Proposed Experimental Flow Design
WY 2002-2003
Adaptive Management Work Group
April 24-25, 2002
Motion Passed by AMWG, January 18, 2002

- Motion: *In concert with RPA flows for native fish during 2002-2003 request that the GCMRC, in consultation with the TWG, design an experimental flow sequence that tests hypotheses for conservation of sediment. Report to AMWG in April 2002 on the proposed flow sequence.*
Response Process

- GCMRC Draft Flow Scenario 1.1 on 2/7/02
- Conference Call Hosted on 2/8/02 For Discussion
- Began Development of Frequently Asked Questions
- Respond to GCRG Memo of Inquiry 2/11/02
- AGFD & GCMRC Staff Met w/Lees Ferry Guides 2/12/02
- GCMRC Mailing to TWG members 2/15/02
 - Draft Flow Scenarios 1.2, FAQ’s, Corrected Fig. 1 (2/22/02)
- GCMRC met with GCROA 2/21/02
- TWG Meeting 2/26-27/02
The WY 2002 – 2003 experimental flow recommendation is intended to have two primary purposes:

- improve retention of sediment in the CRE
- benefit native fish populations (primarily HBC)
Specific Objectives WY 2002 – 2003 Experimental flows

♦ decrease downstream export of tributary input sediment from Marble Canyon
♦ increase short term retention of sediment stored in channel through low flows and long term retention of sediment in shorelines through BHBFs
♦ Reduce non-native fish abundance and thereby improve survival and recruitment of HBC by reducing competition and predation
♦ improve and maintain habitat for young native fish
WY 2002 – 2003 Hydrology Assumption

Recommendations are based on an 8.23 maf water year
Working Hypotheses

- Sediment
 - Sediment not retained under normal ROD operations
 - Tributary input retained best at flows <10,000cfs
 - Fine sediment retained best at lower flows and may contribute to increased turbidity
 - Fine sediment may reduce erosion of bars
 - Experimental flows need to be responsive to opportunities presented by tributary inputs
 - Experimental fluctuating flows combined with BHBF may increase stability of stored sediment
Working Hypotheses (cont.)

- **Native Fish (HBC)**
 - Humpback Chub are not responding favorably to normal ROD operations
 - LCR Humpback Chub population is dependent to some extent on the mainstem
 - Non-native fish populations may be influencing HBC recruitment through predation and/or competition
 - Disadvantaging non-natives (trout) in the mainstem through fluctuating flows may indirectly benefit HBC
 - Sediment experiments may improve habitat and increase turbidity
Adaptive Management

• Sediment elements of experiments are reasonably well understood and likely to produce predicted response
• Fish aspects of experiments are more speculative but considered low risk and represent needed management action to begin addressing decline in HBC
• Experiments are complimentary
Projection of HBC Abundance by Age Class

- >150mm (~Age-2.5)
- Age-3+
- Age-4+
Process (Post AMWG)

- AMWG Recommendation to Secretary
- Design Needed Additional Research & Monitoring Elements in Response to AMWG Action
- Present Research Design and $$ Needs to July AMWG?
Need for Long-term Experimental Framework

Resource Conditions Since Implementation of ROD Flows

- Decline of HBC
- Continued loss of sediment
- Erosion of archaeological sites
- Decline in health of Lees Ferry Trout
Long-term Experimentation

• Move from passive to active AM
• Requires individual treatments embedded in a long-term experimental design
• Each year represents a treatment, it is the individual treatments taken together that represent the experiment
• Treatments need to be strong enough to have a measurable affect
Long-term Experimentation - continued

• Do the treatment first that is most likely to have the desired effect
• Managers retain the right to truncate the experiment when they believe sufficient learning has occurred to recommend a management action
Assumptions Governing the GCMRC Proposal

• Hydrology and reservoir elevation in WY 2002 and 2003 will allow the first two treatment years to be implemented under similar fall flow conditions
• Implement Scenario 1 in year 1
• Implement a Scenario that includes ROD flows and/or HMF flows in year 2
• Sufficient Funding to support the science plan will be available (each treatment will have different costs for monitoring and research)
Overview of Year 1 Treatment

• Aug – Sept: Implement mechanical removal of trout at confluence of LCR
• Aug – Drop to low flows (< 10,000 cfs) if significant sediment inputs occur
• Sept – Dec: Continue low flows (< 10,000 cfs)
• Jan – Implement BHBF if sufficient sediment storage has occurred (45,000 cfs)
• Jan – Mar – Implement high fluctuating flows
• Mar – July: ROD flows and mechanical removal of trout at confluence of LCR
Scenario 1. GCMRC Recommended Water Year 2002-03 Treatment

- **ROD Flows**
- **Tributary Sediment Input**
- **Low Steady Flows to Retain Sediment. Could be low level ROD Flows**
- **BHBF - 45,000 cfs. or higher**
- **Fluctuating Flows for Sediment Re-working and Disadvantaging Non-native Fish Combined with Removal of Non-native Salmonids in the LCR Reach**
- **ROD Operations - Unknown Hydrology for 2003**
Overview of Year 2 Treatment

- Aug – Sept: Low ROD flows, Implement mechanical removal of trout at confluence of LCR
- Sept – Dec: ROD flows
- Jan – Implement BHBF if sufficient sediment storage has occurred
- Jan – Mar – Implement high fluctuating flows
- Mar – July: ROD flows and mechanical removal of trout at confluence of LCR
Scenario 3. January - July Sediment Input with Fluctuating Flows, Mechanical Removal, and BHBF

- **BHBF - 45,000 cfs. or higher**
- **Fluctuating Flows for Sediment Re-working and Disadvantaging Non-native Fish Combined with Removal of Non-native Salmonids in the LCR Reach**
- **ROD Flows**
- **ROD Operations - Unknown Hydrology for 2003**

Maximum Daily Flow

Minimum Daily Flow

<table>
<thead>
<tr>
<th>Date</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug-02</td>
<td></td>
</tr>
<tr>
<td>Sep-02</td>
<td></td>
</tr>
<tr>
<td>Oct-02</td>
<td></td>
</tr>
<tr>
<td>Nov-02</td>
<td></td>
</tr>
<tr>
<td>Dec-02</td>
<td></td>
</tr>
<tr>
<td>Jan-03</td>
<td></td>
</tr>
<tr>
<td>Feb-03</td>
<td></td>
</tr>
<tr>
<td>Mar-03</td>
<td></td>
</tr>
<tr>
<td>Apr-03</td>
<td></td>
</tr>
<tr>
<td>May-03</td>
<td></td>
</tr>
<tr>
<td>Jun-03</td>
<td></td>
</tr>
<tr>
<td>Jul-03</td>
<td></td>
</tr>
<tr>
<td>Aug-03</td>
<td></td>
</tr>
<tr>
<td>Sep-03</td>
<td></td>
</tr>
</tbody>
</table>
Overview of Alternative Year 2 Treatment

• Aug – Sept: Low ROD flows, Implement mechanical removal of trout at confluence of LCR

• Aug – Dec: ROD flows with HMFs during substantial sediment inputs

• Jan – Implement BHBF if sufficient sediment storage has occurred

• Jan – Mar – Implement high fluctuating flows

• Mar – July: ROD flows and mechanical removal of trout at confluence of LCR
COMPARISON OF YEAR 1 & 2 TREATMENT OPTIONS

<table>
<thead>
<tr>
<th></th>
<th>YEAR 1 TREATMENT</th>
<th>YEAR 2 TREATMENT</th>
<th>ALTERNATIVE YEAR 2 TREATMENT</th>
<th>Summer-Fall BHBF (Rubin et al., option 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>steady, low flows followed by BHBF</td>
<td>low ROD operations followed by BHBF</td>
<td>low ROD operations (with peak power plant releases during Paria R. floods) followed by BHBF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Amount of 1 million metric ton sand and 1 million metric ton silt & clay input from the Paria River retained for redistribution during BHBF</th>
<th>Almost all sand and a large amount of silt & clay retained</th>
<th>~75% of sand and moderate amounts of silt & clay retained</th>
<th>~50% of sand and almost no silt & clay retained</th>
<th>10.0% of sand and silt & clay available for BHBF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time to export first half of 1 million metric ton sand input from the Paria River</td>
<td>~70.0 days @ 8,000 cfs</td>
<td>~20.0 days @ fluctuations around 10,000 cfs</td>
<td>~1-2 days @ 31,000 cfs</td>
<td>NEED DATA</td>
</tr>
<tr>
<td></td>
<td>Environmt where retained sediment would be stored prior to the BHBF</td>
<td>Below ~8,000 cfs stage in eddy bars and in channel</td>
<td>Below ~12,000 cfs stage in eddy bars and in channel (If ROD peaks are ~12,000 cfs)</td>
<td>Below ~31,000 cfs stage in eddy bars and channel</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Days of eddy bars deposited during BHBF</td>
<td>FINE TO MODERATE</td>
<td>MODERATE</td>
<td>COARSE</td>
<td>FINE TO MODERATE</td>
</tr>
</tbody>
</table>
Adaptive Management Treatment Options to be determined by Ad Hoc Flow & TWG

Table: Experimental Design, long-term sequence of treatments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WY2002-03</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>WY2003-04</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>WY2004-05</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>WY2005-06</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>WY2016-17</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Desired AMWG Recommendation

• Recommend the adoption of a long-term experimental framework
• Recommend implementation of Scenario 1 in year 1 and a subsequent treatment in year 2
• Recommend that GCMRC in consultation with the TWG and with advice from the Science Advisors develop a detailed long-term plan for implementation of year 3 and beyond treatments
Sand Bar Areas and Volumes in Active Zone (8,000 to 25,000 ft³/s)

- Year
- Mean Daily Discharge
- Sand Bar Areas (m²)
- Sand Bar Volumes (m³)

Graphs showing the change in sand bar areas and volumes over time for Marble C. (n=12) and Grand C. (n=18) from 1990 to 2001.