RECLANATION Managing Water in the West

High Flow Experiment Modeling Process

AMWG Meeting August 29, 2012

U.S. Department of the Interior Bureay of Reclamation

HFE Protocol

Ţ

1. Planning

2. Modeling

- Hydrology Modeling
- Sediment Modeling

3. Decision & Implementation

Hydrology Modeling

- Hourly release at Glen Canyon Dam
 - Historic hourly
 - Forecasted
 - 24 Month Study
 - Hourly patterns by WAPA

Hydrology Modeling

• Hourly flow at 3 locations

- RM30 (upper Marble Canyon)
- RM61 (lower Marble Canyon)
- RM87 (eastern Grand Canyon)

ECLAMATIO

Sand Budget Model

• Developed from USGS model (Wright et al. 2010)

- Empirically based rating curves
- Computes sand budget in 3 reaches
- Inputs:
 - Hourly Paria sand load
 - Antecedent conditions
- Determines HFE peak and duration
 - Potential HFE range:
 - 45,000 to 31,000 cfs, 96 hours to 1 hour
- Output
 - Sand mass balance between RM 0 and RM 61

Sand Inputs

HFE Types

HFE No.	Peak Magnitude (cfs)	Peak Duration (hrs)
1	37,000	96
2	37,000	72
3	37,000	60
4	37,000	48
5	37,000	36
6	37,000	24
7	37,000	12
8	37,000	1
9	35,125	1
10	33,250	1
11	31,375	1

Potential for Fall HFE

- August 28th model results
- Hydrology modeling
 - Observed hourly GCD release (through 8/28)
 - Most probable hydrology
- Sand budget modeling
 - Year-to-date sand load + zero future input

Paria Sand Inputs

Paria River Sand Input July 1 - August 28

Sand Budget Model Results, 2012 Jul - Nov Observed Paria Sand Input through 8/28/2012 Zero Future Paria Sand Input (8/29 - 11/30)

Observed — Avg. Daily Release (cfs)

Questions?

Supplemental Slides

24 Month Study

- Presents 2-year projected operations for the Colorado River system reservoirs given:
 - Existing reservoir conditions
 - Monthly reservoir inflow forecasts (from NWS-CRBRFC)

- Most probable (50%) forecast
- Operational policies & guidelines
- Maximum (90%) and minimum (10%) probable forecasts included in:
 - January
 - April
 - August
 - October

Sand Budget Modeling

- Developed by USGS: "Modeling Long-Term Sediment Budgets in Supply-Limited Rivers" (Wright et. al. 2010)
 - Empirically based rating curves
 - Computes sand budget in 3 reaches
- Inputs
 - Hourly flow in each reach
 - Sediment inputs from Paria and Little Colorado Rivers
- Output
 - Sand mass balance
 - Thickness of bed, D_{50} of bed material, suspended sediment D_{50} and concentration

Sand Budget Modeling

• Model simulates 13 HFEs

- Magnitude 45,000 to 31,000 cfs
- Duration 96 hours to 1 hour
- HFE windows
 - March/April
 - October/November
- Model determines greatest magnitude HFE that will not result in a negative sand balance
 - Spring accounting period (Dec 1 to Jun 30)
 - Fall accounting period (Jul 1 to Nov 30)

Modeling Timeline

Ţ

Modeling for Fall Accounting Period (Jul-Nov)												
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
Hydrology Component												
Most Probable	Х	X	X	X	X	X	X	Х	X	X	X	
Minimum & Maximum	Х			Х								
Sediment Component												
Probabilistic (10,50,90)	Х	Х	X	Х	Х	X	X	Х	X	?	?	
Sediment Input to Date, Zero Future Input							X	Х	Х	x	X	
Modeling Frequency: Event-Driven												
RECIAMATION												

L

NTATT

1

Sand Budget Model Results, 2012 Jul - Nov Zero Paria Sand Input Scenario

Sand Budget Model Results, 2012 Jul - Nov Observed (incl. Upper & Lower est.) Paria Sand Input through 8/28/2012 Zero Future Paria Sand Input (8/29 - 11/30)

