FY 2000 LOW STEADY SUMN LOW SCIENCE ACTIVITITES | Project
ID | Project Title and PI | |---------------|---| | A. | ECOSYSTEM STUDIES | | 1. a. | Effect of Discharge on Shoreline Channel and Tributary Velocities and the Effect of Thermal Inputs on Mainstem Temperatures PI: Frank Protiva, Shephard-Wesnitzer, Inc. | | 1. b. | Effect of Discharge and Flows on Temperatures in Aquatic Habitats. PI: Wm. Vernieu, GCMRC | | 1. c. | Monitoring Effects of the Test Flow on Suspended Sediment and Turbidity Levels in the Main Channel of the Colorado River. PI: Nancy Hornewer | | 2. a. | Monitoring Effects of Test Flows on Sand Storage in the Main Channel and Eddy Complexes PI: Rod Parnell, NAU | | 3. a. | Effect of Steady vs. Fluctuating Flows on Creation of "Vegetated Shoreline" for Juvenile Fish and Recruitment of Exotic Plants in Newly Available Habitat. PI: Mike Kearsley, NAU | | 3. b.i. | Effect of Low Steady Flows on Drift and Benthic Biomass and Composition in the Lees Ferry Reach and Downstream PI: Dean Blinn, NAU | | 3. b.ii. | Effect of Low Steady Flows on Drift and Benthic Biomass and Composition in the Lees Ferry Reach PI: Bill Persons, AGFD | | 3. c. | Algal Colonization and Recolonization Response Rates During Experimental Low Summer Steady Flows PI: Dean Blinn, NAU and Mike Yard, GCMRC | | 4. a. | Effect of Steady Flows on Relative Abundance and Distribution of Young-of-year Fish Along Shoreline Below the Little Colorado River PI: Rich Valdez, SWCA | | 4. b. | Monitoring of the Colorado River Fish Community PI: Barbara Ralston, GCMRC; Bill Persons, AGFD | | 4. c. | Effects of Flow and Temperature Releases from Glen Canyon Dam on the Accessibility of Suitable Habitat for HBC Juveniles in the Colorado River. PI: Steve Wiele, USGS; Josh Korman, Ecometric | | 4. d. | Effect of Low Summer Steady Flows on Lees Ferry Trout PI: Bill Persons, AGFD | | B. | LAKE POWELL STUDIES Effects of the Low Steady Summer Flow Experiment on the Stratification, Composition, and Hydrodynamics of Lake Powell, and the Downstream Effects of that Limnology. PI: Susan Hueftle and Bill Vernieu, GCMRC | | C. | INTEGRATED MONITORING OF SAND STORAGE AND BUDGET STUDIES | | 1. | Additional Channel-Bed Substrate Mapping PI: R. Anima, D. Rubin, D. Hoagg, P. Chavez 1.a. Bed Grain-Size Change Detection 1.b. 2-D Bed Substrate Change Detection | | 2. | A Collaborative Project Before, During, and After the 31,000 cfs Fall Test Flow With Integrated and Alternative Methods to Monitor Sand Transport and Storage • Team lead & synthesis - Schmidt | 1 | | .iotogrammetry – Horizons Radiometer & CIR - Chavez Change-Detection of Sand Storage in the contiguous study reaches of the Main Channel and Eddy Complexes - Parnell Streamflow and Sediment Modeling - Wiele Intensive Fall 31,000 cfs Suspended-Sediment data collection - USGS | |--|---| | | Change-Detection of Sand Storage in the contiguous study reaches of the Manney Storage in the Contiguous study reaches of | | | Streamflow and Sediment Modeling - Wiele Streamflow and Sediment data collection - USGS | | | Intensive Fall 31,000 Cts Suspended Seminor Data Analysis – Topping Data Analysis – Topping | | | Data Analysis – Topping Aerial Photography and Remote Sensing | |) <u>.</u> | 1. D. Mari | | <u>. </u> | 1. Pre spring 31,000 cfs CIR and B&W Orthophotography | | | 2. CIR and B&W orthophotography of 1st 100 miles | | | a. Thermal IR | | | b. Pre fall 31,000cfs B&W | | | c. Peak 31,00cfs CIR | | | d. Post fall 31,000 cfs B&W | | | 3. CIR of entire CRE (annual overflight with supplement) | | 3. | Survey support: Equipment purchase, rental, etc. | | ī. | Socio-Cui Tural, Work | | 1. | Whitewater boating safety below Lees Ferry | | 1, | | | 2. | Economic impacts to concessionaires: angling & wintewatch boaring | | ٠. | DI: Veon-su Kim, NAU | | 3. | Economic impacts to power customers | | | DI. Clayton Palmer WAPA | | 4. | Changes in whitewater boating trip characteristics | | | PI: NPS and NAU | | 5. | Changes in campable beach area. | | | DI. Lambart | | F. | Logistics 22' and 32' boat rentals, purchase two 30 HP motors, purchase 2 satellite phones, purchase additional trip equipment (kitchen, stove, water | | | 22' and 32' boat rentals, purchase two 30 HP motors, purchase 2 satellite photos, | | • | if action coolers boxes etc.). Electronistic and motor so up | | G. | INFORMATION SYNTHESIS AND DISSEMINATION | | 1. | Science Symposium | | 2. | Contributed Papers Volume | | 3. | GCMRC Program Manager's Synthesis | | H. | LSSF SCIENCE PLANNING | | 1. | Meetings / Travel, etc. |