Results of Hoopnet Sampling to Examine Changes in Juvenile Humpback Chub Abundance and Size Before and After the 2004 Experimental High Flow

Lew Coggins, GCMRC
Mike Yard, HSS
Bill Persons, AGFD
Randy Van Haverbeke, USFWS
Josh David, USFWS
Experimental Design

• Hoopnet sampling to be conducted for three days before and after the experimental high flow.

• Sampling locations and protocols identical to those used during mechanical removal operation.

• Dam releases constant 8000 cfs during both sampling events.
Hoopnet Sampling Reaches

Little Colorado River Inflow Hoopnet Sampling Reach

Tanner Hoopnet Sampling Reach

Unkar Hoopnet Sampling Reach

Preliminary Data Subject to Review and Revision 3/3/2005
Humpback Chub Relative Abundance (Catch/Rate)

- LCR Inflow Reach
- Tanner Reach
- Unkar Reach

Preliminary Data Subject to Review and Revision 3/3/2005
Hoopnet Sampling Results – LCR Length Frequency

Pre and post flood length frequency distribution of humpback chub at the LCR hoopnet sampling site

Pre and post flood cumulative length frequency distribution of humpback chub at the LCR hoopnet sampling site

Preliminary Data Subject to Review and Revision 3/3/2005
Hoopnet Sampling Results – Tanner Length Frequency

Pre and post flood length frequency distribution of humpback chub at the Tanner hoopnet sampling site

Pre and post flood cumulative length frequency distribution of humpback chub at the Tanner hoopnet sampling site
Pre and post flood length frequency distribution of humpback chub at the Unkar hoopnet sampling site

Pre and post flood cumulative length frequency distribution of humpback chub at the Unkar hoopnet sampling site

Preliminary Data Subject to Review and Revision 3/3/2005
Preliminary Conclusions

- Relative Abundance of HBC declined by approximately 66% following the EHF in the LCR and Tanner reaches. Relative abundance of HBC was unchanged in the Unkar reach before and after the EHF.

- Length frequency distribution of HBC in the LCR and Tanner reaches was shifted to larger fish following the EHF suggesting a reduction in smaller fish following the EHF.

- Caveat: Concurrent with the EHF the LCR flooded. Therefore, sampling conditions were not identical before and after the EHF (elevated turbidity in the Colorado River).
Preliminary Conclusions

- Preliminary results suggest that the EHF may have been detrimental to juvenile HBC rearing in the LCR and Tanner Reaches.
- Adaptive Management Practitioners should be cognizant of the potential detrimental affects of EHF on juvenile HBC in the mainstem Colorado River.
- The EHF may make it more difficult to determine the effect of mechanical removal on the population dynamics of HBC unless an adequate long term experimental design is adopted to disentangle the affects of multiple types of experimental actions.
Mechanical Removal Reach Effort

Number of Depletion Passes in the LCR Removal Reach

Number of Depletion Passes in the Lava Chuar to Tanner Removal Reach

Number of Depletion Passes in the Tanner to Unkar Removal Reach

Existing Sectors: A, B, C, D, E, F

Proposed Sectors: G, H, I, J

Depletion Passes

Preliminary Data Subject to Review and Revision 3/3/2005
Little Colorado River Removal Reach Results

Electrofishing Catch Rate for Non-Native Fish Species within the Little Colorado River Removal Reach

Preliminary Data Subject to Review and Revision 3/3/2005
Little Colorado River Removal Reach Results

Electrofishing Catch Rate for Native Fish Species within the Little Colorado River Removal Reach

- Bluehead Sucker
- Humpback Chub
- Flannelmouth Sucker
- Speckled Dace

Preliminary Data Subject to Review and Revision 3/3/2005
Little Colorado River Removal Reach Rainbow Trout Removal Efficacy

How fast they come in.... 773/mo

How fast can we take them out...12%/pass

Monthly Rainbow Trout Immigration Rate Into The LCR Removal Reach

Depletion Passes versus Removal Efficiency in the LCR Removal Reach

Preliminary Data Subject to Review and Revision 3/3/2005