
Powell	2559	36

¹ Percentages and percent of average based on period of record from 1981-2010.

ECLAMA

Lake Powell & Lake Mead Operational Table

Projected Operational Tiers for 2014 based on the July 2013 24-Month Study

	Lake Powell		Lake Mead					
Elevation	Operation According	Live Storage	Elevation	Operation According	Live Storage			
(feet)	to the Interim Guidelines	(maf) ¹	(feet)	to the Interim Guidelines	(maf) ¹			
3,700	Equalization Tier Equalize, avoid spills or release 8.23 mat	24.3	1,220	Flood Control Surplus or Quantified Surplus Condition Deliver > 7.5 maf	25.9			
3,636 - 3,666 (2008-2026)	Upper Elevation Balancing Tier ^a Peleose 8,23 mat	15.5 - 19.3 (2008-2026)	1,200 (approx.) ²	Domestic Surplus or ICS Surplus Condition Deliver > 7.5 maf	22.9 (approx.) ²			
	if Lake Mead < 1.075 feet		1,145		15.9			
	balance contents with a min/max release of 7.0 and 9.0 maf		1,105	Normal or ICS Surplus Condition Deliver ≥ 7.5 maf	11.9			
3 575		9.5						
	Mid-Elevation Release Tier Release 7.48 maf; if Lake Mead < 1,025 feet, release 8.23 maf		1,075	Shortage Condition Deliver 7.167 ⁴ maf	9.4 7.5			
3,525		5.9		Shortage Condition Deliver 7.083 ⁵ maf				
	Lower Elevation		1,025		5.8			
3,490	Balancing Tier Balance contents with a min/max release of 7.0 and 9.5 maf	4.0	1,000	Shortage Condition Deliver 7.0 ⁶ maf Further measures may be undertaken ⁷	4.3			

WY2014 operational tiers will be determined after August 24-Month Study modeling is completed

Diagram not to scale

Acronym for million acre-feet

¹ This elevation is shown as approximate as it is determined each year by considering several factors including Lake Powell and Lake Mead storage, projected Upper Basin and Lower Basin demands, and an assumed inflow.

Subject to April adjustments which may result in a release according to the Equalization Tier

Of which 2.48 maf is apportioned to Arizona, 4.4 maf to California, and 0.287 maf to Nevada

Of which 2.40 maf is apportioned to Arizona, 4.4 maf to California, and 0.283 maf to Nevada

Of which 2.32 maf is apportioned to Arizona, 4.4 maf to California, and 0.280 maf to Nevada

⁷ Whenever Lake Mead is below elevation 1,025 feet, the Secretary shall consider whether hydrologic conditions together with anticipated deliveries to the Lower Division States and Mexico is likely to cause the elevation at Lake Mead to fall below 1,000 feet. Such consideration, in consultation with the Basin States, may result in the undertaking of further measures, consistent with applicable Federal law.

Probabilities of Occurrence of Event or System Condition Results from July 2013 CRSS^{1,2} (values in percent)

	Event or System Condition	2014	2015	2016	2017	2018
	Equalization Tier	0	14	19	23	30
	Equalization – annual release > 8.23 maf	0	14	19	23	30
	Equalization – annual release = 8.23 maf	0	0	0	0	0
Upper	Upper Elevation Balancing Tier	0	45	50	48	39
Basin	<i>Upper Elevation Balancing – annual release > 8.23 maf</i>	0	12	35	33	29
-	<i>Upper Elevation Balancing – annual release = 8.23 maf</i>	0	33	15	15	9
Lake	<i>Upper Elevation Balancing – annual release < 8.23 maf</i>	0	0	0	0	1
Powell	Mid-Elevation Release Tier	100	38	19	17	18
	<i>Mid-Elevation Release – annual release = 8.23 maf</i>	0	0	0	0	1
	<i>Mid-Elevation Release – annual release = 7.48 maf</i>	100	38	19	17	17
	Lower Elevation Balancing Tier	0	3	12	12	13
	Shortage Condition – any amount (Mead ≤ 1,075 ft)	0	2	51	59	60
Lower	Shortage – 1 st level (Mead \leq 1,075 and \geq 1,050)	0	2	49	40	31
Basin	Shortage – 2^{nd} level (Mead < 1,050 and \ge 1,025)	0	0	2	18	24
_	Shortage – 3 rd level (Mead < 1,025)	0	0	0	1	5
Lake	Surplus Condition – any amount (Mead ≥ 1,145 ft)	0	0	1	7	9
Mead	Surplus – Flood Control	0	0	0	1	2
	Normal or ICS Surplus Condition	100	98	48	34	31
¹ Reservoir i 2013, from tl ² Hydrologic	nitial conditions based on projected levels on December 31, ne July 2013 24-Month Study inflow traces based on resampling of the observed natural flow	CL	A	MA	TI	ON

Glen Canyon Power Plant Planned Unit Outage Schedule for Water Year 2013 Oct Nov Feb Mar May Jul Sep Unit Dec Jan Apr Jun Aug 2012 2012 2012 2013 2013 2013 2013 2013 2013 2013 2013 2013 Number 1 2 3 4 5 6 7 8 Units 5 8 5 7 7 5 5 6 6 5 6 6 Available 6 14,900 25,200 Capacity 19,500 21,800 21,600 14,800 18,600 14,700 17,900 17,900 15,200 18,000 (cfs) 18,600 21,700 Capacity 1310 1380 1290 1290 920 1090 1110 980 1070 1110 1110 910 (kaf/month) Max (kaf)¹ 800 600 Most (kaf)² 494 730 801 801 600 600 551 602 800 847 800 600 Min (kaf)¹ 800 600 ___ ___ ___

1 Based on Apr 2013 Min / Max probable 24-Month Study

2 Based on July 2013 Most probable 24-Month Study

(updated 8-7-2013)

RECLAM

Glen C	anyon	Powe	r Plant	<u>Provi</u>	<u>sional</u>	Unit O	utage	Schedu	le for	Water	Year 2	014
Unit Number	Oct 2013	Nov 2013	Dec 2013	Jan 2014	Feb 2014	Mar 2014	Apr 2014	May 2014	Jun 2014	Jul 2014	Aug 2014	Sep 2014
1												
2												
3												
4												
5												
6												
7												
8												
Units Available	5	6	6	6	4	56	6	56	6	6	6	5
Capacity (cfs)	15,100	3 17,800	17,800	17,800	12,800	14,300 17,800	17,800	14,300 17,800	17,800	17,900	17,900	14,600
Capacity (kaf/month)	930	1060	1100	1100	710	1000	1040	990	1080	1100	1100	890
Max (kaf) ¹	600	600	800	800	600	600	600	600	650	850	900	630
Most (kaf) ²	480	500	600	800	600	600	500	600	600	800	800	600
Min (kaf) ¹	480	500	600	800	600	600	500	600	600	800	800	600
1 Based on	Apr 20	13 Min/M	ax proba	able 24-N	Nonth Study	udy	La contra de la co			(upda	ated 8-7-	2013)

LAMAI

3 Total release during a HFE = Capacity +15,000 cfs bypass (e.g., Nov 2013 Total Possible Release = ~32,800 cfs)

Katrina A. Grantz kgrantz@usbr.gov (801)524-3635

Hydraulic Engineer/Glen Canyon Reclamation/UC Region Resource Management Division Water Resources Group

Extra slides follow

Lake Powe	II Unregulated In	flow WY2013
Scenario	2013 AOP	Current Most
	WY 2013	Probable
		WY 2013
	Developed Aug 2012	Developed Aug 2013
Minimum	5.00 maf	
Probable	(46 %) ¹	
Most	8.85 maf	4.43 maf
Probable	(82 %)	(40 %)
Maximum	16.00 maf	
Probable	(148 %)	

Glen Canyon Dam Hourly Release Pattern OCT 2013

RECLAMA