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1 Introduction and Background 
This document serves as the biological assessment for the Bureau of Reclamation’s 
(Reclamation) re-initiation of consultation on the operation of Glen Canyon Dam and proposed 
experimental flows for the Colorado River below Glen Canyon Dam during the years 2008-2012. 
It is prepared by Reclamation as part of its compliance with the Endangered Species Act of 1973 
(ESA), 87 Stat. 884, as amended, 16 U.S.C. §1531 et seq. This document is designed to facilitate 
compliance with Sections 7 and 9 of the ESA with respect to potential effects to listed species 
within the United States (US).  

1.1 Proposed Federal Action 

Reclamation, an agency within the Department of the Interior (Department), operates Glen 
Canyon Dam of the Colorado River Storage Project as a multipurpose storage facility in northern 
Arizona. Construction of the dam was authorized by the 1956 Colorado River Storage Project 
Act and operation of the dam is governed by a complex set of compacts, federal statutes and 
regulations, court decrees, and an international treaty commonly referred to as the Law of the 
River and as further described in Section 1.2.1. In the 1980s, Reclamation studied the 
relationship between the condition of downstream river resources and operations of Glen Canyon 
Dam, culminating in an environmental impact statement (EIS) finalized in 1995 (Reclamation 
1995). Based on analyses in the EIS, the Secretary of the Interior determined in a 1996 record of 
decision (ROD) that the dam should be operated using the Modified Low Fluctuating Flow 
(MLFF) Alternative. Region 2 of the U.S. Fish and Wildlife Service (FWS) issued a biological 
opinion on implementation of the MLFF in 1995 (FWS 1995). The fundamental direction 
contained in the 1995 Biological Opinion was that future modifications to Glen Canyon Dam 
operations be analyzed in the context of adaptive management. The 1996 ROD established the 
Glen Canyon Dam Adaptive Management Program (AMP). Reclamation has undertaken a 
number of experimental actions consistent with these elements of the ROD and the Biological 
Opinion; these experimental actions have involved section 7 consultation with the FWS 
regarding benefits and impacts to listed species, and are fully identified and described in Section 
2.1. 

In a letter to the FWS dated November 13, 2007, Reclamation requested re-initiation of formal 
ESA Section 7 consultation on the operation of Glen Canyon Dam. This request is based on the 
acquisition of new scientific information about the status and trends of federally listed species 
and effects of dam operations on the species and critical habitat. In a letter dated December 5, 
2007, the FWS provided Reclamation with a species list that included humpback chub, razorback 
sucker, Kanab ambersnail, and Southwestern willow flycatcher.  

The request is also based on the fact that Reclamation proposes to conduct experimental releases 
from Glen Canyon Dam, including one experimental high flow test during 2008 and five years of 
experimentation implementing steady dam releases during the months of September and October 
for the period 2008 - 2012. This action is intended to assist in the conservation of endangered 
species as well as providing benefits to sediment conservation, increase scientific understanding, 
and to collect data for use in determining future dam operations. Scientific information leading to 
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re-initiation of ESA consultation and the identification of the Proposed Action and preparation of 
this BA have been developed based on nearly 30 years of experimentation, research, and 
monitoring of resources of the Colorado River below Glen Canyon Dam, with emphasis on 
information gained through experimentation and monitoring under the auspices of the AMP, 
pursuant to the framework required by the 1995 biological opinion. This information includes 
results of studies gained through implementation of the 2002 Experimental Plan that was the 
subject of previous Section 7 consultation, and undertaken as part of the AMP, as provided in the 
1996 ROD. This research and monitoring information was collected as part of the AMP through 
a cooperative effort with the US Geological Survey’s Grand Canyon Monitoring and Research 
Center (GCMRC). Participants within the AMP that have contributed the new research and 
monitoring information include the Adaptive Management Work Group, the Technical Work 
Group, Science Advisors, and scientists. It is important to note that the Proposed Action is 
expected to produce an overall additional positive benefit to endangered species (over and above 
the recent improving status of the endangered humpback chub), as well as critical habitat 
downstream of Glen Canyon Dam. Reclamation’s conclusion is that this overall additional 
positive benefit will exceed anticipated short-term minor impacts to some resources, including 
anticipated temporary downstream displacement of humpback chub during experimental high-
flow releases designed to enhance areas of backwater habitat.  

1.2 Relevant Statutory Authority 

In compliance with ESA §7(a)(2) and its implementing regulations, Reclamation is responsible 
for defining the extent of its discretionary authority with respect to this action. Reclamation's 
authority stems from the following laws.  

1.3 The Law of the River 

The 1922 Colorado River Compact divided the mainstream Colorado River and tributaries above 
Lee Ferry (approximately one mile below the confluence of the Paria and Colorado rivers) into 
the Upper Basin, and the river and tributaries below that into the Lower Basin. The Secretary of 
the Interior is vested with the responsibility to manage the mainstream waters of the Lower Basin 
pursuant to applicable federal law. The responsibility is carried out consistent with a body of 
documents commonly referred to as the Law of the River. While there is no universally accepted 
definition of this term, the Law of the River comprises numerous operating criteria, regulations, 
and administrative decisions included in federal and state statutes, interstate compacts, court 
decisions and decrees, an international treaty, and contracts with the Secretary.  

Notable among these documents are:  

1) The Colorado River Compact of 1922 (Compact), which apportioned beneficial 
consumptive use of water, in perpetuity, between the Upper Basin and Lower Basin;  

2) The 1944 Treaty (and subsequent minutes of the International Boundary and Water 
Commission) related to the quantity and quality of Colorado River water delivered to 
Mexico;  
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3) The Upper Colorado River Basin Compact of 1948, which apportioned the Upper Basin 
water supply among the Upper Basin states;  

4) The Colorado River Storage Project Act of 1956 (CRSPA), which authorized a 
comprehensive water development plan for the Upper Basin, including the construction 
of Glen Canyon Dam and other facilities;  

5) The 1963 United States Supreme Court Decision in Arizona v. California which 
confirmed that the apportionment of the Lower Basin tributaries was reserved for the 
exclusive use of the states in which the tributaries are located; confirmed the Lower Basin 
mainstream apportionments of 4.4 million acre-feet (maf) for use in California, 2.8 maf 
for use in Arizona and 0.3 maf for use in Nevada; provided water for Indian reservations 
and other federal reservations in California, Arizona and Nevada; and confirmed the 
significant role of the Secretary in contracting for, and managing the mainstream 
Colorado River within the Lower Basin; 

6) The 1964 US Supreme Court Decree in Arizona v. California which implemented the 
Court’s 1963 decision; the Decree was supplemented over time after its adoption and the 
Supreme Court entered a Consolidated Decree in 2006 which incorporates all applicable 
provisions of the earlier-issued Decrees; 

7) The Colorado River Basin Project Act of 1968 (CRBPA) which authorized construction 
of a number of water development projects including the Central Arizona Project and 
required the Secretary to develop Criteria for Coordinated Long-Range Operation of 
Colorado River Reservoirs (LROC), and issue an annual operating plan (AOP) that, 
among other information, identifies the anticipated annual operation for mainstream 
Colorado River reservoirs. The AOP is a single, integrated reference document required 
by section 602(b) of the CRBPA regarding past and anticipated operations;  

8) The Colorado River Basin Salinity Control Act of 1974, which authorized a number of 
salinity control projects and provided a framework to improve and meet salinity standards 
for the Colorado River in the United States and Mexico; and  

9) The Grand Canyon Protection Act of 1992, which addressed the protection of resources 
in Grand Canyon National Park and in Glen Canyon National Recreation Area, consistent 
with applicable federal law. 

1.4 Detailed Description of the Proposed Action 

1.4.1 Proposed Operation of Glen Canyon Dam  
The Proposed Action is to continue Modified Low Fluctuating Flow releases as described in the 
1995 EIS. Nothing in this Proposed Action would modify the annual volume of water released 
from Glen Canyon Dam; this determination is made pursuant to the 2007 Colorado River Interim 
Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake 
Mead (Guidelines or Shortage ROD). These Guidelines were adopted pursuant to a ROD, signed 
by the Secretary of the Interior on December 13, 2007.  
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As Reclamation implements the Shortage ROD, MLFF flows will be released as provided in the 
1996 ROD, which places significant constraints on allowable fluctuations of powerplant releases. 
Section 2.2 describes these constraints in greater detail (Table 5). Exception criteria as outlined 
in the 1997 Glen Canyon Dam Operating Criteria would also continue. 

As part of this experimental action, Reclamation proposes to incorporate experimental flows that 
have been designed to benefit endangered humpback chub and conservation of sediment 
resources in Grand Canyon. The experimental Proposed Action is: (1) an experimental high flow 
test of approximately 41,500 cubic feet per second (cfs) for a maximum duration of 60 hours in 
March 2008, and (2) fall (September and October) steady flows over the next five years (2008 - 
2012). The high flow test hydrograph will duplicate the November 2004 high flow test 
hydrograph and consists of the following elements:  

● on the evening of March 2, 2008 (or other approximate date in early March 2008) the 
MLFF release pattern will increase at a rate of 1,500 cfs/hour until powerplant capacity is 
reached; 

● once powerplant capacity has been reached each of the four bypass tubes will be opened 
beginning on the morning of March 3, 2007, where once every three hours bypass 
releases will be increased by 1,875 cfs until all bypass tubes are operating at full capacity 
for a total bypass release of 15,000 cfs; 

● an essentially constant flow of 41,5001 cfs will be maintained for 60 hours, with flow 
changes less than 1,000 cfs/day; 

• discharge will then be decreased at a down-ramping rate of 1,500 cfs/hour until the 
normal powerplant releases scheduled for March have been reached2;  

The steady releases during September and October of 2008 through 2012 will include the 
following constraints: 

● the typical monthly dam release volumes will be maintained in all water years except water 
year (WY) 2008, where reallocation of water would occur for the high flow test in March;  

● the dam releases for September and October will be steady3, with a release rate 
determined to yield the appropriate monthly release volume; 

                                                 
1 Maximum capacity value calculated from the November 24-Month Study projected March 2008 Lake Powell 
reservoir elevation of 3586 feet and interpolated from the maximum full gate turbine capacity for seven units. One 
of the powerplant units will be off-line for repairs and unavailable for use in the experiment. 

2 If this element of the Proposed Action is undertaken, implementation of the high flow experiment will not affect 
the annual volume of water released from Glen Canyon Dam during WY 2008. 

3 Regulation release capacity of +/- 1,200 cfs will be available if needed for hydropower system regulation within 
each hour during the steady flow periods.  Also, spinning reserves will be available if needed for emergency 
response purposes.  
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● If possible, the monthly dam release volumes should be managed and determined to 
produce similar volumes in the months of September and October (Table 1).  

Monthly dam release volumes during the period of the Proposed Action could vary depending on 
the annual water release volume, as determined by the Shortage ROD. After 2012, releases 
would be made according to the 1996 ROD unless the AMP proposes and Reclamation 
implements experimental alternative release patterns. 

Water year 2008 monthly water release volumes would be adjusted to provide water for a March 
high flow test (Table 1), but this would not cause the annual release from Glen Canyon Dam in 
WY 2008 to change. Maximum releases during March 2008 under the Proposed Action would be 
approximately 41,500 cfs during the peak high experimental flows. Tables 2 and 3 provide 
monthly release volumes and mean, minimum, and maximum daily releases for 10th, 50th, and 
90th percentiles determined for the Shortage EIS and ROD (Reclamation 2007). The 7.48 maf 
release pattern corresponds to the 10th percentile category (dry hydrology), the 50th percentile 
corresponds to the 8.23 maf pattern, and the 12.3 maf monthly release pattern (wet hydrology) 
corresponds to the 90th percentile volume for the period of the Proposed Action (2008-2012). 
All monthly volumes are modeled volumes and subject to change based on actual hydrology and 
operations.  

Releases greater than 9.5 maf generally occur during periods of equalization of reservoir storage 
contents between Lake Powell and Lake Mead. Implementation of equalization and balancing 
will follow the Shortage ROD. When operating in the equalization tier, the upper elevation 
balancing tier, or the lower elevation balancing tier, scheduled water year releases from Lake 
Powell will be adjusted each month based on forecasted inflow and projected September 30 
active storage at Lake Powell and Lake Mead, as discussed in the Shortage ROD.  

The high flow test is intended to create and improve eddy complexes, including backwater 
habitats and beaches. With respect to potential benefits for native fish, the hypothesis to be tested 
is that widespread beach building and sediment retention will result from controlled releases 
from the dam under sediment-enriched conditions in Grand Canyon. It is also hypothesized that 
high releases from the dam will increase sandbar crest height, while increasing return channel 
depth through scouring. If these geomorphic changes occur as a result of the high flow test, 
greater and more persistent backwaters could be created, which may benefit conservation of the 
humpback chub and other native fish species. 

Second, by steadying flows during September and October, backwater and other near shore 
habitat used by young native and endangered fish will become more hydraulically stable, with 
potentially warmer water temperatures than would exist under regular MLFF operations. These 
changes could create conditions for improved young-of-year humpback chub survival and 
growth rates, more persistent suitable habitat (depth and velocity over preferred substrates), and 
increased productivity of algal and invertebrate prey items for use by humpback chub.  

Reclamation considers the high flow test and the steady fall releases experimental actions to 
better understand benefits to humpback chub and native fish. Hence, the evaluation of the high 
flow test should focus on benefits to shaping humpback chub habitat, especially nursery 
backwaters, and the possible downstream transport of young humpback chub. Evaluation of the 
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steady fall flow is important to better understand the contrast between fluctuating flows and 
steady flows with respect to the extent of longitudinal warming, warming of shoreline habitats 
and nursery backwaters, stability of shoreline habitats, and the effect on humpback chub 
survival, growth, and bioenergetic expenditure. Full evaluation of this aspect of the Proposed 
Action is important to better understand how such test flows affect humpback chub and long-
term species conservation. There is a high likelihood that dam releases during this proposed five-
year experiment will be cool or cold. If so, this experiment also could provide the opportunity to 
contrast recent years of cool to warm release temperatures (2003 - 2005) with cool to cold 
release temperatures during the test period. 

Table 1. Projected Glen Canyon Dam releases for Water Year 2008 
 Without Proposal (No Action) Proposed Action  

Month Monthly 
Volume 
(maf) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Monthly 
Volume 
(maf) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Oct 600 9,758 6,800 12,800 601 9,774 6,800 12,800
Nov 600 10,083 7,100 13,100 604 10,134 7,200 13,200
Dec 800 13,011 9,000 17,000 800 13,011 9,000 17,000
Jan 800 13,011 9,000 17,000 800 13,011 9,000 17,000
Feb 600 10,804 7,800 13,800 600 10,804 7,400 13,400
Mar 600 9,758 6,800 12,800 830 13,499 7,200 13,200
Apr 600 10,083 7,100 13,100 550 9,243 6,200 12,200
May 600 9,758 6,800 12,800 555 9,042 6,000 12,000
Jun 650 10,924 7,900 13,900 650 10,924 7,900 13,900
Jul 850 13,824 9,800 17,800 820 13,336 9,300 17,300
Aug 900 14,637 10,600 18,600 820 13,336 9,300 17,300
Sep 630 10,588 7,600 13,600 600 10,083 10,083 10,083
 

Table 2. Projected releases from Glen Canyon Dam without the Proposed Action under dry (7.48 
maf), median (8.23 maf), and wet (12.3 maf) conditions, 2009-2012  
 7.48 maf 8.23 maf 12.3 maf 
 Month Mean 

(cfs) 
Min 
(cfs) 

Max 
(cfs) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Oct 7,502 5,300 10,300 9,758 6,800 12,800 9,378 6,800 12,800 
Nov 7,563 5,900 10,900 10,083 7,100 13,100 9,075 7,100 13,100 
Dec 9,378 6,800 12,800 13,011 9,000 17,000 12,503 9,000 17,000 
Jan 12,503 9,000 17,000 13,011 9,000 17,000 17,510 14,200 22,200 
Feb 8,470 7,800 13,800 10,804 7,800 13,800 13,903 13,700 21,700 
Mar 9,378 6,800 14,800 9,758 6,800 12,800 14,776 11,400 19,400 
Apr 7,563 5,900 10,900 10,083 7,100 13,100 14,551 12,200 20,200 
May 9,378 6,800 12,800 9,758 6,800 12,800 14,880 11,500 19,500 
Jun 9,075 7,100 13,100 10,924 7,900 13,900 17,009 14,900 22,900 
Jul 12,503 9,000 17,000 13,824 9,800 17,800 19,776 16,600 24,600 
Aug 12,503 9,000 17,000 14,637 10,600 18,600 23,883 20,900 25,000 
Sep 9,075 7,100 13,100 10,588 7,600 13,600 21,056 19,400 25,000 
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Table 3. Projected releases from Glen Canyon Dam with the Proposed Action under dry (7.48 
maf), median (8.23 maf), and wet (12.3 maf) conditions, 2009-2012 
 7.48 maf 8.23 maf 12.3 maf 
Month Mean 

(cfs) 
Min 
(cfs) 

Max 
(cfs) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Mean 
(cfs) 

Min 
(cfs) 

Max 
(cfs) 

Oct 7,502 7,002 8,002 9,758 9,258 10,258 9,378 8,878 9,878 
Nov 7,563 5,900 10,900 10,083 7,100 13,100 9,075 7,100 13,100 
Dec 9,378 6,800 12,800 13,011 9,000 17,000 12,503 9,000 17,000 
Jan 12,503 9,000 17,000 13,011 9,000 17,000 17,510 14,200 22,200 
Feb 8,470 7,800 13,800 10,804 7,800 13,800 13,903 13,700 21,700 
Mar 9,378 6,800 14,800 9,758 6,800 12,800 14,776 11,400 19,400 
Apr 7,563 5,900 10,900 10,083 7,100 13,100 14,551 12,200 20,200 
May 9,378 6,800 12,800 9,758 6,800 12,800 14,880 11,500 19,500 
Jun 9,075 7,100 13,100 10,924 7,900 13,900 17,009 14,900 22,900 
Jul 12,503 9,000 17,000 13,824 9,800 17,800 19,776 16,600 24,600 
Aug 12,503 9,000 17,000 14,637 10,600 18,600 23,883 20,900 25,000 
Sep 9,075 8,575 9,575 10,588 10,088 11,088 21,056 20,556 21,556 

 

1.4.2 Basis and Approach to Proposed Action 
The purpose of the special experimental high flow test is to take advantage of large amounts of 
sediment available in the Grand Canyon that currently exist in order to further analyze, through a 
high flow test, the effectiveness of such an approach to protect and improve downstream 
resources in the Grand Canyon.  

Following the proposed experimental high flow test, the Department will analyze the data 
collected during the test, as well as information collected during the previous 1996 and 2004 
high flow experiments, and other information, in order to develop predictive models and other 
analytical tools to better inform future decision making regarding dam operations and other 
related management actions. The Department does not propose through this Proposed Action to 
undertake any further experimental high flow testing until the information from this element of 
the Proposed Action is fully analyzed, presented to the Adaptive Management Work Group and 
the general public and can be integrated into an appropriate analytical framework based on 
predictive models and other analytical tools. 

In proposing this element, the Department intends to undertake a unique experiment based on the 
extremely favorable sediment conditions afforded by recent high-volume 2006-2007 sediment 
inputs into the Grand Canyon below Glen Canyon Dam. In proposing this high flow experiment, 
the Department is not modifying, in any manner, the current long-term management approach to 
implementation of “beach-habitat building flows” as described in section 3 of the Operating 
Criteria for Glen Canyon Dam, published at 62 Fed. Reg. 9447 (Mar. 3, 1997). As provided in 
section 3 of the Operating Criteria, in adopting the management approach for “beach-habitat 
building flows” the Secretary found that releases pursuant to such an approach “are consistent 
with the 1956 Colorado River Storage Project Act, the 1968 Colorado River Basin Project Act, 
and the 1992 Grand Canyon Protection Act.” Id. While no modification is proposed or 
anticipated at this time, any future potential modification of the 1996 ROD or 1997 Glen Canyon 
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Dam Operating Criteria would only occur after public review, comment and consultation, as well 
as any required environmental compliance efforts.  

The Department recognizes that differences exist with respect to interpretations of certain 
provisions contained in the "law of the river" related to the implementation of “beach-habitat 
building flows (BHBFs)” and the proper application and interpretation of those provisions of 
law. In proposing a single experimental high flow test of approximately 41,500 cfs for a 
maximum duration of 60 hours in March 2008, the Department does not intend at this time to 
revisit or modify, in any manner, the determinations or considerations that led to the adoption of 
the management approach for BHBFs contained in Section 3 of the 1997 Glen Canyon Dam 
Operating Criteria or the 1996 ROD. Nor does the Department intend that the implementation of 
this experimental high flow test constitute a formal determination regarding the multiple and 
complex issues that would need to be considered in the event that a decision were made to revisit 
the BHBF management strategy contained in Section 3 of the Glen Canyon Operating Criteria. 
Accordingly, the Department recognizes that positions and rights concerning the issues related to 
BHBF management strategies and releases of water from Lake Powell are reserved, and shall not 
prejudice the position or interests of any stakeholder. The Secretary, through this Proposed 
Action, makes no determination with respect to the correctness of any interpretation or position 
of the individual Colorado River Basin states or any other stakeholder. Implementation of this 
element of the Proposed Action shall not represent a formal interpretation of existing law by the 
Secretary, nor predetermine in any manner, the means of operation of Glen Canyon Dam that the 
Secretary may adopt in the future following implementation of the Proposed Action, nor the 
design and implementation of future experimental actions.  

1.4.3 Geographic Scope and Extent of Action Area 
The area directly affected by this Proposed Action is Glen Canyon Dam in Coconino County, 
Arizona downstream to Separation Canyon, Mohave County, Arizona below the 41,500 cfs stage 
level of the Colorado River, as shown in Figure 1. Below Separation Canyon, ESA compliance is 
not addressed within the AMP but within the Lower Colorado River Multi-species Conservation 
Program (MSCP). The MSCP addresses areas up to and including the full-pool elevation of Lake 
Mead, and downstream areas along the Colorado River within the U.S.  
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Figure 1. Action area from below Glen Canyon Dam to Separation Canyon. 
 

1.5 Species Identified for Analysis 

Four species identified as threatened or endangered are addressed in this biological assessment: 
Kanab ambersnail (Oxyloma haydeni kanabensis), humpback chub (Gila cypha), razorback 
sucker (Xyrauchen texanus), and southwestern willow flycatcher (Empidonax traillii extimus). 
Critical habitat also is considered for humpback chub, razorback sucker, and southwestern 
willow flycatcher. The list of species is based on a December 5, 2007, letter from the FWS. This 
biological assessment summarizes Reclamation’s consultation history, actions taken in response 
to the 1995 biological opinion, and distribution and abundance, life requisites, new information 
resulting from onsite inspections, views of recognized experts, review of the current literature, 
and potential impacts of the test flows on these species and their habitats. Summary effect 
determinations are provided in Table 4. 

Table 4. Summary of effects determinations for the four listed species 

Species Determination Basis for Determination 

 

Humpback chub 

 

May affect, is likely to 
adversely affect 

Take could occur from downstream 
transport during high flow test; long-
term benefit to critical habitat from high 
flow test and potential benefit to 
juvenile fish from steady fall flows 
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Razorback sucker May affect, not likely to 
adversely affect 

Critical habitat in action area is 
unoccupied 

Kanab ambersnail May affect, is likely to 
adversely affect 

A percentage of snails and habitat will 
be translocated during high flow test; 
while moving snails, some take may 
occur resulting in an adverse effect; 
no effect on snails or habitat would 
result from steady fall flows 

Southwestern willow 
flycatcher 

May affect, not likely to 
adversely affect 

Birds will not be present during high 
flow test, resulting in no effect; birds 
will be off nests by Sept-Oct, but they 
will be foraging and there could be 
some indirect effect to their food 

 

1.6 Summary of New Information 

The following bullets identify the key elements of new information referenced in Section 3.2 
with respect to these species. 

1.6.1 Fluvial Geomorphology and High Flow Tests 
• The EIS assumption about main channel accumulation of sediment during years of below 

average sediment and constant sediment rating curves has been shown to be an incorrect 
assumption based on more recent monitoring and experimentation (Topping et al. 2000a, 
b). 

• Sediment rates vary significantly with grain size (Topping et al. 2000a, b). 

• Tributary inputs are typically transported downstream within months under ROD 
operations (Rubin et al. 2002). 

• Current sediment in the upper reaches of the Grand Canyon are the highest since 1998, 
and are three times the amount available at the time of the 2004 high flow test. 

• Above average sediment inputs were unexpectedly retained during 2006-2007 (USGS 
2006b). 

1.6.2 Backwaters 
• Persistence of backwaters created during 1996 appeared to be strongly influenced by 

post-high flow dam operations (Brouder et al. 1999). 

• Biological effects of fluctuating flows include reduced availability of invertebrate prey, 
water exchange with main channel, and reduced temperature (Grand et al. 2005). 

• There is a strong need for additional research on relationship between backwaters and 
fish habitat suitability and humpback chub survival and recruitment. 
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1.6.3 Water Temperature and Flow Regime 
• Reduced Lake Powell elevations can produce significant increases in dam release 

temperatures. 

• Downstream warming of water is directly affected by seasonal climatology and water 
release volumes (Vernieu et al. 2005). 

• Nearshore river areas warm substantially for brief periods each day (Korman 2006). 

• Modeling predicts dam releases likely will be cold (<11 °C) during the five years of the 
Proposed Action. 

1.6.4 Humpback Chub 
• Recruitment failure through the mid-1990’s resulted in a decline of the Little Colorado River 

(LCR) population of humpback chub to 2,400 to 4,400 adult fish (Coggins et al. 2006). 

• Increase in recruitment of humpback chub under MLFF began 4 to 9 years prior to 
implementation of non-native fish control, warmer dam release temperatures, the 2000 
steady flow experiment, and the 2004 high flow test (Coggins 2007). 

• Significantly greater numbers of young humpback chub have been found in the mainstem 
during 2002 to 2006, including upstream of the LCR (Ackerman 2007). 

• Current adult population estimates for humpback chub have increased to an estimated 
5,300 to 6,800 adult fish in 2006 (Coggins 2007). 

• Humpback chub translocated above Chute Falls have experienced high survival and 
growth rates, and are a source of recruitment to the lower LCR and the mainstem (Stone 
2007). 

• Douglas and Douglas (2007) recommended further study of the 30-mile aggregation of 
humpback chub to evaluate their potential distinctiveness.  

• Mainstem parasite infestation rates in humpback chub are much lower than fish in the LCR, 
and may be temperature-limited (Arizona Game and Fish Department [AGFD] 1996). 

• Hoffnagle (2000) reported greater condition and abdominal fat of humpback chub in the 
mainstem than the LCR, possibly due to increased prevalence of parasites in the LCR 
fish. 

1.6.5 Non-Listed Native and Non-native Fish 
• The Grand Canyon fish community has shifted in the last five years from one dominated 

by non-native salmonids to one dominated by native species (Ackerman 2007). 

• Trout abundance in the Lees Ferry reach has declined but trout condition has increased, 
reflecting a strongly density dependent fish population (McKinney and Speas 2001). 

• A wide range of non-native fish have been captured in the LCR (Stone 2007), indicating 
that the LCR is a viable conduit for introduction of non-native fish into the mainstem. 

1.6.6 Non-native Fish Control 
• Electrofishing has reduced the rainbow trout population in the vicinity of the LCR 

confluence by about 90 percent during 2003-2006 (GCMRC unpublished data). 
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• Backpack electroshocking in Bright Angel and Shinumo Creeks [has reduced rainbow 
trout populations] by about 50 percent (Leibfried 2006). 

 

2 Environmental Baseline  

2.1 Regulatory Context 

The focus of this biological assessment is on the threatened and endangered species that live in 
the Colorado River and floodplain between Glen Canyon Dam and Separation Canyon, near the 
inflow area of Lake Mead, Coconino and Mohave counties, northern Arizona (Figure 1). The 
river flows through the lowermost portion of Glen Canyon National Recreation Area and Grand 
Canyon National Park.  

Observed flows recorded at Lees Ferry, Arizona surface water discharge station for the period 
1922 through 2006 are shown in Figure 2. Flow in the Colorado River has varied significantly 
during the 20th century due to a combination of El Niño-Southern Oscillation (ENSO) and 
Pacific Decadal Oscillation (PDO) processes and due to consumptive use upstream (Webb et al. 
2005). For example the highest annual flow volume occurred in 1984 (22.2 maf), and the highest 
three-year average flow was 20.3 maf for the period 1983-1985. Prior to the current drought, the 
lowest previous three-year average flows were 7.3 maf from 1954-1956 and 8.0 maf from 1933-
1935 (Webb 2004). This variability in annual flow, as well as the water temperature of 
discharges from Lake Powell as a result of the construction of Glen Canyon Dam, were 
previously considered by the FWS in their 1995 biological opinion, and thus are part of the 
baseline.  
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Figure 2. Observed annual stream flow volume (million acre feet) for the Colorado River at Lee's 
Ferry, AZ, 1922 to 2006.  
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The eight-year period from 2000 through 2007 was the driest eight-year period in the 100-year 
historical record of the Colorado River. This drought in the Colorado River Basin has reduced 
Colorado River system storage, while demands for Colorado River water supplies have 
continued to increase. From October 1, 1999 through September 30, 2007, storage in Colorado 
River reservoirs decreased from 55.8 maf (approximately 94 percent of capacity) to 32.1 maf 
approximately 54 percent of capacity), and was as low as 29.7 maf (approximately 52 percent of 
capacity) in 2004. Annual releases from Glen Canyon Dam since 2000 have not exceeded 8.23 
maf.  

Following adoption of the 1996 ROD, Glen Canyon Dam has been operated in accordance with 
release constraints in Table 5, aside from specific experimental releases in 1996, 1997, 2000 and 
2004. These requirements, coupled with those from the Department’s Shortage ROD (2007) and 
its associated biological opinion (FWS 2007), serve as the regulatory baseline for this biological 
assessment.  

Table 5. Glen Canyon Dam release constraints under the 1996 ROD and 1997 Glen Canyon 
Operating Critera 
 

 
Parameter 

Release Volume  
(cfs) 

 
Conditions 

Maximum Flow1 25,000  
Minimum Flow 5,000 Nighttime 
 8,000 7:00 a.m. to 7:00 p.m. 
Ramp Rates   
Ascending 4,000 Per hour 
Descending 1,500 Per hour 
Daily Fluctuations2 5,000 to 8,000  

 
1 May be exceeded for emergency and during extreme hydrological conditions. Emergency exception 

criteria also exist during normal operations.  
2 Daily fluctuation limit is 5,000 cubic feet per second (cfs) for months with release volumes less than 

0.6 maf; 6,000 cfs for monthly release volumes of 0.6 maf to 0.8 maf; and 8,000 cfs for monthly 
volumes over 0.8 maf. 

 

Since 1970, the annual volume of water released from Glen Canyon Dam has been made 
according to the provisions of the LROC that include a minimum objective release of 8.23 maf. 
The Shortage ROD (Reclamation 2007b), which implements relevant provisions of the LROC 
for an interim period through 2026, allows Reclamation to modify these operations by allowing 
for potential annual releases both greater than and less than the minimum objective release under 
certain conditions. However, even in years with an annual release less than 8.23 maf, daily and 
hourly releases would continue to be made according to the parameters of the 1996 Glen Canyon 
Dam ROD (Reclamation 1996b), which would not be affected in any manner by the Proposed 
Action. See discussion at Shortage 2007 biological opinion (FWS 2007) and Section 2.2.6 
(infra). By comparison, the No Action alternative as described in the Shortage FEIS 
(Reclamation 2007a) depicts how Reclamation would likely have operated Glen Canyon Dam 
under shortage conditions without adoption of the Guidelines. 
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Cold water discharges that have adversely affected native warm water fish and their habitat are 
part of the baseline. Variations in water year annual releases are in the baseline due to 
consultations resulting in the 1995 and 2007 biological opinions. Monthly releases that were the 
subject of prior consultations, as well as the daily fluctuation patterns in Table 5, are also in the 
baseline. 

2.2 Related Consultation History and Experimental Actions Pursuant 
to the AMP 

Reclamation has consulted with the FWS under section 7 of the ESA for various projects that 
could have had effects on ESA listed species and designated critical habitat within the action 
area, leading to the definition of the current baseline. Since 1995, Reclamation has consulted 
with FWS on a total of 5 important experimental actions, and undertaken a sixth experimental 
action that did not required separate ESA consultation. This history is listed and described below. 
The FWS issued a “jeopardy” biological opinion in the 1995 biological opinion, but non-
jeopardy opinions on all other actions.  

2.2.1 1996 Record of Decision on the Operation of Glen Canyon Dam 
Reclamation received a final biological opinion from the FWS on the proposed preferred 
alternative for the Operation of Glen Canyon Dam EIS in January 1995. The FWS concluded 
that without the included reasonable and prudent alternative, implementation of the MLFF 
alternative was likely to jeopardize the continued existence of the humpback chub and razorback 
sucker and was likely to destroy or adversely modify their critical habitat, but was not likely to 
jeopardize the bald eagle, Kanab ambersnail and peregrine falcon. The 1995 biological opinion 
on the Operation of Glen Canyon Dam identified one reasonable and prudent alternative (RPA) 
containing four elements that were necessary to avoid jeopardizing the continued existence of the 
humpback chub and razorback sucker. These elements are described in more detail in Section 
3.1. Reclamation has implemented these elements through the principles of adaptive 
management since 1996 within the Glen Canyon Adaptive Management Program. The FWS has 
agreed with Reclamation that sufficient progress has been made on some elements of the 1995 
biological opinion, which are discussed in detail below in Section 3. Among other 
considerations, Reclamation has formulated this Proposed Action to address areas that have been 
identified as not fully achieving sufficient progress. 

2.2.2 Spring 1996 High Flow Test from Glen Canyon Dam 
Consultation was initiated in November of 1995 for a proposed high flow test from Glen Canyon 
Dam in the spring of 1996 in the Colorado River. Consultation with the FWS was re-initiated on 
the preferred alternative from the 1995 FEIS because a new species was listed since the original 
consultation (southwestern willow flycatcher with proposed critical habitat), and new 
information revealed that incidental take for the Kanab ambersnail determined in the January 
1995 biological opinion preferred alternative would be exceeded. Reclamation concluded in its 
biological assessment that the test would have no effect on the endangered peregrine falcon, 
threatened bald eagle and the endangered razorback sucker. The FWS concluded it its biological 
opinion that the proposed test was not likely to jeopardize the continued existence of the 
humpback chub, Kanab ambersnail and southwestern willow flycatcher, and was not likely to 
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destroy or adversely modify humpback chub critical habitat. The FWS also provided a 
conference opinion that the test was not likely to destroy or adversely modify proposed 
southwestern willow flycatcher critical habitat. 

2.2.3 November 1997 Fall Test Flow from Glen Canyon Dam 
The 1997 action was proposed as a test of a powerplant capacity release of 31,000 cfs for 48 
hours. While powerplant capacity releases were described in the 1995 EIS as habitat 
maintenance flows, such a test in the fall was not addressed in the 1995 FEIS, which necessitated 
additional consultation. The FWS in its biological opinion concluded that the test flow was not 
likely to jeopardize the continued existence of the humpback chub or Kanab ambersnail and was 
not likely to destroy or adversely modify designated critical habitat for the humpback chub. The 
FWS concluded the action would have no effect on the bald eagle or the American peregrine 
falcon. 

2.2.4 2000 Steady Flow Test from Glen Canyon Dam 
During the period March 25, 2000 through September 30, 2000, Reclamation conducted a 6-
month test of steady flows, high in the spring and low during the summer and fall. Included were 
two high flow releases at powerplant capacity (31,000 cfs) during early-May and early 
September. Releases from late-March to late-May were generally steady at about 17,000 cfs, 
except for a week of high releases of about 19,000 cfs during late-May. Releases during the 
remainder of the period were steady at 8,000 cfs. This test was performed in accordance with the 
1995 biological opinion element, so no additional consultation with FWS was conducted. 

2.2.5 2002-2004 Experimental Releases from Glen Canyon Dam and Removal of 
Non-Native Fish 
In 2002, Reclamation, the National Park Service (NPS), and the United States Geological Survey 
(USGS) consulted with the FWS on: (1) experimental releases from Glen Canyon Dam, (2) 
mechanical removal of non-native fish from the Colorado River in an approximately 9-mile 
reach in the vicinity of the mouth of the Little Colorado River to potentially benefit native fish, 
and (3) release of non-native fish suppression flows having daily fluctuations of 5,000-20,000 cfs 
from Glen Canyon Dam during the period January 1-March 31. Implicit in the experimental 
flows and mechanical removal Proposed Action was the recognition that modification of dam 
operations alone likely would be insufficient to achieve objectives of the AMP, which include 
removal of jeopardy from humpback chub and razorback sucker. 

In their biological opinion, the FWS concluded the Proposed Action was not likely to jeopardize 
the continued existence of the humpback chub, Kanab ambersnail, bald eagle, razorback sucker, 
California condor, and southwestern willow flycatcher. The December 2002 biological opinion 
included incidental take of up to 20 humpback chub during the non-native fish removal efforts 
and the loss of up to 117m2 of Kanab ambersnail habitat.  

Two conservation measures were included in the FWS biological opinion. The first measure 
included relocation of 300 humpback chub above Chute Falls in the LCR to increase the 
likelihood of humpback chub surviving in the lower LCR, reduce predation, and other inclement 
environmental conditions. The second conservation measure consisted of temporary removal and 
safeguard of approximately 29m2 – 47m2 (25 to 40 percent) of Kanab ambersnail habitat that 
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would be flooded by the experimental release. The relocated habitat and ambersnails would be 
replaced once the high flow was complete to facilitate re-establishment of vegetation.  

FWS translocated young humpback chub above Chute Falls in the Little Colorado River (ca. 16 
km from the confluence). Under contract with GCMRC, FWS translocated nearly 300 young 
humpback chub above a natural barrier in the Little Colorado River located 16 km above the 
confluence in August 2003. This translocation was followed by another 300 fish in July 2004, 
and finally by another 567 fish in July 2005 (Sponholtz et al. 2005; Stone 2006). Preliminary 
results indicate that translocated fish survival and growth rates are high; limited reproduction and 
downstream movement below Chute Falls has also been documented (Sponholtz et al. 2005; 
Stone 2007).  

The sediment input-triggered high experimental flow was analyzed for an indefinite period of 
time because of the uncertainty of knowing when the sediment trigger would be reached. The 
other two actions were analyzed for water years 2003 and 2004. Consultation was initiated in 
2004 to make several changes to the timing and duration of the proposed experiments described 
in the 2002 consultation. The 2004 high flow experiment was intended to occur immediately 
following significant tributary sediment inputs, while the 2002 high flow experiment was 
proposed to occur in winter or spring. In a biological opinion dated November 2004, the FWS 
concurred with Reclamation that the action was not likely to adversely affect razorback sucker or 
its critical habitat, California condor or southwestern willow flycatcher. The FWS concluded that 
the modified action was not likely to jeopardize the continued existence of the humpback chub, 
Kanab ambersnail, or bald eagle. The FWS also concluded that designated humpback chub 
critical habitat would not be destroyed or adversely modified. The biological opinion included 
the 2002 conservation measures related to humpback chub including the continuation of 
translocating humpback chub in the Little Colorado River, and further study and monitoring of 
the results and study of effects on chub from various flow conditions.  

Reclamation reinitiated Section 7 consultation in March 2003 (Peterson 2003) to propose a 
change in the size of humpback chub translocated as part of the management activities detailed 
in the Environmental Assessment of 2002 (USDI 2002). The FWS (2003a) responded with a 
finding of no jeopardy to the proposed changes. A Finding of No Significant Impact was made in 
July 2003 by Reclamation and others (2003) on a proposed modification to remove non-native 
fish from the Colorado River in an expanded area downstream of the confluence with the LCR. 
The FWS (2003b) concurred with a finding of no jeopardy on the expanded non-native fish 
action in August 2003. Activities to remove non-native fish from the expanded area (river mile 
56.2 to 72.7) were thus incorporated into future non-native removal efforts (Coggins and others 
2002). 

Kanab ambersnail conservation measures included removal and safeguard of Kanab ambersnail 
habitat that would be inundated by the experimental release. Reclamation implemented 
conservation measures for Kanab ambersnail and humpback chub in conjunction with the 
proposed activities (Peterson 2002). 
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2.2.6 2007 Colorado River Interim Guidelines for Lower Basin Shortages and 
Coordinated Operations for Lake Powell and Lake Mead, Final EIS 
The December 2007 biological opinion on the Shortage ROD included the geographic scope of 
this biological assessment, Glen Canyon Dam to Lake Mead. The Shortage ROD specified 
reduction of consumptive uses below Lake Powell during times of low reservoir conditions and 
modification of the annual release volumes from Lake Powell. The Shortage ROD, as adopted on 
December 13, 2007 establish annual release volumes from Glen Canyon Dam, but do not, in any 
manner, alter the constraints imposed by the 1996 ROD or as adopted in the 1997 Glen Canyon 
Dam Operating Criteria (discussed in Section 1.4.2). Since many of the potential resource 
impacts identified in that final EIS were being investigated in the AMP, the biological opinion 
made use of this institutional arrangement as a key mechanism for addressing these impacts. 
With respect to the listed species in Grand Canyon the FWS determined that implementation of 
the Guidelines is not likely to jeopardize the continued existence of the humpback chub, the 
southwestern willow flycatcher, or the Kanab ambersnail, and is not likely to destroy or 
adversely modify designated critical habitat for the humpback chub or the southwestern willow 
flycatcher. 

The following conservation measures were included in the biological opinion: non-native fish 
control, humpback chub refuge, genetic biocontrol symposium, sediment research, parasite 
monitoring, and other monitoring and research. These measures are summarized here.  

Non-native Fish Control 
In coordination with other Interior AMP participants and through the AMP, Reclamation will 
continue efforts to control both cold- and warm-water non-native fish species in the mainstem of 
Marble and Grand canyons, including determining and implementing levels of non-native fish 
control as necessary. Control of these species using mechanical removal and other methods will 
help to reduce this threat.  

Humpback Chub Refuge 
Reclamation will assist FWS in development and funding of a broodstock management plan and 
creation and maintenance of a humpback chub refuge population at a Federal hatchery or other 
appropriate facility by providing expedited advancement of $200,000 in funding to the FWS 
during CY 2008; this amount shall be funded from, and within, the amount identified in the 
MSCP biological opinion (FWS 2005a; page 26). Creation of a humpback chub refuge will 
reduce or eliminate the potential for a catastrophic loss of the Grand Canyon population of 
humpback chub by providing a permanent source of genetically representative stock for 
repatriating the species.  

Genetic Biocontrol Symposium 
Reclamation will transfer up to $20,000 in fiscal year 2008 to FWS to help fund an international 
symposium on the use and development of genetic biocontrol of non-native invasive aquatic 
species which is tentatively scheduled for October 2009. Although only in its infancy, genetic 
biocontrol of non-native species is attracting worldwide attention as a potential method of 
controlling aquatic invasive species. Helping fund an effort to bring researchers together will 
further awareness of this potential method of control and help mobilize efforts for its research 
and development.  
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Sediment Research 
In coordination with other Interior AMP participants and through the AMP, Reclamation will 
monitor the effect of sediment transport on humpback chub habitat and will work with the 
GCMRC to develop and implement a scientific monitoring plan acceptable to FWS. Although 
the effects of dam operation-related changes in sediment transport on humpback chub habitat are 
not well understood, humpback chub are known to utilize backwaters and other habitat features 
that require fine sediment for their formation and maintenance. Additional research will help 
clarify this relationship. 

Parasite Monitoring 
In coordination with other Interior AMP participants and through the AMP, Reclamation will 
continue to support research on the effects of Asian tapeworm (Bothriocephalus acheilognathi) 
on humpback chub and potential methods to control this parasite. Continuing research will help 
better understand the degree of this threat and the potential for management actions to minimize 
it. 

Monitoring and Research 
Through the AMP, Reclamation will continue to monitor Kanab ambersnail and its habitat in 
Grand Canyon and the effect of dam releases on the species, and Reclamation will also continue 
to assist FWS in funding morphometric and genetic research to better determine the taxonomic 
status of the subspecies.  

Monitoring and Research 
Through the AMP, Reclamation will continue to monitor southwestern willow flycatcher and its 
habitat and the effect of dam releases on the species throughout Grand Canyon and report 
findings to FWS, and will work with the NPS and other AMP participants to identify actions to 
conserve the flycatcher. 

2.3 Description of Glen Canyon Dam Adaptive Management Program 

The 1996 ROD directed the formation and implementation of an adaptive management program 
to assist in monitoring and future recommendations regarding the impacts of Glen Canyon Dam 
operations. The AMP was formally established in 1997 to implement the Grand Canyon 
Protection Act (GCPA), the 1995 Operation of Glen Canyon Dam Final Environmental Impact 
Statement, and the 1996 ROD. The AMP provides a process for assessing the effects of current 
operations of Glen Canyon Dam on downstream resources and using the results to develop 
recommendations for modifying dam operations and other resource management actions. This is 
accomplished through the Adaptive Management Work Group (AMWG), a federal advisory 
committee to the Secretary of the Interior. The AMWG consists of stakeholders that are federal 
and state resource management agencies, representatives of the seven Basin States, Indian 
Tribes, hydroelectric power marketers, environmental and conservation organizations and 
recreational and other interest groups. The duties of the AMWG are in an advisory capacity only. 
Coupled with this advisory role are long-term monitoring and research activities that provide a 
continual record of resource conditions and new information to evaluate the effectiveness of the 
operational modifications to Glen Canyon Dam and other management actions. 
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The AMP consists of the following major components: 
 

• The AMWG which is a federal advisory committee which makes recommendations on 
how to adjust the operation of Glen Canyon Dam and other management actions to fulfill 
the obligations of the GCPA. 

• The Secretary of the Interior’s Designee which serves as the chair of the AMWG and 
provides a direct link between the AMWG and the Secretary of the Interior. 

• The Technical Work Group (TWG) which translates AMWG policy into information 
needs, provides questions that serve as the basis for long-term monitoring and research 
activities, and conveys research results to AMWG members. 

• The USGS Grand Canyon Monitoring and Research Center (GCMRC) which provides 
scientific information on the effects of the operation of Glen Canyon Dam and related 
factors on natural, cultural, and recreational resources along the Colorado River between 
Glen Canyon Dam and Lake Mead. 

• The independent review panels (IRPs) which provide independent assessments of the 
AMP to assure scientific validity. Academic experts in pertinent areas make up a group 
of Science Advisors (SAs). 

2.4 Description of Species Identified for Analysis 

2.4.1 Humpback Chub 

Legal Status 
The humpback chub (Gila cypha) is currently listed as “endangered” under the Endangered 
Species Act of 1973, as amended (16 U.S.C. 1531 et seq.). It was first included in the List of 
Endangered Species issued by the Office of Endangered Species on March 11, 1967 (32 FR 
4001) and was considered endangered under provisions of the Endangered Species Conservation 
Act of 1969 (16 U.S.C. 668aa). The humpback chub was included in the United States List of 
Endangered Native Fish and Wildlife issued on June 4, 1973 (38 FR No. 106) and received 
protection as endangered under Section 4(c)(3) of the original ESA of 1973. The latest revised 
humpback chub recovery plan was approved on September 19, 1990 (FWS 1990a) and Recovery 
Goals were approved on August 1, 2002 (FWS 2002a). The Recovery Goals were declared “of 
no force and effect” by a federal judge on January 23, 2006, and were withdrawn by the FWS. 
Revised Recovery Goals are expected to be issued in 2008. The final rule for determination of 
critical habitat was published on March 21, 1994 (59 FR 13374) and final designation became 
effective on April 20, 1994. Critical habitat includes 280 km of the Colorado River through 
Marble and Grand canyons from Nautiloid Canyon (RM 34) to Granite Park (RM 208) and the 
lower 13 km of the LCR. Primary threats to the species include streamflow regulation and habitat 
modification (including cold-water dam releases and habitat loss), competition with and 
predation by non-native fish species, parasitism, hybridization with other native Gila, and 
pesticides and pollutants (Colorado River Fishes Recovery Team 1990; FWS 2002a). 
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Historical and Current Range 
The humpback chub is a moderately large cyprinid fish endemic to the Colorado River system 
(Miller 1946) that was first described from Grand Canyon specimens in 1946 (Miller 1946). The 
species was rare in early collections and historical distribution is not known with certainty 
(Valdez and Clemmer 1982; Tyus 1998). It probably existed in extant populations, each centered 
in relatively inaccessible canyons at middle elevations of the Colorado River system. It is 
surmised from various reports and collections that the species presently occupies about 68 
percent of its historic habitat of about 756 km of river (FWS 2002a). Range reduction is thought 
to have been caused primarily by habitat inundation from reservoirs, cold-water dam releases, 
and non-native fish predation.  

Six humpback chub populations are currently known—all from canyon-bound reaches (FWS 
2002). Five are in the upper Colorado River Basin and the sixth is located in Marble and Grand 
canyons of the lower basin. Upper basin populations range in size from a few hundred 
individuals to about 5,000 adults. These populations are located in reaches that vary from 4 to 74 
km within Black Rocks, Westwater Canyon, and Cataract Canyon of the Colorado River; 
Desolation and Gray canyons of the Green River; and Yampa Canyon of the Yampa River. The 
lower basin population is found in the Little Colorado River and the Colorado River in Marble 
and Grand canyons. 

Population within the Action Area 
The humpback chub presently occurs as nine aggregations within the action area in Marble and 
Grand canyons (Valdez and Ryel 1995). These aggregations are found within about 295 km of 
the Colorado River in Marble and Grand canyons and are known as 30-Mile (RM 29.8-31.3), 
LCR Inflow (RM 57.0-65.4), Lava to Hance (RM 65.7-76.3), Bright Angel Inflow (RM 83.8-
92.2), Shinumo Inflow (RM 108.1-108.6), Stephens Aisle (RM 114.9-120.1), Middle Granite 
Gorge (126.1-129.0), Havasu Inflow (RM 155.8-156.7), and Pumpkin Spring (RM 212.5-213.2). 
Subsequent monitoring of fish in Marble and Grand canyons has confirmed the persistence of 
these aggregations (Trammell et al. 2000), although few or no humpback chub have been caught 
at the Havasu Inflow and Pumpkin Spring aggregations since 2000 (Ackerman 2007). Humpback 
chub have been caught infrequently downstream of Pumpkin Spring. One adult was captured 
downstream of Maxson Canyon (RM 244) in 1994 (Valdez 1994), and four humpback chub were 
caught at Separation Canyon (RM 239.5) in 2006 (AGFD 2006). 

The largest aggregation is a self-sustaining population located in the lower 13 km of the Little 
Colorado River and the adjoining 15 km of the Colorado River (RM 57.0-65.4). This population 
has been expanded upstream of Chute Falls through mechanical translocation of fish (Stone and 
Sponholtz 2003, 2004) as described in Section 2.1.4.  

The population of humpback chub associated with the LCR inflow aggregation is believed to be 
stable with about 6,000 adults in 2006 (age 4+, ≥200 mm total length (TL); Figure 3; Coggins 
2007). Catch rates using hoop nets for subadults and adults show a similar pattern to adult 
population numbers with earlier decreases followed by more recent increases (Figure 4). 
Apparent recruitment failure through the mid 1990s resulted in a population decline to a low in 
2001 of between 2,400 and 4,400 age 4+ fish (Gloss and Coggins 2005; Coggins et al. 2006). 
While the recent increase in population size and stability has previously been attributed to 
increased recruitment resulting from warmer water temperatures, mechanical removal of non-
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native piscivorous fish and/or experimental flows (high flow tests, steady flows in 2000), recent 
modeling suggests that increased recruitment predates each of these factors by at least four years 
(Coggins et al. 2007). No explanations for this recruitment increase have been proposed to date, 
particularly whether the increase was due to factors associated with the Little Colorado River, 
the mainchannel Colorado River, or both parts of the system. 

The first population estimate for humpback chub in Grand Canyon was based on a mark-recapture 
estimator with Carlin-tagged fish (Kaeding and Zimmerman 1982) and yielded a “ball park” 
estimate of 7,000-8,000 individuals in 1982 larger than 200 mm TL in the Little Colorado River. 
The estimates shown in Figure 3 are based on the mark and recapture histories of humpback chub 
with PIT tags, a marking program that began in May of 1989. Valdez and Ryel (1995) used PIT-
tagged fish and estimated 3,482 adult (>200 mm TL) humpback chub in a 14-km reach of the 
mainstream Colorado River near the Little Colorado River inflow for 1990-1993. Douglas and 
Marsh (1996) estimated the LCR population in 1992 for PIT-tagged humpback chub greater than 
150 mm total length at about 4,346 individuals. Since a portion of the humpback chub population 
moves back and forth between the Little Colorado River and mainstream, some of the same 
individuals were likely included in both estimates and the total population was less than the sum of 
these estimates. Valdez and Ryel (1995) also provided mark-recapture estimates for PIT-tagged 
humpback chub adults (≥200 mm TL) in five of the remaining eight aggregations, including 30-
Mile (estimate, n-hat = 52), Shinumo Inflow (n-hat = 57), Middle Granite Gorge (n-hat = 98), 
Havasu Inflow (n-hat = 13), and Pumpkin Spring (n-hat = 5).  

 

Figure 3. Adult (age 4+) humpback chub population estimates (1989-2005) for the Little 
Colorado River. Error bars are 95 percent Baysian credibility intervals and reflect uncertainties 
in assignment of age (USGS 2007). 
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Figure 4. Relative abundance indices of sub-adult (150–199 mm total length (TL)) and adult 
(>200 mm TL) humpback chub based on hoop-net catch rate (fish/hour) in the lower 1,200-m 
section of the Little Colorado River. 

Young and juvenile humpback chub are found primarily in the Little Colorado River and the 
Colorado River near the Little Colorado River inflow. Reproduction by humpback chub occurs 
annually in spring in the Little Colorado River, and the young fish either remain in the Little 
Colorado River or disperse into the Colorado River. Dispersal of these young fish has been 
documented as nighttime larval drift during May through July (Robinson et al. 1998), as density-
dependence movement during strong year classes (Gorman 1994), and as movement with 
summer floods caused by monsoonal rain storms during July through September (Valdez and 
Ryel 1995). Survival of these young fish in the mainstem is thought to be low because of cold 
mainstem temperatures, but fish that survive and return to the Little Colorado River contribute to 
recruitment in this population. Fish distribution patterns in the Colorado River downstream of the 
Little Colorado River and size composition of humpback chub aggregations suggest that young 
dispersing from the Little Colorado River also recruit into downstream aggregations (Valdez and 
Ryel 1995). However, the young fish in these aggregations may not all be from the Little 
Colorado River and some may originate from local reproduction.  

Young-of-year and juvenile humpback chub were commonly found from RM 110-130 (Middle 
Granite Gorge) and RM 160-200 (Ackerman 2007; AGFD 1996; Johnstone and Lauretta 2004, 
2007; Trammell et al. 2002). The Middle Granite Gorge aggregation (which includes adults) has 
been stable or increasing in size since 1993 (Trammell et al. 2002) and may be sustained via 
immigration from the LCR aggregation, as well as local reproduction. Valdez et al. (2000) 
identified this aggregation as the most likely candidate for a second spawning population in the 
mainchannel given favorable conditions (mainly temperature). Population estimates have not 
been made for other mainstream aggregations since 1993 (Trammell et al. 2002).  
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Reproduction 
The humpback chub is an obligate warm-water species that requires relatively warm 
temperatures of about 16-22 °C for spawning, egg incubation, and survival of young. Spawning 
is usually initiated at about 16 °C (Hamman 1982). Highest hatching success is at 19–20 °C with 
incubation time of 3 days, and highest larval survival is slightly warmer at 21–22 °C (Marsh 
1985). Hatching success under laboratory conditions was 12 percent, 62 percent, 84 percent, and 
79 percent in 12–13 °C, 16–17 °C, 19–20 °C, and 21–22 °C, respectively, whereas survival of 
larvae was 15 percent, 91 percent, 95 percent, and 99 percent, at the same respective 
temperatures (Hamman 1982). Time from fertilization to hatching ranged from 465 hours at 10.0 
°C to 72 hours at 26.0 °C, and time from hatching to swim-up varied from 372 hours at 15.0 °C 
to 72 hours at 21.0–22.0 °C. The proportion of abnormal fry varied with temperature and was 
highest at 15.0 °C (33 percent) and was 17 percent at 25.0 °C. Marsh and Pisano (1985) also 
found total mortality of embryos at 5, 10, and 30 °C. Bulkley et al. (1981) estimated a final 
thermal preference of 24ºC for humpback chub during their first year of life (80–120 mm). 

Humpback chub are broadcast spawners with a relatively low fecundity rate compared to 
cyprinids of similar size (Carlander 1969). Eight humpback chub (355–406 mm TL), injected 
with carp pituitary and stripped in a hatchery, produced an average of 2,523 eggs/female, or 
about 5,262 eggs/kg of body weight (Hamman 1982). Egg diameter ranged from 2.6 to 2.8 mm 
(mean, 2.7 mm). Eleven humpback chub from the LCR yielded 4,831 eggs/female following 
variable injections of carp pituitary and field stripping (Clarkson 1993). 
 
Humpback chub in Grand Canyon spawn primarily during March–May in the lower 13 km of the 
Little Colorado River (Kaeding and Zimmerman 1983; Minckley 1996; Gorman and Stone 1999; 
Stone 1999) and during April–June in the upper basin (Kaeding et al. 1990; Valdez 1990; Karp 
and Tyus 1990). Most fish mature at about 4 years of age. Gonadal development is rapid between 
December and February to April, at which time somatic indices reached highest levels (Kaeding 
and Zimmerman (1983). Adults stage for spawning runs in large eddies near the confluence of 
the Little Colorado River in February and March and move into the tributary from March 
through May, depending on temperature, flow, and turbidity (Valdez and Ryel 1995). Spawning 
has not been observed, but ripe males have been seen aggregating in areas of complex habitat 
structure (boulders, travertine masses, and other sources of angular variation), and it is thought 
that ripe females move to these aggregations to spawn (Gorman and Stone 1999). Abrasions on 
anal and lower caudal fins of males and females in the LCR and in Cataract Canyon (Valdez 
1990) suggest that spawning involves rigorous contact with gravel substrates.  
 
Unlike larvae of other Colorado River fishes (e.g., Colorado pikeminnow and razorback sucker), 
larval humpback chub show little evidence of long-distance drift (Robinson et al. 1998). At 
hatching, larvae have nonfunctional mouths and small yolk sacs (Muth 1990). The larvae swim 
up about 3 days after hatching but tend to remain close to spawning sites. Robinson et al. (1998) 
found small numbers of larvae drifting in the LCR from May through July, primarily at night. 
Hence, it is believed that the majority of newly-hatched humpback chub remain close to their 
natal sites. 
 
The presence of young humpback chub in various locations of the Colorado River in Marble and 
Grand canyons indicates that recruitment is occurring from the Little Colorado River, but there is 
also a strong evidence of mainstem reproduction. Young humpback chub have been collected in 
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or near Bright Angel Creek, Shinumo Creek, Kanab Creek, and Havasu Creek (Arizona Game 
and Fish Department 1996, Brouder et al. 1997; Maddux et al. 1987; Kubly 1990). Aside from 
mainstem reaches immediately below the LCR, young-of-year and juvenile humpback chub have 
been found in the mainchannel Colorado River most commonly from RM 110-130 (Middle 
Granite Gorge) and RM 160-200 (AGFD 1996; Trammell et al. 2000; Johnstone and Lauretta 
2004, 2007; Ackerman 2006). During 2002-2006, a total of 1,191 humpback chub <100 mm TL 
were caught in the Colorado River through Marble and Grand canyons (Ackmerman 2007; 
Figure 5); 442 (mean = 38 mm TL) were upstream of the Little Colorado River and 749 (mean = 
67 mm TL) were downstream. Of the 749 fish downstream of the Little Colorado River, 135 
were downstream of RM 108 (Shinumo Creek inflow). The fish downstream of Shinumo Creek 
occurred as three distinct groups, at Stephen Aisle and Middle Granite Gorge (n=40, RM115-
135), Havasu Creek to Lava (n=58, RM 155-190), and Pumpkin Spring (n=23, RM 195-220). 
Four juveniles (64-67 mm TL) were also caught at Separation Canyon (RM 239.5). The 
combination of larval to postlarval sizes and the low probability of these fish surviving the 
extreme rapids of the inner gorge in Grand Canyon strongly suggest that their origin is natural 
reproduction outside of the Little Colorado River.  
 
 

 

Figure 5. Distribution of juvenile humpback chub <100 mm TL during 2002-2006 by 5-mile 
increments from RM 30 to RM 230 (data from Ackerman 2007). 

 
Young humpback chub have also been caught upstream of the Little Colorado River. An 
unknown number of juveniles were caught at RM 44 between 1970 and 1976 (Carothers and 
Minckley 1981; Suttkus et al. 1976). In 1993, the Arizona Game and Fish Department (1994) 
captured 20 young-of-year (20-50 mm TL) in a backwater at RM 44.3. The only documented 
evidence of reproduction was the capture of post-larvae in July, 1994, in a thermal riverside 
spring located at RM 30.9, about 72 km downstream of Glen Canyon Dam (Valdez and Masslich 
1999). The 30-Mile aggregation of humpback chub is associated with this complex of eight 
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warm springs, but the large size structure of the aggregation indicates little recruitment (Valdez 
and Ryel 1995). During 2002-2006, a total of 442 humpback chub <100 mm TL were captured 
upstream of the Little Colorado River inflow (RM 61.3) as far upstream as RM 30.7 
(Ackmerman 2007). Of the 442 fish, 225 (13-66 mm TL) were caught between RM 30 and RM 
50. The 30-Mile aggregation is located 31 miles upstream of the Little Colorado River inflow 
and it is unlikely that the young humpback chub swam upstream for that distance, especially in 
the cold mainstem temperatures. Bulkley et al. (1982) found that juvenile humpback chub 73-
134 mm TL forced to swim at a velocity of 0.51 m/sec fatigued after an average of 85 minutes at 
20 °C, but fatigued after only 2 minutes at 14 °C; a decrease of 6 °C reduced fatigue time by 98 
percent. Furthermore, the distribution of these fish (Figure 5), as well as averages size above 
(mean = 38 mm TL) and below the LCR (mean = 67 mm TL), indicate that the natal source is 
upstream of RM 50 and not from the Little Colorado River. 

From the time that Lake Powell first filled in about 1980 until about 2000, cold hypolimnetic 
releases of 8-10 °C were characteristic of Glen Canyon Dam operations. These cold temperatures 
largely prevented mainstem reproduction by humpback chub, except perhaps in localized warm 
springs (Valdez and Masslich 1999). Throughout this post-dam period, low survival of larval and 
post-larval fish led to low recruitment to the adult population. This trend was attributed to effects 
of cold water temperatures (thermal shock, poor swimming performance and predator avoidance) 
and non-native fish predators and competitors (Lupher and Clarkson 1994, Valdez and Ryel 
1995, Marsh and Douglas 1997, Clarkson and Childs 2000, Robinson and Childs 2001; Ward et 
al. 2002). Low reservoir elevations in recent years have resulted in withdrawal of warmer 
epilimnetic water from Lake Powell and warmer water temperatures through Marble and Grand 
canyons, such that in 2005, dam release temperatures reached 18 °C. Dramatic increases in 
numbers of young flannelmouth suckers and bluehead suckers indicate that these species are 
spawning in the mainstem with increased growth and survival as a result of warmer temperatures 
or are experiencing enhanced survival of young fish moving from tributaries to the mainstem. 
These warm releases may be similarly affecting humpback chub. 

Habitat and Movement 
At the macrohabitat scale, humpback chub occupy swift, deep, canyon reaches of river (Archer 
et al. 1985; Valdez and Clemmer 1982; Valdez and Ryel 1995), but microhabitat use varies 
considerably among age groups (Valdez et al. 1990). Within Grand Canyon, adults demonstrate 
high microsite fidelity and occupy main channel eddies, while subadults use nearshore habitats 
(Valdez and Ryel 1995). Young-of-year humpback chub use shoreline talus, vegetation, and 
backwaters typically formed by eddy return current channels (AGFD 1996). These habitats are 
usually warmer than the main channel especially if they persist for a long time and are not 
inundated or desiccated by fluctuating flows (Stevens and Hoffnagle 1999). During the summer 
months, backwaters offer low velocity, relatively warm, protected, food-rich environments when 
compared to nearby mainstream habitats (Maddux et al. 1987; Kennedy 1979; Grabowski and 
Hiebert 1989; Arizona Game and Fish Department 1996; Hoffnagle 1996). Subadults also use 
shallow, sheltered shoreline habitats but with greater depth and velocity (Valdez and Ryel 1995; 
Childs et al. 1998). In Grand Canyon, nearly all fish smaller than 100 mm TL were captured near 
shore, whereas most fish larger than 100 mm TL were captured in offshore habitats (Valdez and 
Ryel 1995). Highest densities of subadults were found along shorelines with vegetation, talus, 
and debris fans (Converse et al. 1998). Korman et al. (2004) predicted that downstream 
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displacement rates of small-bodied fish in the Colorado River immediately below the Little 
Colorado River will increase with increased discharge, but that this pattern would vary 
considerably with reach geomorphology and assumptions on swimming behavior of the fish. 

Valdez and Ryel (1995, 1997) reported that adult humpback chub in the Colorado River in Grand 
Canyon used primarily large recirculating eddies, occupying areas of low velocity adjacent to 
high-velocity currents that deliver food items. They also reported that adults congregated at 
tributary mouths and flooded side canyons during high flows. Adults were captured (88 percent) 
and radio-contacted (74 percent) primarily in large recirculating eddies disproportionate to their 
availability (21 percent). Smaller percentages of adults were captured or radio contacted in runs 
(7 percent and 16 percent, respectively) that comprised 56 percent of surface area, pools (1 
percent and 3 percent, respectively) that comprised 16 percent of surface area, and backwaters (4 
percent and 7 percent, respectively) that comprised 0.1 percent of surface area. Hoffnagle et al. 
(1999) reported that juveniles in Grand Canyon used talus shorelines at all discharges and 
apparently were not displaced by controlled flood of 45,000 cfs in late March and early April, 
1996. Valdez et al. (1999) also reported no displacement of radiotagged adults, with local shifts 
in habitat use to remain in low-velocity polygons within large recirculating eddies. 

As young humpback chub grow, they exhibit an ontogenic shift toward deeper and swifter 
offshore habitats that usually begins at age 1 (about 100 mm TL) and ends with maturity at age 4 
(≥200 mm TL; Valdez and Ryel 1995, 1997). In the Colorado River in Grand Canyon, minimum, 
average, and maximum velocities selected by young-of-year (21–74 mm TL) were 0.0, 0.06, and 
0.30 m/s, respectively, all at depths less than 1 m. Minimum, average, and maximum velocities 
selected by humpback chub (75–259 mm TL) were 0.0, 0.18, and 0.79 m/s, respectively, all at 
depths less than 1.5 m. Hence, young humpback chub remained along shallow shoreline habitats 
throughout their first summer, but shifted to more offshore habitats by fall and winter. 

Ontogenic shifts in habitat use were also seen in the Little Colorado River. Larval and early 
juvenile humpback chub used shallow, low-velocity habitats, different than those used by young 
of other native species, indicating resource partitioning (Childs et al. 1998). Gorman (1994) 
found that juveniles or early stages less than 50 mm TL occupied near-benthic to mid-pelagic 
positions in shallow, nearshore areas that were less than 10 cm deep and had low-velocity flow, 
small substrate particle sizes, moderate cover, and vertical structure. Juveniles 50–100 mm TL 
used similar habitats of moderate depth (less than 20 cm) that had small to large substrate, 
moderate to high cover, and vertical structure. Juveniles 100–150 mm TL used shoreline and 
offshore areas of moderate to deep water (less than 30 cm during the day; less than 20 cm at 
night) that had slow currents, small and large substrate particle size, moderate to high levels of 
cover, and vertical structure.  

Humpback chub spawn in spring but little is known about specific habitat used for spawning. 
Gorman and Stone (1999) reported ripe male humpback chub in the Little Colorado River in 
areas of complex habitat structure (i.e., matrix of large boulders and travertine masses combined 
with chutes, runs, and eddies, 0.5–2.0 m deep) and associated with deposits of clean gravel. In 
the Upper Colorado River Basin during spring runoff, spawning adult humpback chub appear to 
utilize cobble bars and shoals adjacent to relatively low-velocity shorelines that are typically 
described as runs and eddies (Valdez et al. 1982; Karp and Tyus 1990; Valdez et al. 1990; 
Valdez and Ryel 1995, 1997). Tyus and Karp (1989) reported that humpback chub in the Yampa 
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River occupy and spawn in or near shoreline eddy habitats. They hypothesized that spring peak 
flows were important for reproductive success and that loss or reduction of spring peak flows 
could potentially reduce availability of spawning habitat. 

Movement of adult humpback chub is substantially limited compared to other native Colorado 
River fishes (Valdez and Ryel 1995). Adults have a high fidelity for site-specific habitats in the 
Colorado River and generally remain within a 1-km area, except during spawning ascents of the 
Little Colorado River in spring. Adult radio-tagged humpback chub demonstrated a consistent 
pattern of greater near-surface activity during the spawning season and at night, and day-night 
differences decreased during moderate to high turbid. 

Growth 
Humpback chub attain a maximum size of about 480 mm TL and 1.2 kg in weight (Valdez and 
Ryel 1997) and can live to be 20-30 years old (Hendrickson 1993). Humpback chub grow 
relatively quickly at warm temperatures until maturity at about 3 years of age, then grow rate 
slows substantially. Humpback chub larvae are approximately 7 mm long at hatching (Muth 
1990). In a laboratory, post-larvae grew at a rate of 10.63 mm/30 days at 20 °C, but only 2.30 
mm/30 days at 10 °C (Lupher and Clarkson 1994). Similar growth rates were reported from 
back-calculations of scale growth rings in wild juveniles at similar water temperatures from the 
Little Colorado River (10.30 mm/30 days at 18–25 °C) and the mainstem Colorado River in 
Grand Canyon (3.50–4.00 mm/30 days at 10–12 °C; Valdez and Ryel 1995). Clarkson and 
Childs (2000) found that lengths, weights, and specific growth rates of humpback chub were 
significantly lower at 10 °C and 14 °C (similar to hypolimnetic dam releases) than at 20 °C (i.e., 
more characteristic of Little Colorado River temperatures during summer months).  

Growth rates of humpback chub differ between the Little Colorado River and the mainstem 
Colorado River. Based on scale back-calculations, humpback chub from the Little Colorado 
River were 100 mm TL at 1 year of age and 250–300 mm TL at 3–4 years of age (Kaeding and 
Zimmerman 1983); whereas, fish 1, 2, and 3 years old from the mainstem Colorado River in 
Grand Canyon were 95, 155, and 206 mm TL, respectively (Valdez and Ryel 1995). Using 30-
day growth rates of humpback chub from the Little Colorado River (Minckley 1992), lengths at 
ages 3 and 4 were estimated at 170 and 200 mm TL, respectively. Mark-recapture data from the 
Little Colorado River (Minckley 1992) and the Colorado River in Grand Canyon (Valdez and 
Ryel 1995) show that young humpback chub grow faster in the Little Colorado River (about 10 
mm/30 days) than in the mainstem (2–4 mm/30 days), but fish older than about 3 years of age 
grow faster in the mainstem (0.79–2.79 mm/30 days) than in the Little Colorado River (<1–1.4 
mm/30 days). Apparently food resources, habitat, and water temperatures are more suitable for 
young fish in the Little Colorado River, but habitat, food, and space may be limiting for adults. 
Abundant habitat, suitable food, and a relatively stable, regulated flow may favor adult growth in 
the mainstem, despite cold water temperatures.  

Hendrickson (1993) aged humpback chub from the Little Colorado River and the mainstem 
Colorado River in Grand Canyon and showed a maximum of 23 annular rings. Based on 
polynomial regression of average number of annuli from otoliths (lapillus and asteriscus) and 
opercles, age-3 fish were 157 mm TL and age-4 fish were 196 mm TL. Valdez and Ryel (1995) 
recorded size at first observed maturity (based on expression of gametes, presence of spawning 
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tubercles) of humpback chub in Grand Canyon at 202 mm TL for males and 200 mm TL for 
females; computed length of age-4 fish with a logarithmic growth curve was 201 mm TL. 

Meretsky et al. (2000) reported a decline in condition factor of adult humpback chub not in 
immediate spawning condition from the Little Colorado River confluence from 1978 to 1996, 
hypothesizing that the decline could be caused by one or more factors; e.g., a recent invasion of 
the Asian tapeworm (Bothriocephalus acheilognathi), researcher variation in weighing fish, or 
natural population variation. Hoffnagle (2000) reported that condition and abdominal fat were 
greater in the mainstem Colorado River than in the Little Colorado River during 1996, 1998, and 
1999 possibly because of an increased prevalence and abundance of parasites (especially 
Lernaea cyprinacea and Bothriocephalus acheilognathi) in the Little Colorado River fish and/or 
greater food availability in the Colorado River. 

Diet 
Humpback chub are typically omnivores with a diet consisting of insects, crustaceans, plants, 
algae, seeds, and occasionally small fish and reptiles (Kaeding and Zimmerman 1982, Kubly 
1990, Valdez and Ryel 1995). They appear to be opportunistic feeders, capable of switching diet 
according to available food sources, and ingesting food items from the water’s surface, mid-
water, and river bottom. Specimens caught below Glen Canyon Dam in the early 1970's had been 
feeding on zooplankton flushed from Lake Powell (Minckley 1973). Juvenile humpback chub 
forage near the substrate, feeding on benthic insect larvae, crustaceans, and organic detritus 
(Carothers and Minckley 1981). Guts of 158 adults from the mainstem Colorado River, flushed 
with a nonlethal stomach pump, had 14 invertebrate taxa and nine terrestrial taxa (Valdez and 
Ryel 1995), including simuliids (blackflies, in 77.8 percent of fish), chironomids (midges, 57.6 
percent), Gammarus (freshwater shrimp, 50.6 percent), Cladophora (green alga, 23.4 percent), 
Hymenoptera (wasps, 20.9 percent), and cladocerans (water fleas, 19.6 percent). Seeds and 
human food remains were found in eight (5.1 percent) and seven (4.4 percent) fish respectively. 
Longitudinal differences in diet were evident reflecting relative abundance of available food 
sources; i.e., simuliids were available and consumed throughout the canyon, but terrestrial 
invertebrates replaced Gammarus in lower reaches where the latter were absent. Seasonal 
differences were also evident with Gammarus as the primary food item in spring (40.1 percent 
by volume), and simuliids in summer (46.4 percent) and fall (44.7 percent). Diets of adult 
humpback chub during an experimental high dam release in 1996 showed a preference for 
terrestrial insects and aquatic invertebrates dislodged by the flood and entrained in large 
recirculating eddies (Valdez and Hoffnagle 1999).  

Diets of humpback chub from the Little Colorado River and mainstem differ markedly, reflecting 
available food sources. Although larvae of simuliids and chironomids were present in both 
groups, Gammarus comprised only 1 percent volume of the diet of Little Colorado River fish 
(Kaeding and Zimmerman 1983), but approximately 64 percent of the diet of mainstem fish 
(Valdez and Ryel 1995); Gammarus are abundant in the mainstem but rare in the Little Colorado 
River. Adult humpback chub from the Little Colorado River have also been reported to be 
cannibalistic on their young during periods of high reproductive success (Gorman 1994). 
Arizona Game and Fish Department (1996a) reported that juvenile humpback chub in Grand 
Canyon consumed 19 different prey items, eight more than any other species examined. 
Chironomid larvae, terrestrial insects, simuliid larvae, and copepods were all found in at least 5 
percent of the stomachs examined. 
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A number of investigators have reported large volumes of the green alga Cladophora mixed with 
a variety of invertebrates and detritus in diets of humpback chub from Grand Canyon (Minckley 
et al. 1980; Carothers and Minckley 1981; Kubly 1990; Valdez and Ryel 1995), suggesting that 
the fish feed on invertebrates entrained in the algae or the epiphytic diatoms may be an important 
source of lipids as was found for rainbow trout (Leibfried 1988). Humpback chub diet changes 
over the course of the year in response to food availability, dam releases and turbidity-related 
decreases in benthic standing biomass over distance downstream from Glen Canyon Dam (Blinn 
et al. 1995). However, composition and amount of humpback chub stomach contents were not 
altered significantly as a result of the 1996 high flow test (Valdez and Hoffnagle 1999). 

Valdez and Ryel (1995) documented increasing densities of chironomids and simuliids on the 
descending limb of the diurnal hydrograph, and McKinney et al. 1999 documented a similar 
response for G. lacustris. In contrast, Grand et al. (2006) predicted that increased daily 
fluctuations can impede benthic productivity in backwater environments due to dewatered 
substrate, export of invertebrates through frequent water exhange, and lower temperatures. Thus 
availability of principle humpback chub forage items may actually be enhanced by daily 
fluctuations in flow in the mainchannel environment (most frequently occupied by subadult- and 
adult chub), but not backwaters, which are utilized heavily by young-of-year humpback chub 
during the months of June through October. 

Parasites 
The majority of parasites of humpback chub are alien to the Colorado River system, introduced 
through non-native fishes. Most notable are the external parasitic copepod, Lernaea cyprinacea, 
and the intestinal Asian tapeworm, Bothriocephalus acheilognathi. During 1990–1993, L. 
cyprinacea was found on 8 of 6,294 fish from the Colorado River in Grand Canyon for an 
infection rate of only 0.13 percent and an average of 1.25 copepods (range, 1–2) per infected fish 
(Valdez and Ryel 1997). None of the infected fish showed signs of stress or illness, although 
open lesions had formed at some anchor points. This parasite infected 5.3 percent of humpback 
chub from the Little Colorado River (Hoffnagle et al. 2000). Lernaea cyprinacea was first 
reported from Grand Canyon in 1979 (Carothers et al. 1981) but has not become problematic 
because the mainstem fails to reach optimum maturation temperatures of 23–30 °C (Bulow et al. 
1979). Lernaea matures at temperatures as low as 18 °C (Grabda 1963). 

The internal Asian tapeworm was first reported from Grand Canyon in 1990 (Brouder and 
Hoffnagle 1997; Clarkson et al. 1997). During 1990–1993, this parasite was found in gut 
contents of 6 of 168 (3.6 percent) mainstem adult humpback chub treated with a nonlethal 
stomach pump, for an average of 6.7 tapeworms per infected fish (range, 1–28; Valdez and Ryel 
1997). Clarkson et al. (1997) found Asian tapeworms in 28 percent of sacrificed humpback chub 
examined from the Little Colorado River in 1990–94. They also reported the parasite in 
intestines of common carp (Cyprinus carpio), fathead minnow (Pimephales promelas), speckled 
dace (Rhinichthys osculus), and plains killifish (Fundulus zebrinus). Brouder and Hoffnagle 
(1997) also found Asian tapeworms in humpback chub (22.5 percent) from the LCR in 1994, as 
well as in plains killifish (10.3 percent), speckled dace (3.8 percent), and fathead minnow (2.2 
percent). They reported that nearly all (66.7–100 percent) of infected fish were captured near the 
Little Colorado River, although the parasite was found as far downstream as Kanab Creek, 132 
km downstream of the LCR. During 1996–1997, the internal Asian tapeworm occurred in 31.6-
84.2 percent of humpback chub examined in the LCR and 8.8–26.7 percent in the Colorado 
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River (Hoffnagle et al. 2000); Lernaea cyprinacea was found on 5.3–47.6 percent of chubs in the 
Little Colorado River and 0–6.7 percent in the Colorado River; the trematode 
(Ornithodiplostomum sp.) in 50 percent; and the nematode (Rhabodochona sp.) in 5.3 percent. 
Markedly lower infestation rates of most parasites in the Colorado River in Grand Canyon 
demonstrate the detrimental effect of cold temperatures on most fish parasites of the Colorado 
River System.  

Infection of humpback chub by the Asian tapeworm is a concern because of possible stress and 
death to the host and widespread infestation during periods of stress. This parasite is able to 
complete its life cycle in the LCR where the temperature requirement of >20 °C is met (Granath 
and Esch 1983), and although unable to complete its life cycle in the mainstem, it is apparently 
able to survive in a fish host in the cold temperatures. Meretsky et al. (2000) hypothesized that 
an observed decline in condition of adult humpback chub in Grand Canyon was a result of recent 
infestation by the internal Asian tapeworm.  

2.4.2 Razorback Sucker 

Legal Status 
The razorback sucker (Xyrauchen texanus) was listed as “endangered” under the Endangered 
Species Act of 1973, as amended, on October 23, 1991 (56 FR 54957). A recovery plan was 
approved on December 23, 1998 (FWS 1998) and Recovery Goals were approved on August 1, 
2002 (FWS 2002b). The final rule for determination of critical habitat was published on March 
21, 1994 (59 FR 13374), and the final designation became effective on April 20, 1994. 
Designated critical habitat includes the Colorado River and its 100-year floodplain from the 
Paria River downstream through Marble and Grand canyons to Hoover Dam, including the full 
pool elevation of Lake Mead. Primary threats to razorback sucker populations are streamflow 
regulation and habitat modification and fragmentation (including cold-water dam releases, 
habitat loss, and blockage of migration corridors); competition with and predation by non-native 
fish species; and pesticides and pollutants (Bestgen 1990, Minckley 1991; FWS 2002b). 

Historical and Current Range 
The razorback sucker is endemic to the Colorado River system. Historically, it occupied the 
mainstem Colorado River and many of its tributaries from northern Mexico through Arizona and 
Utah into Wyoming, Colorado, and New Mexico. In the late 19th and early 20th centuries, it was 
reported as abundant in the Lower Colorado River Basin and common in parts of the Upper 
Colorado River Basin, with numbers apparently declining with distance upstream (Jordan and 
Evermann 1896; Minckley et al. 1991; Mueller 2006). Distribution and abundance of razorback 
sucker declined throughout the 20th century over all of its historic range, and the species now 
exists naturally only in a few small, discontiguous populations or as dispersed individuals. The 
razorback sucker has exhibited little natural recruitment in the last 40–50 years and wild 
populations are comprised primarily of aging adults, with steep declines in numbers. 
Reproduction occurs, but few juveniles are found. Razorback sucker in the lower Colorado River 
basin persist primarily in reservoirs, including Lakes Mohave and Mead (Minckley 1983). Few 
and decreasing numbers of wild fish have also been caught in Lake Havasu, at several other 
locations along the river, and in water diversion facilities (Bozek et al. 1991; Minckley et al. 
1991). 
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Currently, the group of razorback sucker in Lake Mohave is the largest remaining in the entire 
Colorado River system. Observers reported these fish as being common to abundant when the 
reservoir was filling in the 1950s, with the number of adults appearing to remain fairly stable 
through the 1970's and 1980's (Minckley et al. 1991). No verified natural recruitment has been 
found in Lake Mohave despite documented spawning and the presence of larval fish (Minckley 
1983; Marsh 1994). This failure to recruit has been attributed primarily to predation by non-
native fishes (Minckley et al. 1991; Burke 1994; Horn 1996; Pacey and Marsh 1998b). Estimates 
of the wild stock in Lake Mohave, now old and senescent, have dropped precipitously in recent 
years from 60,000 in 1989 (Marsh and Minckley 1989) to 25,000 in 1993 (Marsh 1993; Holden 
1994) and to about 9,000 in 2000 (personal communication, T. Burke, U.S. Bureau of 
Reclamation). 

A major repatriation effort to conserve the gene pool of razorback sucker in Lake Mohave was 
initiated by the Native Fish Work Group in 1991, in which naturally hatched larvae are captured 
and raised to juveniles under protection from predators in isolated coves (Minckley et al. 1991; 
Clarkson et al. 1993; Burke 1994; Pacey and Marsh 1998b; Jahrke and Clark 2000). More than 
23,000 repatriated juveniles were released into Lake Mohave between 1992 and 1998. A total of 
212 repatriated fish had been recaptured from 1992 through 1999, representing about 1 percent 
of the total number of juveniles released. Using the wild adult population estimate of 9,087 and 
catch summaries from 1998 and 1999, Pacey and Marsh (1999) determined that the percentage 
of repatriated juveniles among total recaptures is about 34 percent. An estimate of the repatriated 
juvenile population size is thus 3,104 with a 13 percent survival. They estimate that there are 
currently 12,000 razorback sucker in Lake Mohave, 75 percent are wild adults and 25 percent are 
repatriated juveniles. Intensive management in some locations has helped to offset the decline of 
the razorback sucker, such as the capture and protective rearing of larvae in Lake Mohave for 
release at larger sizes, and raising of young in predator-free environments in Cibola High Levee 
Pond; a 2-ha pond containing approximately 3,000 razorback suckers with reproduction and 
recruitment (Marsh 2000). It is also estimated that there are more than 1,000 razorback sucker in 
the 60-mile reach of the lower Colorado River between Davis Dam (impounds Lake Mohave) 
and Lake Havasu, with evidence of reproduction (Mueller 2001). These individuals do not 
include small numbers of fish in Lake Havasu. 

A second razorback sucker population of approximately 500 individuals occurs in Lake Mead. 
The species was reported as common in Lake Mead into the 1960's, but numbers were noticeably 
reduced by the 1970's, and the species was considered rare (Minckley 1973; Bozek et al. 1991). 
The Lake Mead population is the only known recruiting population of razorback sucker in the 
Lower Colorado River Basin (Holden et al. 2000; Abate et al. 2002; Albrecht and Holden 2005). 
Recent age-growth data showed fish at about 20–25 years of age, indicating recent recruitment 
(Ruppert et al. 1999). The majority of the fish are found in Las Vegas Bay and Echo Bay, where 
spawning has been documented over alluvial deposits and rock outcrops. The population in Lake 
Mead has been studied since 1996 (Holden et al. 2000). During the first four years, 115 
individuals were collected, not counting larvae. In August 1999, an adult was found in upper 
Lake Mead at the western side of the mouth of Grand Wash. This discovery was followed in 
2000 by collection of larval razorback sucker in the far eastern part of Lake Mead. Holden et al. 
(2000) concluded that “spawning occurred in the lake, either near the Colorado River inflow area 
or in the actual Colorado River before it enters the lake.” Limited and sporadic captures of 
naturally occurring fish occur throughout the remainder of the lower Colorado River basin 
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(Abate et al. 2002; Holden et al. 1997, 1999, 2000a, 2000b, 2001; Marsh and Minckley 1989; 
Welker and Holden 2003, 2004).  

Between 1981 and 1990, more than 13 million hatchery-produced razorback sucker were 
released at 57 sites into historic habitat in Arizona, primarily in the Verde, Gila, and Salt rivers 
and their tributaries, where the natural population had been extirpated (Hendrickson 1994). Low 
short-term survival and no long-term survival was reported from these releases, primarily 
because of predation by non-native fishes, although 14 adults were recently reported from Fossil 
Creek. Since 1994, 17,371 razorback sucker have been stocked into the Verde River. Numerous 
fish have been recaptured and survival up to 2 years has been documented. In addition, ripe 
males have been encountered in the Verde River, but no evidence of reproduction or recruitment 
has been found (personal communication, D. Shroufe, Arizona Game and Fish Department).  

The razorback sucker appear to be a highly diverse species, displaying many mitochondrial DNA 
(mtDNA) genotypes. Based on restriction endonuclease analysis of mtDNA, it was determined 
that fish from Lake Mohave displayed the highest degree of genetic variability of all remaining 
populations of razorback sucker. Moving from south to north, populations appear to be 
progressively less diverse and possess fewer unique genotypes. Most fish sampled exhibited 
genotypes identical to those in the Lake Mohave fish; unique genotypes were similar and rarely 
found (Dowling and Minckley 1993). Hybridization between razorback sucker and flannelmouth 
sucker was identified as early as 1889 (Hubbs and Miller 1953) and has been reported for many 
years (Hubbs and Miller 1953; Suttkus et al 1976; Kidd 1977; McAda and Wydoski 1980; 
Maddux et al. 1987; Valdez and Ryel 1995; Douglas and Marsh 1998). 

Populations within the Action Area 
The razorback sucker has not been reported from Grand Canyon since 1990, and only 10 adults 
were reported between 1944 and 1995 (Valdez 1996; Gloss et al. 2005). Carothers and Minckley 
(1981) reported four adults from the Paria River in 1978-1979. Maddux et al. (1987) reported 
one blind female razorback sucker at Upper Bass Camp (Colorado River Mile 107.5) in 1984, 
and Minckley (1991) reported five adults in the lower Little Colorado River from 1989-1990. 
Putative hybrids with flannelmouth sucker (Catostomus latipinnis) have been reported from the 
Little Colorado River (Suttkus and Clemmer 1979, Carothers and Minckley 1981; Valdez and 
Ryel 1995). Douglas and Marsh (1998) confirmed the presence of such hybrids and estimated 
their numbers between 8 and 136. Although hybridization between these species has been 
reported for many years (Hubbs and Miller 1953; McAda and Wydoski 1980), the incidence in 
Grand Canyon appears high relative to the number of razorback suckers, especially in the Little 
Colorado River where these fish concentrate during spawning. 

Douglas and Douglas (2000) reported a larval razorback sucker identified by the Colorado State 
University Larval Fish Laboratory from collections made at the mouth of Havasu Creek in Grand 
Canyon. They admitted the possibility that this could have been of a hybrid between razorback 
sucker and flannelmouth sucker, but noted that all known hybrids occur considerably higher in 
the system, in Marble Canyon and the Little Colorado River. Douglas and Marsh (1996a) 
contend that razorback suckers were never abundant in Grand Canyon, noting that remains were 
not found at Stanton’s Cave, where non-fossilized bones of five other native species were 
discovered. They suggest that razorback suckers were not residents of Grand Canyon, but 
transients, moving between more desirable habitats upstream and downstream.  
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A small number of hatchery adult razorback sucker equipped with radio transmitters were 
released in the Lake Mead inflow (Zimmerman and Leibfried 1997). After nearly two months of 
tracking, these tagged razorback sucker apparently left the area and were not relocated either up-
river in the lower 40 miles of the Grand Canyon or down-lake in Gregg Basin or Virgin Basin 
(Abate et al. 2002; Holden et al. 1999). The migration of these fish out of the Colorado River 
inflow area, combined with the fact that no razorback sucker larvae were found in the area in 
2002, suggests that decreasing lake levels altered habitat in this area and may have caused wild 
razorback sucker to move out of this vicinity. 
 
Reproduction 
Razorback suckers are warm-water species that spawn over a broad time span in late winter and 
spring, depending on latitude. In upper basin riverine environments, razorback sucker in 
reproductive condition and newly hatched larvae generally have been captured from mid-April 
through June on the ascending limb of the hydrograph (Modde and Wick 1997; Muth et al. 1998; 
McAda and Wydoski 1980; Osmundson and Kaeding 1989; Tyus and Karp 1989, 1990; Snyder 
and Muth 1990; Osmundson and Kaeding 1991; Tyus 1987; Valdez et al. 1982;). Further 
downstream, in Lake Mead, spawning takes place earlier, from mid-February to early June, 
peaking in March–April (Jonez and Sumner 1954; Holden et al. 1999a). Spawning occurs even 
earlier further downstream in Lake Mohave, beginning as early as November and continuing as 
late as May (Bozek et al. 1990, 1991; Burke and Mueller 1993; Minckley et al.1991; Schrader 
1991). Activity appears to peak in January–March, with only scattered individuals in spawning 
condition found in May (Bozek et al. 1991). 
 
Razorback suckers also have a wide temperature range for spawning, incubation, and rearing. 
The generally require about 12-22ºC for spawning with an optimum of 18ºC; and 14-25ºC with 
an optimum of 19ºC for egg incubation (Valdez 2006). The optimal thermal range for the 
razorback sucker is 22-25 °C (Bulkley and Pimentel 1983); however, the species occurs in 
widely varying temperatures. In the Upper Colorado River Basin, habitats are ice-covered during 
winter, while temperatures of mainstream habitats in the Lower Colorado River exceed 32oC in 
summer (Dill 1944). Evidence of spawning in the Green River has been observed at water 
temperatures of 6–19 °C (McAda and Wydoski 1980; Tyus and Karp 1990; Snyder and Muth 
1990; Muth et al. 1998), with an average of about 15 °C reported by Tyus and Karp (1990). 
Spawning in Lake Mohave has occurred at water temperatures between 9.5 °C and 22 °C 
(Minckley et al. 1991; Schrader 1991; Bozek et al. 1991; Burke and Mueller 1993). Gorman et 
al. (1999) observed spawning in the tailwaters of Hoover Dam at water temperatures of 11–12 
°C. The population was characterized by a preponderance of spent/non-ripe males and gravid 
females, an unusual condition for suckers so late in the spawning season and possible evidence 
of retarded ovulation due to the cold dam tailwaters. Optimal water temperature for hatching 
success is around 20 °C; extreme limits of hatching are 10 °C and 30 °C (Marsh and Minckley 
1985). Snyder and Muth (1990) found that eggs incubated at 18–20 °C hatch in 6–7 days, swim 
up in 12–13 days, and swim down in 27 days; eggs incubated at 15 °C hatch in 11 days, swim up 
in 17–21 days, and swim down in 38 days. Bozek et al. (1984) reported that eggs incubated at 10 
°C hatched in 17.5–22.1 days, whereas Toney (1974) reported high mortality for eggs incubated 
at 11.7 °C. Marsh (1985) demonstrated in the laboratory that the highest successful hatching 
percentage for razorback suckers occurs at 20 °C, and that the hatch declines considerably at 15 
°C with complete mortality at 10 °C.  
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Razorback sucker have high reproductive potential. McAda and Wydoski (1980) reported an 
average fecundity (N=10) of 46,740 eggs/fish (27,614–76,576), or about 39,600 eggs/kg. Inslee 
(1981) reported an average of 103,000 eggs/fish. Razorback sucker are broadcast spawners that 
scatter adhesive eggs over cobble substrate. Eggs incubate in interstitial spaces, and larvae must 
hatch and emerge from cobble substrates before being suffocated by deposited silt/sand 
(Minckley 1983; Minckley et al. 1991; Wick 1997). Adults make no effort to guard the nest sites 
(Jonez and Sumner 1954). 

 
Survival of newly hatched larvae appears to be the limiting factor for razorback suckers in the 
Upper Colorado River Basin and may be dependent on availability of nursery areas in riverside 
floodplains (Bestgen 1990; Tyus 1998; Tyus and Karp 1990). Riverine spawning typically 
occurs in shallow water over gravelly substrates, often in areas of inflowing streams or on large 
cobble bars where gravel sorting has occurred (Minckley 1983; Mueller 1989). In riverine 
situations in the Upper Basin, spawning begins on the rising limb of the spring hydrograph 
(April-May) and continues for an extended period through the spring runoff when riverside 
nursery floodplains are available. Larval razorback suckers drift downstream from spawning 
sites and become entrained in these nursery floodplains where they may remain for several years. 
The timing of floodplain inundation, food availability, and arrival of larvae are critical to the 
survival of these young fish (Modde et al. 1996). 
 
Habitat and Movement 
The razorback sucker evolved in warm-water reaches of larger rivers of the Colorado River 
system from Mexico to Wyoming. Adults in rivers use deep runs, eddies, backwaters, and 
flooded off-channel environments in spring; runs and pools often in shallow water associated 
with submerged sandbars in summer; and low-velocity runs, pools, and eddies in winter. Spring 
migrations of adult razorback sucker were associated with spawning in historic accounts and a 
variety of local and long-distance movements and habitat-use patterns have been documented. 
Spawning in rivers occurs over bars of cobble, gravel, and sand substrates during spring runoff at 
widely ranging flows and water temperatures and spawning in reservoirs takes place over rocky 
shoals and shorelines. Young require nursery environments with quiet, warm, shallow water such 
as tributary mouths, backwaters, or inundated floodplains in rivers, and coves or shorelines in 
reservoirs. 
 
Adult razorback sucker tend to occupy different habitats seasonally (Osmundson et al. 1995), 
and can do well in both lotic and lentic environments (Minckley et al. 1991). In rivers, they 
usually are captured in lower velocity currents, more rarely in turbulent canyon reaches 
(Minckley et al. 1991; Bestgen 1990; Tyus and Karp 1990; Lanigan and Tyus 1989; Tyus 1987). 
An exception may be in the San Juan River, where hatchery-reared, radio-tagged adults preferred 
swifter mid-channel currents during summer–autumn base-flow periods (Ryden 2000). In the 
upper basin, bottomlands, low-lying wetlands, and oxbow channels flooded and ephemerally 
connected to the main channel by high spring flows appear to be important habitats for all life 
stages of razorback sucker (Modde et al. 1996; Muth et al. 2000). These areas provide 
warmwater temperatures, low-velocity flows, and increased food availability (Tyus and Karp 
1990; Modde 1997; Wydoski and Wick 1998). For example, in Old Charlie Wash, a managed 
wetland on the middle Green River, spring–summer water temperatures were 2–8 °C higher than 
in the adjacent river (Modde 1996, 1997), density of benthos was 41 times greater than in other 
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sampled habitats, and densities of zooplankton were 29 times greater than in backwaters and 157 
times greater than in the main channel (Mabey and Shiozawa 1993). Many floodplain habitats 
comparable to Old Charlie Wash were available in the Green and Colorado River systems before 
dams, channelization, and levees altered large segments of the ecosystem (Tyus and Karp 1990; 
Osmundson and Kaeding 1991; Wydoski and Wick 1998). The loss of such habitats has been 
implicated in the decline of the species, but to some degree gravel pits and other artificial, 
relatively warm off-channel ponds are used as a substitute (Valdez and Wick 1983; Wick 1997; 
Maddux et al. 1993; Minckley et al. 1991). 
 
During non-reproductive times of the year (summer–winter), adult razorback sucker in lotic 
environments have been found in deeper eddies, slow runs, backwaters, and other types of pool 
habitats with silt or sand substrate, depths ranging from 0.6 to 3.4 m, and velocities ranging from 
0.3 to 0.4 m/s (Osmundson et al. 1995; Minckley et al. 1991; Tyus and Karp 1990; Valdez et al. 
1982; Tyus 1987; Tyus et al. 1987). In summer, Osmundson and Kaeding (1989) captured adults 
in pools and runs 1.62 to 1.65 m deep. Tyus and Karp (1990) also found them in the vicinity of 
midchannel sandbars. In winter, Osmundson and Kaeding (1989) captured adults in pools and 
slow eddies 1.83 to 2.16 m deep, and Valdez and Masslich (1989) found them in slow runs, slack 
water, and eddies 0.6 to 1.4 m deep.  
 
Hatchery-reared adults in the San Juan River generally moved out of the main channel and into 
edge pools during low winter base flows, using these habitats exclusively in January, the coldest 
month of the study (Ryden 2000). During the other winter months, fish ventured into the main 
channel during the warmest part of the day, presumably to feed. In the Verde River, adult 
razorback sucker were found in deeper pools and glides, at depths generally less than those 
reported in the upper basin (Clarkson et al. 1993; Creef et al. 1992). This difference was 
attributed to generally shallower conditions and possibly to hatchery conditioning (Clarkson et 
al. 1993). In the Gila River, Marsh and Minckley (1991) captured razorback sucker in flatwater, 
pools, and eddies. 
 
In reservoirs in the lower basin, adult razorback sucker are pelagic at varying depths, except in 
breeding season, when they congregate in shallower, nearshore areas (Pacey and Marsh 1998b). 
Spawning takes place near shore in shallow water at temperatures of 10–21 °C, over flat, gravel 
and gravel mix substrate (Bozek et al. 1991; Minckley 1983; Schrader 1991; Burke and Mueller 
1993). These areas tend to be located on outwash fans, along shorelines or on shoals that are 
swept free of silt by currents, wave action, and spawning activity. Larvae remain near shore for a 
few weeks before disappearing (Burke and Mueller 1993; Bozek et al. 1990, 1991; Minckley et 
al. 1991; Schrader 1991; Marsh and Minckley 1989). What happens to them is unknown; they 
may be dispersing to deeper water, but the near absence of juveniles suggests mortality at the 
larval stage, probably as a result of predation (Marsh and Langhorst 1988; Minckley et al. 1991; 
Horn 1996). Five tagged juveniles in Lake Mohave moved throughout the pelagic zones for the 
first week after release but then tended to occupy vegetated areas near the shore (Mueller et al. 
1998). In the mixed channelized, lacustrine, and backwater environment of the Imperial Division 
of the Lower Colorado River, Bradford et al. (1999) tracked 58 fish with ultra-sonic tags and 
found that the main channel was used less frequently in proportion to availability; side channels 
were used in proportion to availability; backwaters were used slightly more relative to 
availability; and the reservoir was used more frequently in proportion to availability. 
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Growth 
Adult razorback suckers attain a maximum size of about 1 m and can live to be 44 years old 
(McCarthy and Minckley 1987; Minckley 1973). Growth among individuals in the same cohort 
is highly variable (Minckley et al. 1991), and this variation may represent divergent strategies in 
this long-lived fish for dealing with the highly unpredictable environment of desert rivers in 
southwestern U.S. Growth is rapid for approximately the first six years, but then it slows 
dramatically (McCarthy and Minckley 1987). Based on analysis of bony structures, including 
otoliths from 70 razorback sucker from Lake Mohave, McCarthy and Minckley (1987) estimated 
ages ranging from 24 to 44 years. The relatively large size of wild adults in both the upper and 
lower basins, coupled with high incidences of blindness, external parasitism, tumors, and 
infections suggests that most populations are composed primarily of old fish (Valdez et al. 1982; 
Minckley 1983; Bozek et al. 1984; McCarthy and Minckley 1987). Razorback sucker in Lake 
Mead appear to be an exception. Ruppert et al. (1999) measured an annual average growth rate 
of 17.28 mm for wild (unstocked) razorback sucker in Lake Mead. This rapid growth is typical 
of young catostomids. Holden et al. (1999b) reported a lower annual growth rate (10 mm) from 
Lake Mead, but this is still three times the reported rate for both Lake Mohave and upper basin 
populations. Based on 10 years of data from Lake Mohave, Pacey and Marsh (1999) calculated 
an average monthly growth near zero (0.2–1.5 mm for females and 0.1–2.2 mm for males). In the 
upper basin, Modde et al. (1996) analyzed data from 1975–1992 and found the average growth 
rate to be only 1.66 mm/year. 

Razorback sucker in the upper basin tend to be smaller than those in the lower basin, and grow 
more slowly (Minckley et al. 1991; Modde et al. 1996; Holden et al. 1999b). First-year growth of 
up to 400 mm was measured in the lower basin (Mueller et al. 1993), whereas average first-year 
growth of wild fish in the middle Green River was closer to 100 mm (Modde and Wydoski 
1995). McAda and Wydoski (1980) reported that fish in upper basin riverine habitats mature 
after three to six growing seasons. In the lower basin, males usually reach maturity in their 
second year; females in their third year (U.S. Bureau of Reclamation 1996). Within the Green 
River, larvae in the upper river grew 6–21 percent faster than those in the lower river (Muth et al. 
1998). Among stocked razorback sucker in the San Juan River, no difference was seen in growth 
between female and male fish, but, as expected, smaller fish grew faster than larger fish (Ryden 
2000). 

Rapid growth to adult size is correlated with food-rich, warm environments (Osmundson and 
Kaeding 1989; Minckley et al. 1991; Mueller 1995). Age-0 razorback sucker collected from Old 
Charlie Wash, a food-rich managed wetland adjacent to the middle Green River, grew 67 percent 
faster than larvae in hatchery ponds, and 29 percent faster than larvae in off-channel habitats 
(Muth et al. 1998). Enhanced growth is thought to increase survivorship, in part by reducing 
vulnerability to predation (Modde et al. 1999b). In laboratory experiments, slower larval growth 
of another native fish, Colorado pikeminnow, correlated to increased mortality due to predation 
(Bestgen et al. 1997). 

Diet 
All life stages of razorback sucker consume insects, zooplankton, phytoplankton, algae, and 
detritus; however, diet varies by age and habitat (Bestgen 1990, Muth et al. 2000). Within days 
of hatching, razorback sucker larvae (10–11 mm TL) begin to feed on plankton (Muth et al. 
2000). As their terminal mouth migrates to a sub-terminal position, larvae begin feeding on 
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benthos as well (Marsh and Minckley 1985). Razorback sucker diet composition is highly 
dependant upon life stage, habitat, and food availability. Upon hatching, razorback sucker larvae 
have terminal mouths and shortened gut lengths (less than 1 body length) which in combination, 
appears to facilitate and necessitate selection of a wide variety of food types. Exogenous feeding 
occurs at approximately 10 mm TL (approximately 8-19 days old), after which larvae from lentic 
systems feed mainly on phytoplankton and small zooplankton, while riverine inhabiting larvae 
are assumed to feed largely on chironomids and other benthic insects (Minckley and Gustafson 
1982, Marsh and Langhorst 1988, Bestgen 1990, Papoulias and Minckley 1990, FWS 1998b). 
Papoulias and Minckley (1992) reared larval razorback sucker in three different ponds containing 
different densities of food resources to demonstrate that increased growth was positively related 
to invertebrate densities, suggesting the importance of larval food switching from algal and 
detrital food items to a diet enriched with invertebrates. Papoulias and Minckley (1990) showed 
that larval mortality is minimized when food levels are within the range of 50-1,000 
organisms/L. In riverine environments in the upper basin, Muth et al. (1998) reported that 
cladocerans, rotifers, and algae decreased in importance as larvae grew larger, but chironomids 
remained the dominant food item at all lengths. Chironomids are among most common benthic 
invertebrates in riverine nursery habitats of the upper basin. 

In Lake Mohave, Marsh and Langhorst (1988) reported a somewhat different diet for larvae < 21 
mm TL. Larvae along a shoreline consumed primarily cladocerans, rotifers, or copepods; those 
in an adjacent backwater had a similar diet, but ate larval chironomids and trichopterans as well. 
When compared to hatchery larvae, wild specimens had a significantly greater frequency of 
empty guts, and guts with food contained significantly fewer organisms. Zooplankton densities 
are relatively low and variable in Lake Mohave, but primary productivity is high. Minckley et al. 
(1991) reported that nutritional levels appear to be high enough in most years to support the new 
year class, but Horn (1996) concluded that nutritional limitations in the reservoir may contribute 
to mortality of larvae directly through starvation or indirectly through reduced growth, which 
prolongs their susceptibility to predation. In a study of razorback sucker diet in Lake Mohave, 
Marsh (1987) found that the combination of planktonic crustaceans, rotifers, diatoms, detritus, 
and filamentous algae occurred in 44 percent of digestive tracts. Bosmina sp. was the most 
abundant item (100 percent of fish); followed by diatoms, primarily Fragillaria crotenensis 
(nearly 90 percent); and Daphnia sp. (72 percent). Rotifers, benthic ostracods, copepods, and 
chironomid dipteran larvae were found in 53 percent, 53 percent, 34 percent, and 3 percent of 
fish, respectively, but numbers were low, except for rotifers. Detrital organic matter and 
inorganic matter was found in 56 percent and 16 percent of digestive tracts, respectively. 

Parasites 
There is no evidence that disease is a significant factor in the decline and status of the razorback 
sucker. In a survey of pathogens recovered from endangered fishes in the Upper Colorado River 
Basin, Flagg (1982) reported the bacteria Erysipelothrix rhysiopathiae, the protozoan Myxobolus 
sp., and the parasitic copepod Lernaea cyprinacea in razorback sucker. The protozoan parasite 
Myxobolus can invade the eye tissue and eventually cause blindness, an ailment commonly 
reported in older specimens (Minckley 1983). Based on incidence of infection and condition of 
fish, Flagg (1982) concluded that parasitic infestation was not likely to be a contributing factor to 
mortality of native fish in the upper basin. 
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In the lower basin, Lernaea spp., the pathogenic protozoans Myxobolus and Ichtyophthirius, an 
internal monogenetic trematode of the suborder Polyopistocotyles, the cestode Isoglaridacris 
bulbocirrus, and nematodes of the genus Dacnitoides have all been reported from razorback 
sucker from Lake Mohave (Minckley 1983; Bozek et al. 1984). Mpoame (1981) reported a low 
rate of parasitism for the Lake Mohave razorback sucker. This contrasts with hatchery-reared 
razorback sucker recaptured after introduction into the Verde and Salt rivers, which exhibited 
extremely heavy infestations by Lernaea, particularly in summer and fall (Clarkson et al. 1993; 
Creef and Clarkson 1993; Hendrickson 1994). The heavily infected fish (several dozen parasites 
per individual) were pale and emaciated, and two of them exhibited partial loss of equilibrium 
(Hendrickson 1994). Hendrickson (1994) concluded that razorback sucker may be more 
susceptible to Lernaea infection than other species in the stocked areas, and that Lernaea and 
other exotic parasites may have been a factor in the decline of native fish in the lower basin. 
Lernaea was not present or was very rare in Arizona before the 1930's, but had increased 
significantly by the 1960's (James 1968). Researchers monitoring reintroduced razorback sucker 
in the Verde and Salt rivers continued to observe Lernaea infestation on this species in 1999; 
however, the incidence appears to have decreased from previously reported levels (personal 
communication, E. Jahrke, Arizona Game and Fish Department). 

2.4.3 Kanab Ambersnail 

Legal Status 
The Kanab ambersnail, Oxyloma haydeni kanabensis, was listed as endangered in 1992 (FWS 
1992) with a recovery plan completed in 1995 (FWS 1995). Fully mature snails are brown with 
an elongated first whorl and measure about 23 mm in shell size (Sorensen 2007). Kanab 
ambersnail are pulmonate or air-breathing mollusks, but are able to survive underwater for up to 
32 hours in cold, highly oxygenated water (Pilsbry 1948). This adaptation may have allowed for 
dispersal of the species to new sites. Kanab ambersnail feeds on plant tissue, bacteria, fungi and 
algae. It scrapes this food off of plants by means of a radula or rasp tongue. 

Historical and Current Range 
Kanab ambersnail populations in the Southwest are believed to be relict populations from the late 
Pleistocene, when springs, seeps, and wetland habitat were more abundant (Spamer 1993; Szabo 
1990). Historically, the region may have harbored many populations of ambersnails, but today 
the Kanab ambersnail occurs at only three springs: one at Three Lakes near Kanab, Utah; two in 
Grand Canyon National Park: one at Vaseys Paradise, a spring and hanging garden at the right 
bank at RM 31.8 and a translocated population at Upper Elves Chasm, at the left bank at RM 
116.6 (Gloss et al. 2005). At Three Lakes near Kanab, two populations once existed, but one was 
extirpated by desiccation of its habitat. The remaining population at Three Lakes is located on 
private lands at several small spring-fed ponds dominated by cattail (Clarke 1991).  

 
Through analysis of historic photographs, an increase in the vegetative cover along the river in 
Grand Canyon has occurred since the completion of Glen Canyon Dam in 1963 (Turner and 
Karpiscak 1980). The increase in cover, reduction in beach-scouring flows, and introduction of 
non-native water-cress, Nasturtium officinale, has lead to a >40 percent increase in suitable 
Kanab ambersnail habitat area at Vaseys Paradise from pre-dam conditions (Stevens et al 1997a).  
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Populations in the Action Area 
Intensive searches at more than 150 springs and seeps in tributaries to the Colorado River 
between 1991 through 2000 found no additional Kanab ambersnail (Meretsky 2000; Meretsky 
and Wegner 1999; Sorensen and Kubly 1997, 1998; Webb and Fridell 2000). In September 1998, 
three springs along the Colorado River were stocked with young snails (AGFD 1998). Release 
sites were selected above the historic flood elevation (~100,000 cfs) and where populations 
would be unaffected by dam operations. One translocation site, Upper Elves Chasm, has 
established as a new population. Continued monitoring has detected numerous Kanab ambersnail 
persisting and reproducing at the initial release area, including migration into suitable adjacent 
habitat (Gloss et al. 2005). 

Reproduction 
Kanab ambersnail live approximately 12-15 months and are hermaphroditic and capable of self-
fertilization (Clarke 1991; Pilsbry 1948). Mature Kanab ambersnail mate and reproduce May-
August and deposit clear, gelatinous egg masses on undersides of moist to wet live stems, on the 
roots of watercress, and on dead stems of crimson monkey-flower (Nelson and Sorensen 2001; 
Stevens et al. 1997a). In warm winters, more than one reproductive period can occur. Adult 
mortality increases in late summer and autumn leaving the overwintering population dominated 
by subadults. Young snails enter dormancy in October-November and typically become active 
again in March-April. Over-winter mortality of Kanab ambersnail can range between 25 and 80 
percent (KAIMG 1997; Stevens et al. 1997a). Populations fluctuate widely throughout the year 
due to variation in reproduction, survival, and recruitment (Stevens et al. 1997a). The number of 
ambersnails at Vaseys Paradise has remained stable since 1998 (Ralston 2005), although flows 
greater than 45,026 cfs (1275 cms) are thought to decrease the population by up to 17 percent in 
the short-term (Stevens et al. 1997a, 1998b). 

 
Habitat 
Vaseys Paradise is a small, spring-fed riparian area adjacent to the Colorado River at RM 31.8 
(Stevens 1990). Ambersnails are found in the vegetation associated with this spring, which 
includes native crimson monkey-flower, Mimulus cardinalis Dougl. ex Benth., native water 
sedge, Carex aquatilis Wahlenb., and non-native water-cress, Nasturtium officinale L. Stevens et 
al. (1997a,b) found Kanab ambersnail at Vaseys Paradise predominantly use crimson 
monkeyflower and water-cress for food and shelter. They identified these two species as key 
habitat components for Kanab ambersnail. The other Grand Canyon habitat at Upper Elves 
Chasm is predominated by crimson monkeyflower and maidenhair fern, Adiantum capillus-
veneris, with lesser amounts of sedges, Carex aquatilis, rushes, Juncus spp., cattails, water-cress, 
helleborine orchids, Epipactis gigantean, and grasses (Nelson 2001; Nelson and Sorensen 2002). 
From evidence collected under controlled laboratory conditions, microclimatic conditions such 
as higher humidity and lower air temperatures relative to the surrounding environments and high 
vegetative cover may be important habitat features related to Kanab ambersnail survival 
(Sorenson and Nelson 2002). 

 
Threats 
Current threats to Kanab ambersnail include loss and adverse modification of wetland habitats, 
which are scarce in this semi-arid region (FWS 1995). The Three Lakes population is at risk due 
to commercial development by the private landowner. Historically, the Grand Canyon often 
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experienced annual floods of 90,000 cfs (2,550 cms) or greater and Kanab ambersnail were 
likely swept downstream and drowned (Stevens et a. 1997a). Today, Glen Canyon Dam limits 
such floods, although numerous high flows (>45,000 cfs; 1,275 cms) have occurred in the last 30 
years. For example, during the March 1996 high flow in the Grand Canyon, up to 16 percent of 
Kanab ambersnail habitat at Vaseys Paradise was lost or degraded and hundreds of snails were 
lost. Recovery of this habitat to pre-flood conditions required over two years (IKAMT 1998; 
Stevens et al. 1997b).  

 
On a lesser scale, vegetation trampling and flash floods from the talus slope above Vaseys 
Paradise also contribute to habitat loss and direct Kanab ambersnail mortality. Due to steep 
slopes and a dense cover of poison ivy at this location, the impacts from river runners and hikers 
are reduced. Additionally, plateau-origin flash floods are rare in the region (Stevens et al. 1997a).  

 
Parasites 
Evidence exists that a small number of Kanab ambersnails at Vaseys Paradise were parasitized 
by a trematode, tentatively identified as Leucochloridium sp. (Stevens et al. 1997b). Potential 
vertebrate predators include rainbow trout in the stream mouth, Say’s and black phoebe, 
Savornis savi and S. niaricans, canyon wren, Catherpes mexicanus, American dipper, Cinclus 
mexicanus, and canyon mice, Peromyscus crinitus (Stevens et al. 1997b; FWS 1995). Direct 
evidence of Kanab ambersnail consumption and predation rates by birds and mice are not 
available, but analysis of mice feces suggests that snails are not regularly eaten by rodents 
(Meretsky and Wegner 1999). Another natural threat is bighorn sheep, Ovis canadensis, which 
can consume water sedge, a source of forage for bighorn sheep, especially during droughts. With 
increased growth of water sedge, the springs at Vaseys Paradise are now habitually visited by 
bighorn sheep, resulting in vegetation used by the snails being regularly trampled and consumed 
(Gloss et al. 2005). 

2.4.4 Southwestern Willow Flycatcher 
Legal Status 
The Southwestern willow flycatcher, Empidonax traillii extimus, (SWFL) was designated by the 
FWS (1995a) as endangered on February 27, 1995. A final recovery plan was completed in 
August 2002 (FWS 2002c). Critical habitat was initially designated in 1997 (62 FR 39129), but 
was rescinded by court order in 2001. Designation of critical habitat was finalized in October 
2005 (FWS 2005b). The affected environment for this action does not include any critical 
habitat.  

 
The SWFL is about 15 cm long, and weighs approximately 11 grams. It has a grayish-green back 
and wings, whitish throat, light grey-olive breast, and pale yellow belly. Two distinct wing bars 
are visible on the greater coverts, and an eye-ring is either absent or very faint. The upper 
mandible is dark, while the lower mandible is pale to yellowish (Phillips et al. 1964; FWS 
2002c). Recognition of the different subspecies in the field is nearly impossible and is mainly 
based on differences in color and morphology using museum specimens (Paxton 2000; Unitt 
1987). The SWFL may be distinguished from other Empidonax species by its primary song and 
its location on its breeding grounds only after spring migration is over (Sogge et al. 1997a,b).  
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Historic and Current Range 
The historic breeding range of the SWFL included southern California, southern Nevada, 
southern Utah, Arizona, New Mexico, western Texas, southwestern Colorado, and extreme 
northwestern Mexico (Browning 1993; Paxton 2000; FWS 2002c; Unitt 1987). When the SWFL 
was listed as endangered in 1995, populations were estimated at 350 territories (FWS 2002c). 
Through increased surveys that number has increased to over 1,000 territories (Durst et al. 2005). 
Arizona Game and Fish documented 883 resident flycatchers at 483 territories in 47 sites in 2005 
(English et al. 2006). Approximately 73 territories were documented in 2005 along the lower 
Colorado River and at sites in Nevada and the lower Grand Canyon (Koronkiewicz et al. 2006). 

 
Another important component in the distribution of SWFL is its migration routes and migration 
stopover habitats. This neotropical migrant travels between breeding areas in the US to wintering 
grounds in Central and South America (FWS 2005b). Migration flyways include major rivers 
such as the Colorado (English et al. 2006; Koronkiewicz et al. 2006; Moore 2005; FWS 2005b; 
Yong and Finch 1997). Over 600 individual birds have been located during migration along the 
lower Colorado River near Yuma, Arizona (McLeod et al. 2005).  

 
Wintering grounds for the SWFL are believed to include central America and northern South 
America. Surveys have been conducted in Costa Rica, Ecuador, El Salvador, Guatemala, 
Mexico, Nicaragua, and Panama (Koronkiewicz and Sogge 2000; Koronkiewicz and Whitfield 
1999; Lynn and Whitfield 2002, Lynn et al. 2003; Nishida and Whitfield 2004). It is suspected 
that all subspecies may winter in similar locations, but because it is difficult to identify 
subspecies, specific areas where they winter are not well-known at this time.  

 
In the Southwestern US, some 100 sites have been surveyed for SWFL including the Virgin 
River, Pahranagat National Wildlife Refuge, Grand Canyon, and the lower Colorado River from 
Lake Mead to Mexico. These surveys indicate the main breeding populations occur along the 
Virgin River from north of Mesquite, Nevada to the Virgin River delta with Lake Mead, at 
Pahranagat National Wildlife Refuge, at Topock Marsh near Needles, California, and on the Bill 
Williams National Wildlife Refuge, Arizona. Presence-absence surveys and life history studies 
of the SWFL have been conducted along the Colorado River since 1996 (Koronkiewicz et al. 
2004, 2006a; McKernan and Braden 1997, 1998, 1999, 2001a, 2002, 2006a,b; McLeod 2005). 
These studies show the bird has consistently nested along the river in Grand Canyon from 
Separation Canyon to the delta of Lake Mead, as new riparian habitat, primarily tamarisk, has 
developed in response to regulated river flows (Gloss et al. 2005). The expansion of riparian 
vegetation in Grand Canyon may have provided additional habitat for the SWFL, but birds in the 
upper river corridor persist at a very low level at only one or two sites. 
Populations in the Action Area 
Southwestern willow flycatchers are not present around Lake Powell, but they have been 
documented along the Colorado River between RM 47 and RM 54, at RM 71, and at RM 259 
(Sogge et. al. 1995; Tibbets and Johnson 1999, 2000; Unitt 1987). Population numbers have 
fluctuated between five breeding pairs and three territorial, but non-breeding pairs in 1995, to 
one single breeding pair more recently. The year 2004 marked the sixth consecutive year in 
which surveys located a single breeding pair at the upper sites, the lowest population level since 
surveys began in 1982. Given these low numbers, the continued presence of the SWWF in Grand 
Canyon appears tenuous. 
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The SWWF has been detected within lower Grand Canyon-upper Lake Mead since surveys 
began in 1997 with breeding flycatchers detected in 1999–2001, but not in 2002 or 2003. A 
single breeding pair was detected in 2004 and an unpaired male occupied this same area in 2005 
(Koronkiewicz et al. 2006a). Two nests were detected during the 2006 breeding season 
(Koronkiewicz et al. 2006a). Due to extreme drops in water levels that started in 2000, much of 
the occupied habitat of the 1990s is now dead or dying. More recently, new stands of vegetation 
have been developing in areas exposed by receding water and this vegetation is now developing 
into suitable flycatcher habitat.  

 
Reproduction 
The SWFL breeds across the lower Southwest from May through August. SWFL typically arrive 
on breeding grounds between early May and early June. Males generally arrive first to set up 
territories, with females arriving a week or two later. Males are highly territorial and will defend 
their territory through counter singing and aggressive interaction. Flycatchers often clump 
together in one area of the habitat patch, which leads to an indication that this species is semi-
colonial. Males are usually monogamous, but polygyny occurs at approximately 10-20 percent 
(Pearson 2002; FWS 2002c). Genetic evidence suggests extra-pair copulation exists by either 
mated or unmated males with females in neighboring territories (FWS 2002).  

 
Dense riparian vegetation near surface water or saturated soil, across a large elevational and 
geographic area is the dominant habitat for breeding SWFLs (FWS 2002c; Sogge et al. 1997a). 
Dominant plant species consist of large riparian trees such as Coyote willow (Salix exigua), 
Goodding willow (Salix gooddingii), Fremont cottonwood (Populus fremontii), boxelder (Acer 
negundo), tamarisk, and Russian olive (Elaeagnus angustifolia) (FWS 2002c).  

 
Occupied sites vary in size and shape but all have dense vegetation with some open areas, and 
are usually associated with open or standing water. Occupied patches can be as small as two 
acres and as large as several hundred acres, but are typically greater than 10 m wide. Although 
most of the sites are associated with open water, marshy seeps, or saturated soil where the nest 
tree can be in standing water, hydrologic conditions can change drastically during the breeding 
season and between years (Koronkiewicz et al. 2006a; FWS 2002c; Sogge et al. 1997a; Sogge 
and Marshall 2000). Because birds are exposed to extreme environmental conditions throughout 
the desert southwest, dense vegetation and moist soils at the nest may be needed to provide a 
more suitable microclimate for raising young by increasing humidity within the site (Allison et 
al. 2003; Koronkiewicz et al. 2006a; Sogge and Marshall 2000). 

 
Vegetation analysis for occupied SWFL sites suggests that flycatchers breed in a wide variety of 
habitats throughout the region (Koronkiewicz et al. 2006a; McKernan and Braden 2002). These 
areas contain relatively homogenous, contiguous stands of riparian vegetation that differ from 
each other both structurally and compositionally. Preliminary nest productivity, as related to 
vegetation type (e.g., non-native versus native), shows no significant difference (McKernan and 
Braden 2002), but further analysis is planned.  

 
Nest building usually begins three to seven days after pair formulation. The SWFL build open 
cup nests that are approximately 7 cm high and wide with dangling material below. Nests are 
typically placed within the fork of branches with the nest cup supported by several stems. Nest 
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height varies and can be anywhere from ground height to several meters high, depending on 
height of nest tree. Typical nest height is around 2-7 m. (Sogge et al. 1997a). Flycatchers nest in 
various tree species including Goodding’s willow, coyote willow, cottonwood, tamarisk, 
boxelder, and other native and non-native tree species. Along the lower Colorado River, main 
nest substrates include Goodding’s willow (20-30 percent), coyote willow (5-15 percent), 
Fremont cottonwood (5 percent), and tamarisk (50 percent-70 percent). In some areas, such as 
Topock Marsh, nearly 100 percent of the nests are in tamarisk (Koronkiewicz et al. 2004, 2006a; 
McKernan and Braden 2001; McLeod et al. 2005). On average, one egg is laid per day, with a 
typical clutch size of four eggs laid within five days. Egg laying can start as early as late May, 
but is usually in early to mid-June (Sogge et al. 1997a, b). Upon completion of egg laying, the 
female usually incubates the eggs for approximately 12 days, and all eggs usually hatch within 
24-48 hours of one another. Nestlings fledge usually within 12-15 days (Paxton and Owen 2002). 
Chicks are usually present from mid-June through early August. The SWFL will re-nest, either 
after the first nest fledges or after failure, and have been documented to have up to four nesting 
attempts and three clutches (Koronkiewicz et al. 2006a; McKernan and Braden 2001b; Sferra et 
al. 1997,). Adults depart from breeding territories as early as mid-August, but may stay until 
mid-September if nesting was late. Fledglings usually leave the breeding areas a week or two 
after adults (Sogge et al. 1997a).  

 
Nest success averaged from 40-50 percent through all years of study along the lower Colorado 
River (Koronkiewicz et al. 2004, 2006a; McKernan and Braden 1997, 1998, 1999, 2001, 2002, 
2006; McLeod 2005) and approximately 25-70 percent over the complete range of the SWFL 
(FWS 2002b,c). Predation was the leading cause of nest failure at many study sites throughout 
the range (FWS 2002b,c, McKernan and Braden 2001b and 2002, Koronkiewicz et al. 2004, 
2006a, McLeod 2005). Predation has averaged 33-65 percent along the lower Colorado River 
from 1996 through 2005 (Koronkiewicz et al. 2004, 2006a; McKernan and Braden 2001, 2006; 
McLeod 2005). For Arizona statewide surveys in 2005, approximately 77 percent of failed nests 
were due to depredation (English et al. 2006). Although these numbers are within the typical 
range for open-cup nesting passerine birds (FWS 2002c), this amount of predation increases the 
stress on a species already endangered.  

 
Habitat 
At most sites along the Colorado River and tributaries, occupied habitats usually have high 
canopy closure with no distinct understory, overstory, or structural layers (Koronkiewicz et al. 
2006a). High vegetation volume may be more important than specific tree species type or habitat 
structure. High vegetation volume and high foliage density at nest sites and within breeding 
patches has been reported in other willow flycatcher breeding areas (Allison et al. 2003; 
Paradzick 2005; Sedgwick and Knopf 1992; Sogge and Marshall 2000; Stoleson and Finch 
2003). This factor, along with the presence of water, was consistent throughout the range.  

 
The presence of water is an important component of SWFL habitat (FWS 2002c; Sogge and 
Marshall 2000). Studies indicate that SWFL nest sites are usually closer to water than non-use 
sites (Koronkiewicz et al. 2006a; Paradzick 2005; Stoleson and Finch 2003). Nest sites are 
usually located within 200 m of open or standing water and usually contain soils that are higher 
in water content than non-use sites (Koronkiewicz et al. 2006a; McKernan and Braden 2002; 
Paradzick 2005; Stoleson and Finch 2003). Water or moist soils help regulate temperature and 
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relative humidity within the stand, produce the right conditions for insect development and 
survival, and are associated with creating a greater foliage density (Koronkiewicz et al. 2006a; 
Paradzick 2005; FWS 2002c).  

 
Diet 
The SWFL is an insectivore that hawks insects while in flight, gleans insects from foliage, and 
occasionally captures them from the ground (FWS 2002c). Flycatchers forage from within the 
habitat or above the canopy, above water, or glean from trees and herbaceous cover (McCabe 
1991; FWS 2002c; Sogge 2000,). The main diet of the flycatcher consists of small to medium 
size insects such as true bugs, Hemiptera, wasps and bees, Hymenoptera, flies, Diptera, beetles, 
Coleoptera, butterflies and caterpillars, Lepidoptera, and spiders, Araneae (DeLay et al. 2002; 
Drost et al. 1998, 2001; Durst 2004; McCabe 1991; Sogge 2000). Berries and small fruits have 
also been reported but are typically rare (McCabe 1991). The flycatcher can exploit a diverse 
array of insects depending on availability within the habitat (DeLay et al. 2002; Drost et al. 1998, 
2001, 2003; Durst 2004). Diet may differ between sites and between years depending on 
abundance and availability of insects in and near the breeding habitat (DeLay et al. 2002; Drost 
et al. 2003; Durst 2004). Although there were differences in prey types consumed by the 
flycatcher among different habitats (e.g., native versus non-native), there was no significant 
differences in the abundance of insects available between habitats (Durst 2004) and there was no 
evidence that physiological condition of flycatchers was lower in saltcedar habitats (Owen et al. 
2002).  

 
Threats and Parasites 
Habitat alteration, as well as loss and fragmentation are considered one of the greatest threats to 
the SWFL (Marshall and Stoleson 2000). Riparian habitats in the Southwest are naturally patchy 
and subject to periodic disturbance. Factors contributing to habitat loss include water 
management, such as dams and reservoirs, diversions and groundwater pumping, channelization 
and bank stabilization, agricultural development, livestock grazing, phreatophyte control, 
increased recreation, and urbanization. All of these cause loss of habitat, habitat fragmentation, 
loss of water underneath stands, and human disturbance (Marshall and Stoleson 2000).  

 
Although the SWFL now nests in tamarisk, this has some disadvantages. Tamarisk exudes salts 
and creates soils that are too salty for other native species to propagate, thus reducing diversity in 
the stand which may affect prey base for flycatchers. Tamarisk also is much more adapted to 
disturbance (floods, fire) and reestablishes more readily than native species, thus changing the 
composition of the stand, and increasing the chance of greater habitat loss and degradation. Deep 
root systems and extended production and proliferation of seeds from March through October 
gives tamarisk selective advantage over natives under stressed conditions and may reduce soil 
moisture and standing water conditions needed for flycatcher habitat (Marshall and Stoleson 
2000).  

 
Parasitism by brown-headed cowbirds is another cause of nest failure. Cowbird parasitism may 
impact some SWFL populations enough to warrant management actions. The cowbird lays it 
eggs in the nest of the host species, and the host then incubates the cowbird eggs, which typically 
hatch prior to the hosts own young. Parasitism rates have ranged from 0-75 percent in some 
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areas, with the average parasitism rate in 2005 at 32 percent for all sites (Koronkiewicz et al. 
2006a). The Arizona statewide average for 2005 was 7 percent (English et al. 2006).  

 
The SWFL has evolved with predation and cowbird parasitism, but increased populations of 
predators and cowbirds has become a major threat to some local populations. Predation is the 
leading cause of nest failure in many populations of SWFL (Marshall and Stoleson 2000; FWS 
2002c), including those along the Colorado River and its tributaries (Koronkiewicz et al. 2006a; 
McKernan and Braden 2002). Known and suspected nest predators include snakes, predatory 
birds such as raptors, corvids, grackles and cowbirds, small mammals, and even ants (Marshall 
and Stoleson 2000). Cowbird populations have expanded greatly with the expansion of livestock 
grazing, agriculture, and deforestation (Marshall and Stoleson 2000; Siegle and Ahlers 2004).  

 
Little is known of diseases and parasites within the SWFL population. McCabe (1991) reported a 
mite infestation in several willow flycatcher nests in Maryland, subsequently identified as 
Ornithonyssus sylviarum, the northern fowl mite. The SWFL is also known to host blood 
parasites such as Hemoproteus, Leucocytozoon, Microfilaria, Tyrpanosoma, and Plasmodium 
(FWS 2002c). Other parasites identified include blow fly, Protocalliphora sp., and nasal mites 
(FWS 2002c). It is unknown what effects these parasites have on the SWFL, but McCabe (1991) 
noted no significant effects from the mite infestations.  

 

3 Sufficient Progress and New Information 

3.1 Actions Taken in Response to the 1995 Biological Opinion  

The RPA of the 1995 biological opinion included the following elements, which are followed in 
turn by a discussion of actions taken by Reclamation to date in response to the biological 
opinion: 

3.1.1 Element 1: Development of an Adaptive Management Program 
Progress to date 
A common element of the 1995 EIS and a central theme of the 1995 biological opinion was an 
adaptive management program. The AMP was developed and implemented under the Federal 
Advisory Committee Act in 1997. The AMP retains the same organizational structure as 
presented in the fourth sufficient progress communication. The AMP Charter was renewed in 
2006. New and continuing representatives to the Adaptive Management Work Group (AMWG) 
were confirmed by the Secretary of the Interior during 2004–2007; the Federation of Fly Fishers 
replaced Trout Unlimited and Grand Canyon Wildlands Council replaced Southwest Rivers.  

A number of ad hoc committees have been formed under the AMP that address specific issues 
regarding dam operations and conservation of humpback chub. In response to a discovery that 
the endangered humpback chub population in Grand Canyon was in decline, the AMWG 
directed in January 2003 that an ad hoc committee be formed with the responsibility of 
developing a comprehensive plan for future research, monitoring, and management of the 
endangered fish. In August 2003, the HBC Ad Hoc Committee delivered the plan to the Science 
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Advisors (GCDAMP Science Advisors 2003) and then to AMWG (Humpback Chub Ad Hoc 
Committee 2003), and the plan was used to fund projects in the 2004 and 2005 fiscal years. The 
plan is presently being revised by the HBC Ad Hoc Committee and will be resubmitted to 
AMWG after projects are assessed by an AMWG ad hoc committee to determine which of them 
would be recommended for inclusion in the AMP. 

The adaptive management program necessitated integration of scientific information into an 
ecosystem-based science program. This need was partially fulfilled through development of a 
conceptual model of the Colorado River ecosystem in the Grand Canyon region (Walters et al. 
2000). During 2003 the TWG used knowledge gained from the conceptual model to evaluate a 
program of potential future experimental actions through a multi-attribute tradeoff analysis 
(Failing et al. 2003). A complimentary exercise has been the development of the AMP Strategic 
Plan, which was adopted by the AMWG and is available at 
http://www.usbr.gov/uc/envprog/amp/ strategic_plan.html. 

Other aspects of the adaptive management planning process for humpback chub include 
development of a Strategic Science Plan, Core Monitoring Plan, several Beach Habitat Building 
Science Plans, a study plan for the 2000 Low Steady Summer Flows (Fritzinger et al. 2000) and 
Non-native Fish Mechanical Removal protocols (Coggins et al. 2002). Many of these efforts are 
presently ongoing.  

In May and July of 2005, workshops to assess the knowledge gained through the AMP were 
conducted in Phoenix and Flagstaff, AZ, respectively (Melis et al. 2005). At the workshops all 
aspects of the Program were evaluated and assessed for the level of science and knowledge that 
had been gained to date. The workshops and resulting publication also helped to define and 
refine research questions and to prioritize research projects in the future. 

Results of science investigations conducted under the auspices of the AMP were presented at a 
science symposium on October 25–27, 2005 , (Gloss et al. 2005), see also [online] 
http://www.gcmrc.gov/library/reports/synthesis/score2005.pdf. This publication is the second 
synthesis of research and monitoring in the Colorado River ecosystem and covers the years 
1991-2004, though results regarding particular areas of investigation varied from resource to 
resource. For example, information for the endangered humpback chub was only referenced 
through 2001. 

The FWS is a key stakeholder within the existing AMP and the FWS has previously concurred 
with Reclamation that sufficient progress has been made in the implementation of the AMP. 
Reclamation notes that the AMP currently retains the same organizational structure as presented 
in the fourth sufficient progress communication.  

3.1.2 Element 1A: Program of Experimental Flows 
Progress to date 
This element was intended to continue research through the AMP to identify the effects of Glen 
Canyon Dam release patterns on listed species, and was “…to include high steady flows in the 
spring and low steady summer flows in summer and fall during [8.23 MAF] years…studies of 
high steady flows in the spring may include studies of habitat building and habitat maintenance 
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flows...” Following the 1995 biological opinion and the 1996 ROD, Reclamation helped the 
AMP to coordinate a series of experimental flows on Glen Canyon Dam. The first large 
experiment was a week-long, 45,000 cfs beach habitat-building flow that occurred in March-
April 1996. Objectives were to rebuild high-elevation sandbars, restore backwater channels, 
retain fine silts and clays, restore the pre-dam disturbance regime, preserve and restore camping 
beaches, displace non-native fishes, scour vegetation from camping beaches, and protect cultural 
resources, all without significant adverse impacts to endangered species, cultural resources, the 
Lees Ferry trout fishery, or hydropower production. Results of the 1996 experimental flood were 
documented by Webb et al. (1999). 

In 1997 a fall flow test consisting of a powerplant release of 31,000 cfs for 48 hours was 
conducted. This action received its own consultation, however it is also consistent with RPA 
element 1A. While powerplant capacity releases were described in the 1995 EIS as Habitat 
Maintenance Flows, such a test in the fall was not addressed in the 1995 FEIS, which 
necessitated additional ESA consultation.  

The steady flow requirement identified by the FWS was evaluated in the year 2000. In 1999 
Reclamation funded a contractor to convene a panel of experts to develop a program of 
experimental flows for endangered and native fishes of the Colorado River in Grand Canyon 
(Valdez et al. 2000). As part of this program, the third large experiment conducted by the AMP 
was an experimental flow for native fishes from March-September 2000. Flow components 
included: (1) short-term 8,000 cfs initiating the study for aerial photography; (2) stable, spring 
flows of 14,000-19,000 cfs to measure hydraulics and water temperatures at the mouth of the 
Little Colorado River; (3) spring and autumn powerplant capacity spike flows; (4) an extended 
period of 8,000 cfs during May, June, July, and August; and (5) a period of 8,000 cfs steady 
flows following the autumn spike flow to measure its effects and to conduct a second round of 
aerial photography. In October 2003 GCMRC convened a science symposium that was largely 
directed at presentation of results from the low summer steady flows (LSSF) research and 
monitoring. Effects of the experiment on fish populations were documented by Trammell et al. 
(2002), Rogers et al. (2003) and Speas et al. (2004b; see Section 3.2.6).  

In January 2002 the AMWG directed the Grand Canyon Monitoring and Research Center 
(GCMRC), in consultation with the Technical Work Group (TWG), to design an experiment to 
test how dam operations might be modified and other management actions taken to better 
conserve sediment and to benefit native fish. On March 25, 2002, the GCMRC provided a draft 
proposal for the requested experimental flows and management actions that formed the basis of 
the September 2002 Environmental Assessment on Proposed Experimental Releases from Glen 
Canyon Dam and Removal of Non-Native Fish (Reclamation, NPS and USGS 2002).  

Mechanical removal of non-native fish from the Colorado River above and below the LCR was 
started in January 2003 (Coggins and others 2002, Coggins and Yard 2003) and was continued 
through 2006. Rainbow trout and brown trout were removed from a 10-mile reach adjacent to the 
LCR. Non-native suppression releases from Glen Canyon Dam were implemented from January 
to March 2003 to test the effectiveness of high fluctuating flows on limiting the recruitment of 
non-native fish (Davis and Batham 2003, Korman et al. 2003). The high fluctuating flows for 
non-native suppression were continued in 2004 and 2005.  
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In November 2004 a second high flow experiment was conducted. The duration of this release 
was reduced to 60 hours on peak and the magnitude was reduced to 41,500 cfs due to repairs 
being made on one of the dam turbines. Another important difference with the 1996 high flow 
experiment was that the 2004 release occurred only after sediment input triggers, based largely 
on antecedent input from the Paria River, had been met. The trigger required that at least 1 
million metric tons of fine sediment had been received by the Colorado River prior to the high 
release. 

In September and October of 2005, a series of two-week dam releases occurred that alternated 
between steady and fluctuating releases. The purpose of this short-term experiment was to 
examine the effects of daily fluctuations on water quality parameters and biotic constituents 
(phytoplankton, macroinvertebrates, and fishes) of associated shoreline habitats (Ralston et al. 
2007). 

In 2006, Reclamation initiated development of a long-term experimental plan which was 
proposed to include both dam releases and other management actions. This effort originated with 
a science planning group that produced four options which were recommended by the AMWG to 
the Secretary of the Interior. GCMRC provided an assessment of the effects of the four options 
(GCMRC 2006). Reclamation conducted public scoping meetings in December 2006 and 
January 2007 and identified the purpose and need for the Proposed Action as improving the 
understanding of the Colorado River ecosystem below Glen Canyon Dam and protection of key 
resources (humpback chub, sediment, and cultural resources). In April 2007, GCMRC convened 
a science workshop to evaluate the four options for their use in development of EIS alternatives. 
Workshop participants also developed a fifth alternative for consideration by Reclamation and its 
cooperating agencies.  

In summary, Reclamation has, through the adaptive management program, conducted a series of 
experiments that featured varied dam operations in conjunction with non-flow actions (e.g., non-
native fish removal, translocation of humpback chub and Kanab ambersnail). These experiments 
were conducted in an effort to improve the status of the humpback chub and increase our 
understanding of the relationship between dam releases, sediment conservation and humpback 
chub population dynamics. Reclamation believes that implementation of these experiments 
through adaptive management is in concert with the directive to develop a program of 
experimental flows and has contributed substantially to the new information presented in this 
biological assessment.  

3.1.3 Element 1B: Feasibility Analysis of a Selective Withdrawal Program for 
Glen Canyon Dam  
Progress to date 
In January 1999, Reclamation released a draft environmental assessment on a temperature 
control device (TCD) for Glen Canyon Dam. Such a device is also referred to as a selective 
withdrawal structure as its utility extends to other water quality issues as well as temperature 
control. The preferred alterative was a single inlet, fixed elevation design with an estimated cost 
of $15,000,000. Sufficient concern was evidenced in the review of the environmental assessment 
(Mueller et al. 1999) for unintended negative effects (i.e., non-native fish proliferation) as a 
result of the operation of a TCD, as well as the lack of a detailed science plan to measure those 
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effects, that the environmental assessment was withdrawn and not finalized. In 1999 and in 2001, 
Reclamation convened workshops at Saguaro Lake, AZ of scientists to evaluate the feasibility of 
a temperature control device and to further develop research and monitoring for evaluating 
ecosystem responses to warmer temperatures. One outcome of the 1999 workshop was the 
discovery that native fish data had not been brought together and analyzed. Opinions of native 
fish biologists on the status of endangered humpback chub differed sufficiently to make obvious 
the need for the analysis. 

During development of the Interim Surplus Criteria EIS in 2000, Reclamation discovered that 
projections for utilization of the preferred alternative design for the temperature control device, 
previously estimated at 85 out of 100 years, were considerably overestimated and were closer to 
45-50 percent of those years. This discovery prompted re-evaluation of the engineering designs 
for the temperature control device.  

Another milestone in the feasibility assessment was a survey of operators of dams having 
selective withdrawal devices, including TCDs, to determine whether concerns evidenced by 
scientists and managers for effects of the Glen Canyon Dam TCD have been experienced at other 
facilities. Results of this survey and other related investigations were presented to the AMWG at 
their July 2002 meeting and were subsequently published in Vermeyen (2003). No major 
environmental complications were identified in the survey results; however, there was little 
dedicated evaluation of the biological efficacy of the TCDs from which to draw conclusions.  
 
In summer 2002, the AMWG recommended that Reclamation should solicit a risk assessment of 
the Glen Canyon Dam TCD proposal from the AMP Science Advisors. Subsequently, the 
Advisors produced a report on their findings of risk assessment (Garrett and others 2003) which 
recommended the installation of a TCD for Glen Canyon Dam as soon as possible and the 
construction of a pilot TCD in the interim. The Science Advisors further recommended a strong 
leadership role from AMWG, TWG, and GCMRC related to the installation and operation of a 
TCD along with a commitment from all parties to incorporating the TCD into the AMP and the 
research required to evaluate the TCDs effects. At the August 13–14, 2003 meeting, the AMWG 
recommended to the Secretary of the Interior that Reclamation should initiate environmental 
compliance associated with the construction of a TCD. Reclamation initiated a feasibility-level 
construction design assessment for the TCD in spring of 2006, which was completed in 
November 2007.  

Reclamation has continued to work on the feasibility assessment since the decision was made to 
rescind the draft environmental assessment on the proposed TCD released in January 1999 
(Reclamation 1999). In our 2004 sufficient progress letter, Reclamation indicated to FWS that 
following the results of scientific investigations, expert workshops, a risk assessment by the 
AMP Science Advisors, and a recommendation by AMWG, it was justified to proceed with 
environmental compliance on a selective withdrawal device for Glen Canyon Dam. In 2005 
Reclamation initiated development of a new environmental assessment to provide NEPA 
compliance on a 2-unit selective withdrawal. This effort was discontinued when the decision was 
made to include compliance for a TCD within the Long-Term Experimental Plan EIS. 
Several designs were considered for the selective withdrawal, including uncontrolled and 
controlled overdraw and internal and external frame devices. Based on projections for lower 
future reservoir levels arising from modeling in the Interim Surplus Criteria EIS and an extended 
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drought beginning in 1999, Reclamation chose an external frame design that would allow release 
of warmer water over a wide range of reservoir elevations from 3700 feet (full reservoir) down to 
3520 feet elevation, 30 feet above the level of the penstocks (3490 feet elevation). The range of 
operation increased to 180 feet or 6 times that of the design proposed in 1999. Each of the two 
selective withdrawal devices would be 48 feet wide (cross canyon direction), 50 feet deep 
(stream direction) and 280 feet high. The external frame selective withdrawal devices would 
contain three sliding gates that would control the level of water withdrawal from the reservoir. 
They would be mounted to the upstream face of the dam by rigid frames attached near the top of 
the dam and guide girders connected to the dam along each side of the trashracks. The two 
generating units designed for placement of selective withdrawal are numbers 4 and 6, which lie 
near the center of the dam. 
 
To evaluate the effectiveness and capability of this TCD design, Reclamation used the U.S. 
Army Corps of Engineers' CE-QUAL-W2 model (Cole and Wells 2000) to model Glen Canyon 
Dam release temperatures, the 1-D Generalized Environmental Modeling System for Surface 
waters model (GEMSS; Kolluru and Fichera 2003) to model flow temperatures from Glen 
Canyon Dam to Separation Canyon, and the 3-D GEMSS model to model backwaters below the 
confluence of the LCR. These models were calibrated for water temperature using temperature 
data at fixed stations in the reservoir and river. 

Historic water temperature data during the period of 1990 to 2005 were used to calibrate and 
model dam release temperatures, with historic dam release temperatures varying from 8 °C to 16 
°C. Graphical results of the historic data are displayed in Figure 6. The temperature of water 
released from Lake Powell (Figure 6 top) tended to approach ambient water temperature as it 
traveled downstream to Lake Mead. The rate at which the water increased in temperature 
depended on release temperature, flow magnitude, and atmospheric conditions. Water 
temperatures below the confluence of the Little Colorado River varied from 7 °C to 17 °C 
(Figure 6 middle) and were between 4 °C and 25 °C at the inflow to Lake Mead (Figure 6 lower) 
during this period of record.  
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Figure 6. Upper, median, and lower bounds of 7-day moving average temperatures for Glen 
Canyon Dam releases (top), LCR confluence (middle), and Separation Canyon (lower) sites. 

A 2-unit external frame TCD would allow releases to be selected at any elevation within the 
water column between 3,700-3,520 feet (Reclamation 2005). A maximum of 4,000 cfs could be 
released from each penstock fitted with a TCD, therefore releases above 8,000 cfs would require 
blending of water with releases from the remaining penstocks. When reservoir elevations 
dropped below 3,520 feet, releases would return to the current penstock intakes under the 
proposed TCD design. Below 3,490 feet elevation releases would have to be made from the 
hollow jet tubes, also known as the river outlet works. All TCD releases would be constrained 
using a 30-foot submergence criteria for the intake to avoid surface vortex formation 
(Reclamation 2005).  

Using the period of record from 1990 to 2005 to model the effects of the two-unit TCD, 
CE-QUAL-W2 modeling predicted Glen Canyon dam release water temperatures would vary 
from 7 °C to 21 °C (Figure 7 top). Using the output from the CE-QUAL-W2 modeling, water 
temperatures were routed downstream using the GEMSS model. Water temperatures at the Little 
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Colorado River varied from 7 °C to 23 °C (Figure 7 middle) and 4 °C to 28 °C at the inflow to 
Lake Mead (Figure 7 lower) using a two-unit TCD. The analysis showed an average increase in 
release temperature of about 3 °C with installation of a 2-unit TCD. A better idea of the 
differences can be gained by assessing the variation among months (Figure 8). Considering the 
differences in median temperatures with and without a 2-unit TCD, positive deviations with the 
2-unit TCD begin in late April, peak in late summer to early autumn at about 7° C, and remain 
positive until the end of November. The relationship between release temperature and 
downstream temperature is nonlinear and is limited by the ambient atmospheric conditions. 
During colder months release temperatures would cool as dam release waters moved 
downstream.  

Releasing water from higher in the water column of a reservoir will reduce the heat budget 
within that body of water. Modeling impacts of a two-unit TCD showed an average temperature 
decrease of 2 °C for Lake Powell both at the surface and at a depth of 50 feet.  
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Figure 7. Upper, median, and lower bounds of 7-day moving average temperatures for Glen 
Canyon Dam releases (top), LCR confluence (middle), and Separation Canyon (lower) sites with 
a 2-unit TCD. 
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Figure 8. Absolute differences (ºC) in median release temperatures with a 2-unit TCD at Glen 
Canyon Dam over the course of an annual cycle. 

Reclamation also completed a risk assessment to help evaluate responses of aquatic resources in 
Grand Canyon to the construction and implementation of a TCD (Valdez and Speas 2007). The 
risk assessment utilized standard EPA protocols (CENR 1999; NRC 1983; RAM 1998; USEPA 
2000, 2005, 2006). A mathematical model was used as a tool to quantify risks and benefits to 
fish, fish parasites, zooplankton, and macroinvertebrates from water temperature changes 
resulting from modification of 2 of the 8 generation units on the dam. All taxa present or with 
known potential to access the area were inventoried for each of six regions, including lower Lake 
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Powell, Glen Canyon Dam to Paria River, Paria River to LCR, LCR to Bridge Canyon, and 
Bridge Canyon to Pearce Ferry.  

The median, minimum, and maximum temperature results from the GEMSS modeling were used 
in this risk assessment evaluation, assuming both with and without a 2-unit TCD. Temperature 
degree days were computed for spawning, incubation, and growth for fish and life history 
requirements for other taxa and compared with the predicted water temperatures to determine if 
the temperature change would benefit particular taxa. Risk assessment scores were computed 
based on degree day accumulation and then calibrated for fish by comparing modeled fish 
composition with composition from four prior surveys reflecting a range of thermal regimes 
from the pre-dam era through recent years. 

Results suggested benefits to all native fishes, but correspondingly higher benefits to many non-
native fish species that may compete with or prey upon native species. Fish species carrying the 
highest risk for benefiting from warmer water were rainbow trout, brown trout, common carp, 
fathead minnow, red shiner, channel catfish, and smallmouth bass. Preliminary results also show 
more suitable conditions for warm-water fish parasites, including Lernea and Asian fish 
tapeworm Bothriocephalus acheilognathi. 

Results also predicted an increase in periphyton biomass and diversity with warmer water, which 
could lead to increased food and/or substrate for epiphytes, aquatic invertebrates, fish, and 
waterfowl. Warm water impacts to macroinvertebrates include minor shifts in relative abundance 
of existing taxa with the possibility of increased taxa richness, which could be beneficial if 
limited to insect taxa. However, increased potential for invasion by crayfish and other nuisance 
species is significant.  

In light of these concerns and with the recommendation of an independent scientist panel 
convened in April 2007 to discuss long-term experimental planning, Reclamation also briefly 
investigated whether construction of a TCD with both warm and cold water release capability is 
possible and under what circumstances cold water would be available for release. Due to the high 
cost of design investigation, no specific design work or feasibility analysis was completed on this 
option, pending a decision by FWS on whether to proceed with construction of a TCD as 
designed.  

For the warm and cold water TCD to be viable, sufficient cold water must be available lower in 
Lake Powell when dam releases naturally warm due to drought induced draw down. 
CE-QUAL-W2 modeling was used to determine the reservoir elevation at which cold release 
temperatures persist when the river outlet works are operated. Model results indicate that at 
elevation 3530 feet, which is 10 feet above the lower cutoff elevation for TCD operation, release 
water temperatures from the level of the river outlet works (elevation 3370 feet) are colder, with 
July temperatures of 9 °C, September temperatures of 12.5 °C, and November temperatures of 16 
°C. When the reservoir is at or above elevation 3530 feet sustained release of cold or cool water 
may be possible.  

There is a slight probability (<0.5 percent) of Lake Powell elevation dropping below 3490 feet 
when the external frame TCD, as presently designed, would no longer be operable. Below this 
elevation water would be released through the river outlet works. Lake Powell’s capacity at this 
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elevation is approximately 2.5 maf. Based on modeling with CE-QUAL-W2, dam release 
temperatures from the river outlet works below elevation 3490 would be about 13 °C in July, 20 
°C in August, and 23 °C in September. The water temperature of Lake Powell would quickly 
increase in the spring and summer at this elevation as a result of the small reservoir capacity, 
directly affecting dam release temperatures. 

The external frame design described above has undergone a full engineering and budget review 
by Reclamation’s Denver Technical Services Center. The review has included a Value 
Engineering Study (June 2006), a Design, Engineering, and Cost Estimating Review (July 2006) 
and a Constructability Review (August 2006). The review process passed the 60 Percent Design 
Decision point in January 2007 and the final design specifications and drawings were completed 
in November 2007. Estimated cost (construction and non-construction) for installing a 2-unit 
warm water TCD was approximately $100 million in 2009 dollars. 
 
If the decision is made to proceed, testing of the selective withdrawal would occur under the 
auspices of the AMP using a science plan developed by GCMRC, cooperating scientists, and the 
Technical Work Group. This would be accomplished by modifying two penstocks on Glen 
Canyon Dam and operating the dam for a minimum period of 3-4 years with assessment through 
the AMP before a subsequent decision is made on any potential further modification. Testing 
would be the next phase in the feasibility assessment called for by the FWS. Although many 
potential positive and negative effects of a TCD on endangered fish and other Colorado River 
resources have been postulated during investigations conducted to date, few of these projected 
outcomes can be known with certainty without specific testing through a research and 
monitoring program. 
 
Reclamation engineers and managers now believe that a TCD designed to allow warmer water to 
be released downstream is technically feasible. With this consultation, Reclamation is reporting 
to the FWS that a TCD is technically feasible, but Reclamation is seeking the biological opinion 
of the FWS whether the risks of warming the water by modifying the dam’s penstocks (as 
identified above regarding potential parasites and warm-water non-native enhancement) are 
worthwhile given the current status of listed species and their habitat below the dam. The 
question for the FWS is whether the potential benefits to the endangered fish of operating a TCD 
and warming the water outweigh the potential adverse effects from potential increases in non-
native predators, parasites and diseases, or other unintended, systemic interactions in the 
downstream environment.  
 

3.1.4 Element 1C: Determination of Native Fish Responses to Various 
Temperature and Flow Conditions 
Progress to date 
Various studies have addressed fish response to different temperature and flow conditions that 
are applicable to the Colorado River in Glen and Grand canyons. Ward et al. (2002) evaluated 
the effects of temperature, fish length, and exercise on swimming performance of age-0 
flannelmouth sucker, and Ward and Bonar (2003) examined the effects of cold water on 
susceptibility of age-0 flannelmouth sucker to predation by rainbow trout. Vernieu (2003) 
evaluated warming of mainstem and nearshore habitats during the low steady flows of summer 
2000. Rogers et al. (2003b) measured drift and benthic biomass under the low steady flows and 
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powerplant-capacity spike flows in the steady flow experiment. Trammell et al. (2003) 
investigated responses of native fishes to the same low steady and spike flows. A report on the 
mechanical removal of non-natives coincident to warmer releases from Glen Canyon Dam in 
2004-2005 was submitted by Coggins (2007). Rogers et al. (2003a) examined non-native 
salmonid distribution and abundance from RM 12 to 218. Johnstone and others (2003) reported 
on native fish monitoring efforts and made recommendations for approaches to setting up a 
standardized monitoring program with emphasis on shoreline and backwater fish communities. 
Ralston et al. (2007) compared the effects of steady and fluctuating flows on water quality 
parameters and biotic constituents (phytoplankton, macroinvertebrates, and fishes) of associated 
shoreline habitats. Petersen and Paukert (2005) developed a bioenergetics model for humpback 
chub and evaluated the effects of water temperature changes on energetic demand for the 
species. 

One of the impediments to identifying responses of native fish to changes in water temperature 
regimes and river flows has been the lack of a consistent monitoring plan and assessment 
analysis. Under the auspices of GCMRC, with the aid of Dr. Carl Walters, University of British 
Columbia, an age-structured mark-recapture (ASMR) model was developed for both humpback 
chub and flannelmouth sucker. The ASMR uses the history of marks and recaptures for all PIT-
tagged fish in the population and determines the population size for adults (age 4+) using 
variable mortality and constant mortality models. 

Concern within the AMP arose over the controversy surrounding the different methods and 
models used to assess humpback chub populations in both the Upper Basin and in the Grand 
Canyon. In response to this concern, GCMRC convened a Panel of Independent Reviewers to 
meet with representatives of ongoing programs in the Upper Basin and Grand Canyon. The goal 
of this panel was to review current methods and make recommendations to improve the accuracy 
and precision associated with the parameter estimates (i.e., abundance, population growth rate, 
and recruitment) from the various models being used. The Panel of Independent Reviewers 
found that the competing models used in the Upper Basin and Grand Canyon were appropriate 
for their respective locations and made recommendations to improve their use in the future 
(Kitchell et al. 2003). A series of meetings was proposed to examine data on humpback chub 
collected in both the Upper Basin and in the Grand Canyon. An investigation into population 
estimation techniques was conducted and recommendations were made for the AMP by Dr. Otis 
of Iowa State University. A recent compilation of results of this work (Coggins 2007) addresses 
these concerns and is described in detail in Section 2.4.1. 

Research and monitoring of native fishes in Grand Canyon, as well as their predators, 
competitors, diseases, and parasites is being carried out largely under the auspices of the 
GCMRC with funding provided to the AMP. Much of the research and monitoring work 
accomplished through GCMRC is accomplished through competitive proposals that are peer-
reviewed by independent scientists. Results of this work are presented on a regular basis at TWG 
and AMWG meetings, and are published as reports and peer-reviewed articles in technical 
journals. 
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3.1.5 Element 2: Protection of the Humpback Chub Spawning Population in the 
Little Colorado River  
Progress to date 
Reclamation accepted this element of the RPA, despite lacking legal jurisdiction or discretionary 
authority over the LCR or surrounding lands and tributaries. Reclamation clearly identified the 
limits to the jurisdiction of the action agency with respect to this sub-element of the Biological 
Opinion in a letter to the FWS dated April 6, 1995. Moreover it is essential to emphasize that no 
single agency or entity has the authority or responsibility to implement a management plan that 
would protect the endangered humpback chub and its critical habitat from threats arising 
throughout the LCR basin. The LCR watershed is the second largest in Arizona, encompassing 
approximately 27,000 square miles in both Arizona and New Mexico. It crosses two state 
boundaries, seven counties, many local, state and federal agency jurisdictions, and three Native 
American Indian Reservations. Land ownership in the watershed includes 48 percent Indian 
Reservations, 19 percent federally owned, 10 percent State Trust Lands, and 23 percent privately 
owned.  

The Little Colorado River Multi-Objective Management Watershed Group (LCRMOM) was 
formed in 1996 and as an umbrella watershed group having as members LCR basin 
subwatershed groups, Native American tribes, and city, county, state, and federal agencies. A 
draft Little Colorado River Management Plan was prepared in 1999 (SWCA 1999), reviewed by 
the FWS, and revised. A revised draft was completed (SWCA 2005) but not finalized given 
several changes and developments in the organization of groups involved in management of the 
Little Colorado River watershed. In March 2002, Reclamation made a presentation to the LCR-
MOM on the need for a management plan for humpback chub and our efforts in that endeavor. 
At the meeting, LCR-MOM representatives indicated that they were interested in partnering with 
Reclamation and the FWS in the development of the management plan. Since that time, the 
LCR-MOM has become less active and other organizations have formed to coordinate water 
management activities in the LCR. 

Currently, there is a Statewide Water Resources Advisory Group that provides technical 
assistance and advice to interested parties. The Little Colorado River Plateau Resources 
Conservation and Development (RC&D) is focused on implementing a strategic plan developed 
by sponsors and Council Members with the priority goal of formulating and publishing an all 
inclusive watershed management plan. There are 32 participants in the RC&D. The Little 
Colorado River watershed Coordinating Council operates under the umbrella of the RC&D and 
is developing the Little Colorado River Watershed Management Plan. The Bureau of 
Reclamation Lower Colorado Region has committed to fund 50 percent of the estimated 
$600,000 to develop the plan with the other 50 percent coming from the non-federal 
stakeholders. In addition, several partnerships have become established, including the Upper 
Little Colorado River Watershed Partnership and the Show Low Creek Enhancement Partnership 
to monitor, restore, and protect natural resources within the Upper Little Colorado River 
Watershed to enhance the quality of life in accordance with the diverse interests of the watershed 
residents.  

Reclamation will continue to work with these organizations to better understand how to affect 
land and water management in the LCR watershed in a manner that conserves water quantity and 
quality to benefit the endangered humpback chub. Reclamation will continue to assist in 
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developing a watershed management plan, emphasizing actions that could be accomplished to 
address the threats to the endangered humpback chub arising in the Little Colorado River Basin 
and the potential roles to be taken by various participants and watershed organizations. Because 
this is the extent of our authority regarding this element, Reclamation believes it has fulfilled this 
element of the 1995 biological opinion.  

3.1.6 Element 3: Sponsor a Workshop for Development of a Razorback Sucker 
Management Plan for the Grand Canyon 
Progress to date 
Reclamation sponsored a workshop on the endangered razorback sucker on January 11 and 12, 
1996. Workshop participants generally agreed that the razorback sucker was probably 
historically a transient through Grand Canyon between more suitable meandering river reaches 
located upstream and downstream (Wegner 1996; Valdez 1996). The workshop participants also 
recognized that the inflow of the Colorado River into Lake Mead provided the best potential 
habitat for the razorback sucker in Grand Canyon with its expansive areas of inundated and 
emergent vegetation and a complex channel with backwaters and embayments.  
 
The results of the workshop (Wegner 1996) were sent to participants, including the FWS, on 
February 12, 1996. The FWS has not initiated development of the Memorandum of 
Understanding for razorback sucker management. In the FWS response to Reclamation’s third 
progress evaluation, dated May 27, 1999, several action items of interest to the FWS were 
identified. Because the only known extant population of razorback sucker above Hoover Dam is 
in Lake Mead (Holden and others 2000), these actions should be addressed primarily by the 
Lower Colorado River Multi-species Conservation Program. However, we are partially 
addressing two of the actions—non-native fish control and provision of experimental flows that 
could affect habitat of razorback sucker in upper Lake Mead—through the AMP. In May of 
1997, Hualapai Tribe biologists implanted 15 razorback sucker with radio transmitters for release 
at three locations of the Colorado River below Diamond Creek (Zimmerman and Leibfried 
1999); Separation Canyon (RM 240), Spencer Creek (RM 246), and Quartermaster Creek (RM 
260). The fish remained in their original locations and then gradually moved toward Lake Mead. 
Several radio-tagged fish remained in the inflow region, but eventually all fish moved into Lake 
Mead and contact was lost. None moved upstream into Grand Canyon proper. The AMWG 
recommended in 2004 that GCMRC develop a non-native fish control program in Grand Canyon 
working with the Technical Work Group. Reclamation has agreed to assist in the development of 
this non-native fish control program.  
 
Reclamation has completed the workshop. It is our understanding that the next step is for the 
FWS to recommend a course of action and to develop a Memorandum of Understanding with 
Reclamation and other entities who may wish to participate. 

3.1.7 Element 4: Establishment of a Second Spawning Aggregation of Humpback 
Chub Downstream of Glen Canyon Dam 
Progress to date 
In 1999, Reclamation funded a contractor to convene a panel of experts and develop a plan for 
establishing a second population of humpback chub in Grand Canyon. The plan evaluated four 
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alternatives: (1) existing mainstem aggregation, (2) metapopulation approach, (3) tributaries, and 
(4) tributary and mainstem (Valdez et al. 2000). Preliminary habitat analyses showed that genetic 
criteria (i.e., target population size and structure) are unlikely to be met in a tributary, but may be 
met in two contiguous mainstem aggregations (Stephen Aisle/Middle Granite Gorge) or in the 
mainstem taken as a whole (the metapopulation concept). The metapopulation concept was 
thought to represent the greatest likelihood for success in establishing a new, genetically viable 
population of humpback chub in Grand Canyon if suitable conditions of flow, temperature, and 
low predator loads could be achieved. Reclamation has initiated investigations and actions to 
establish a second population of humpback chub as identified by Valdez et al. (2000). 
Reclamation believes that, in the aggregate, all of these activities represent a system-wide 
approach at improving humpback chub viability throughout the Grand Canyon ecosystem. 

Impediments to establishment of a second spawning aggregation of humpback chub in the 
Colorado River include unsuitable environmental conditions, e.g., cold water temperature, and 
the presence of non-native competitors and predators. As indicated above, under element 1B 
(Section 3.1.3), Reclamation made an initial determination on feasibility of the TCD for Glen 
Canyon Dam in 2002 after a risk assessment (Garrett and others 2003) and AMWG 
recommendation to initiate environmental compliance necessary for the construction and testing 
of a TCD at Glen Canyon Dam. Brown trout control in Bright Angel Creek and a feasibility 
assessment of non-native control in other tributaries were conducted by GCNP (Leibfried et al. 
2003) and Reclamation funded a project conducted by the Arizona Game and Fish Department to 
evaluate sampling gear for capture of channel catfish and carp in the LCR. Rogers et al. (2003a) 
evaluated the abundance and distribution of non-native predators related to mechanical removal 
efforts.  

In 2003 the FWS began a translocation program funded by Reclamation for humpback chub 
above Chute Falls in the LCR and GCNP is examining other tributaries to the Colorado River in 
the park to assess their suitability for translocations. During 2003-05, a total of 1,150 YOY 
humpback chub were translocated from the lower LCR to the LCR above Chute Falls. 
Preliminary results indicate that translocated fish survival and growth rates are high; limited 
reproduction and downstream movement to below Chute Falls has also been documented 
(Sponholtz et al. 2005; Stone 2006, 2007).  

The use of Glen Canyon Dam releases to negatively impact non-native fish has been assessed in 
the AMP (Davis and Batham 2003; Korman and others 2003). The use of high experimental 
flows for this purpose, in addition to directly improving habitat for native fish, has been 
incorporated into the development of a program of experimental flows to satisfy the needs of 
element 1A. Another impediment to establishment of a second spawning aggregation is the 
determination of genetic relatedness among aggregations of humpback chub in Grand Canyon. 
Valdez and Ryel (1995) established the presence of nine aggregations of humpback chub, 
including the individuals in the LCR. Genetic evaluations by Colorado State University (Douglas 
and Douglas 2003a, 2003b; Douglas and Douglas 2007) on the entire taxon and by the FWS on 
humpback chub collected in the LCR and held at Willow Beach National Fish Hatchery will 
provide important information in making these determinations.  

Evaluating the feasibility of increasing the temperature of water released from Glen Canyon 
Dam was a common element in the Glen Canyon Dam EIS and one of the elements of the 
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reasonable and prudent alternative in the 1995 biological opinion of that document. In 1999, 
Reclamation issued an environmental assessment regarding potential modification of Glen 
Canyon Dam to construct a selective withdrawal structure, and has subsequently continued to 
investigate various structural designs. The recent drought-induced drawdown of Lake Powell has 
resulted in warmer release temperatures, providing an opportunity to monitor and evaluate the 
effects on habitat, reproduction and recruitment.  

Monitoring of fish populations since 2002 during MLFF releases shows that the numbers of 
young humpback chub in the mainstem have increased, most likely as a result of warmer releases 
from Glen Canyon Dam and/or mechanical removal of trout, though the cause is uncertain 
(USGS 2007). Further monitoring and investigation is needed of the mainstem aggregations of 
humpback chub to determine if a second self-sustaining population is becoming established 
outside of the LCR aggregation. 

3.2 New Information Gathered Since the 1995 Biological Opinion 

3.2.1 Fluvial Geomorphology and High Flow Tests  
Glen Canyon Dam and Lake Powell traps most of the sediment transported by the Colorado 
River. Tributaries downstream of the dam are now the only renewable sediment source to Glen, 
Marble, and Grand canyons. The dam and reservoir have also reduced annual flood peaks and 
increased moderate flows. The altered flow releases from the dam have less capacity to transport 
sand and coarser sized sediments than under pre-dam conditions with frequent floods.  

 
Sandbars, debris fans, and rapids are the most prominent geomorphic features in the Colorado 
River corridor. Sandbars in particular are inherently linked to the magnitude and timing of 
sediment supplied from the Paria and Little Colorado rivers, lesser tributaries, and the 
mainstream river channel; and to the magnitude and frequency of river flows (Griffiths et al., 
2004; Melis 1997; Webb et al. 1999). Sandbars are formed in eddies, which are commonly 
associated with tributary debris fans (Schmidt and Graf 1990; Schmidt and Rubin 1995). These 
debris fans form the rapids of Grand Canyon (Griffiths et al. 2004; Webb et al. 2005; Melis 
1997; Melis et al. 1994; Webb et al. 1989). Nearly all sandbars in Grand Canyon are associated 
with recirculation zones that consist of one or more eddies. Sandbars are highly valued for their 
role as camping beaches and their occurrence is frequently accompanied by backwaters in the 
eddy return channel. Backwaters are important rearing habitat for native fish due to low water 
velocity, warm water and high levels of biological productivity.  

 
The 1995 EIS predicted that sediment would eventually accumulate over multiyear timescales in 
the eddies and other depositional areas of the Colorado River below the Paria River, and that the 
relationship between sediment transport and river discharge was constant through time. Both 
assumptions were refuted in the years following the 1996 high flow test and resulted in an 
entirely new paradigm of sediment transport and conservation. The assumption in the 1995 EIS 
of a constant relationship between river discharge and sediment transport has recently been 
determined incorrect (Topping et al. 2000a, b); instead, sediment transport rates vary 
significantly with river bed grain size, which in turn varies with tributary input of fine sediment. 
Dam releases under existing operating criteria, have typically resulted in little to no multiyear 
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accumulated sand storage during years of average to below-average tributary sediment supply 
and less opportunity for sandbar deposition (Rubin et al. 2002; Schmidt et al. 2004; Wright et al. 
2005). Sand supplied during tributary floods tends to accumulate in eddies only during low-flow 
periods (9,000 cfs or less; Topping et al. 2000a, b).  
 
Sandbars between the 20,000- and 30,000-cfs levels have eroded and not been rebuilt, riparian 
vegetation encroached into the 20,000 to 30,000-cfs zone, and backwater habitats have filled 
with silt. The sand mass balance remained negative during water years 2000 through 2004, 
despite five consecutive years in which minimal release volumes (8.23 maf) from Lake Powell 
occurred during prolonged drought in the upper Colorado River Basin (Wright et al. 2005). 
These measurements and calculations of sand transport also show that tributary inputs are 
typically transported downstream and out of the canyon within a few months under typical ROD 
operations (Rubin et al. 2002).  
 
One of the questions raised by geomorphologists (Andrews 1991; Goeking et al. 2003; Howard 
and Dolan 1981 Schmidt 1999; Schmidt and Goeking 2003) is what flow magnitude and duration 
is needed to resuspend sediment and create and maintain sandbars. One hypothesis is that 
without occasional periods of sustained high releases (powerplant capacity and above), high 
elevation sandbars will erode and not rebuild (Andrews 199l). In 1997, a habitat maintenance 
flow was conducted that indicated flows less than or equal to powerplant capacity could be used 
to redistribute sediment. Future experiments may include habitat maintenance flows (of lesser 
magnitude and duration), depending upon the results of the proposed experimental high flow in 
2008. 
 
The high flow tests of 1996 and 2004 were found effective at building or rebuilding sandbars, 
although persistence of the sandbars is variable. The 1996 beach/habitat-building flow deposited 
more sandbars and at a faster rate than predicted. Webb et al. (1999) contains a series of 
scientific articles that describe finding of the 1996 beach/habitat-building flow. Repeat 
topographic and hydrographic mapping of 33 sandbar-eddy complexes showed that the 1996 
beach/habitat-building flow rebuilt previously eroded high-elevation sandbar, regardless of 
location, bar type, or canyon width (Hazel et al. 1999). More than half of the sand deposited at 
higher elevations was taken from the lower portions of the sandbars (Schmidt 1999) rather than 
being derived from tributary sand supplies accumulated on the channel bed, as originally 
hypothesized in the 1995 EIS (Wright et al.2005). Over time, however, this resulted in a net 
decrease in total eddy-sandbar area and volume (Topping et al. 2004); many sandbars built 
during the 1996 high flow test eroded in as little as several days following the experiment. 
 
In contrast to the 1996 high flow test, the 2004 high flow test was strategically timed to take 
advantage of highly sediment-enriched conditions (Wiele et al. 2005). Suspended sediment 
concentrations during the 2004 experiment were 60 to 240 percent of those measured during the 
1996 experiment, although there was less sand in suspension below RM 42 (Topping et al. 
2004). This resulted in creation of larger sandbars than those observed during the 1996 
experiment in Marble Canyon, but area and volume of sandbars downstream of RM 42 actually 
decreased due to comparatively less sand in that area in 2004 than in 1996. Thus, it was clear 
from results of the 2004 high flow test that high flows conducted under sediment-depleted 
conditions (such as 1996) cannot be used to sustain sandbar area and volume (Topping et al. 
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2004); additionally, it became evident that more sand would be needed during future high flow 
tests to restore sandbars throughout Marble and upper Grand canyons. 

 
In 2007, sand inputs from the Paria River were at least 2.5 million metric tons, or about 2.5 times 
the historic average (Topping and Melis, 2007). Together with inputs from the Little Colorado 
River in 2006 and unexpected retention of sediment from both tributaries during 2006 (USGS 
2006b), sand inputs are currently at least 3 times the amount that triggered the 2004 high flow 
test, and greater than since at least 1998. This presents a unique opportunity to evaluate effects of 
a high flow test under sand-enriched conditions greater than ever tested before.  

Finally, as noted by Magirl et al. (2005), the water-surface profile in Grand Canyon has only 
been measured twice, once by USGS in 1923 and the second time as part of the experimental 
flow program of the AMP in 2000. Important new information from the USGS’s comparison of 
1923 with 2000 is that the profiles do not differ at the scale of the full length of the canyon and 
some rapids and other geomorphic features exhibit no change over time. However, changes in 
specific geomorphic features may be of importance within the overall critical habitat for 
endangered fish. One of the observed changes is that 66 percent of the drop in elevation occurs in 
9 percent of the total river length, whereas in 1923, 50 percent of the cumulative drop through 
the river corridor occurred in the same 9 percent distance. This change has resulted in an 
enhanced pool-and-rapid morphology in the eastern portion of the canyon where humpback chub 
occur. The largest rise in elevation is at House Rock Rapid (+2.0 m), followed by Badger Rapid 
with a 1.8 m rise. While stability or change in individual rapids such as Badger or House Rock 
does not directly affect endangered fish, related changes in sandbars and debris fans associated 
with the rapids are important as fish habitat. 

3.2.2 Backwaters 
Backwaters are thought to be important rearing habitat for native fish due to low water velocity, 
warm water and high levels of biological productivity. They are created as water velocity in eddy 
return channels decline to near zero with falling river discharge, leaving an area of stagnant 
water surrounded on three sides by sand deposits and open to the mainchannel environment on 
the fourth side. Reattachment sandbars are the primary geomorphic feature which functions to 
isolate nearshore habitats from the cold, high velocity mainchannel environment.  

Backwater numbers vary spatially among geomorphic reaches in Grand Canyon and tend to 
occur in greatest number in river reaches with the greatest active channel width, including the 
reach immediately downstream from the LCR (RM 61.5-77; McGuinn-Robbins 1995). Numbers 
and size also vary temporally as a function of sediment availability and hydrology, and their size 
can vary within a year at a given site. On short time scales (i.e., from one year to the next; Dr. 
John C. Schmidt, personal communication) backwater numbers appear to respond readily to 
sudden high sediment inputs and high flows regardless of antecedent sediment conditions. 
Backwaters declined in number from 1990 to 1992 under experimental high fluctuating flows 
and MLFF, but a rapid but short lived increase in backwater numbers resulted from high inputs 
and flows from the LCR in 1993 (Beus et al. 1994; McGuinn-Robbins 1995). Backwaters created 
in 1993 declined in 1994 under more average sediment and flow conditions (McGuinn-Robbins 
1995). Backwater number can also vary tremendously depending on flow elevation during 
sampling and tend to be greatest at low flow elevations. Hoffnagle and Stevens (1999) noted that 



 63

backwater numbers and area were reduced at flows greater than 10,000 cfs at any given point in 
time. McGuinn-Robbins found more backwaters during 1990 at the 5,000 cfs level than at the 
8,000 cfs level, although area was greatest at the 8,000 cfs level. 

Persistence of backwaters created during the 1996 high flow test appeared to be strongly 
influenced by post-high flow dam operations. Whereas the 1996 test resulted in creation of 26 
percent more backwaters, potentially available as rearing areas for Grand Canyon fishes, most of 
these newly created habitats disappeared within two weeks due to reattachment bar erosion 
(Brouder et al. 1999; Hazel et al. 1999; Parnell et al. 1997; Schmidt et al. 2004). Nearly half of 
the total sediment aggradation in recirculation zones had eroded away during the 10 months 
following the experiment and was associated in part with relatively high fluctuating flows of 
15,000-20,000 cfs (Hazel et al. 1999).  

Goeking et al. (2003) found no relationship between backwater number and flood frequency, 
although backwater size tends to be greatest following high flows and less in the absence of high 
flows due to infilling. Considering both area and number, however, no net positive or negative 
trend in backwater availability was noted during 1935 through 2000. At the decadal scale, 
several factors confound interpretation of high flow effects on backwaters bathymetry, including 
site-specific relationships between flow and backwater size, temporal variation within individual 
sites, and high spatial variation in reattachment bar topography (Goeking et al. 2003). Efficacy of 
high flow tests at creating or enlarging backwaters also depends on antecedent sediment load and 
distribution, hydrology of previous years (Rakowski and Schmidt 1999) and post-high flow river 
hydrology, which can shorten the longevity of backwaters to a few weeks depending on return 
channel deposition rates or erosion of reattachment bars (Brouder et al. 1999).  

Biologically, the 1996 high flow caused an immediate reduction in benthic invertebrate numbers 
and fine particulate organic matter (FPOM) through scouring (Brouder et al. 1999; Parnell et al. 
1999). Invertebrates had rebounded to pre-test levels by September 1996, but it is thought that 
the rate of recolonization was hindered by a lack of FPOM. Still, recovery of key benthic taxa 
such as chironomids and other Diptera was relatively rapid (3 months), certainly rapid enough 
for use as food by the following summer’s cohort of YOY native fish (Brouder et al. 1999). Also 
during the 1996 high flow test, Parnell et al. (1999) documented burial of autochthonous 
vegetation during reattachment bar aggradation, which resulted in increased levels of dissolved 
organic carbon, nitrogen and phosphorus in sandbar ground water and in adjacent backwaters. 
These nutrients are thus available for uptake by aquatic or emergent vegetation in the backwater. 

In a study conducted in the upper Colorado River basin (middle Green River, Utah) Grand et al 
(2005) found that the most important biological effect of fluctuating flows in backwaters is 
reduced availability of invertebrate prey caused by dewatered substrates (see also Blinn et al. 
1995), exchange of water (and invertebrates) between the mainchannel and backwaters, and (to a 
lesser extent) reduced temperature. As the magnitude of within-day fluctuations increases, so 
does the proportion of backwater water volume influx, which results in a net reduction in as 
much as 30 percent of daily invertebrate production (Grand et al. 2005). Potential geomorphic 
differences between the Grand Canyon and the Upper Colorado River basin underline the need 
for additional research investigation. 
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An outstanding information need for management of Grand Canyon backwaters is the 
relationship between backwater bathymetry and suitability as fish habitat, specifically the 
relationship between depth, area, volume and thermal characteristics. Goeking et al. (2003) point 
out large backwaters may not incur as many benefits to young native fish as smaller backwaters 
because the latter will warm faster and thus remain warmer over time than larger backwaters; 
however, due to their depth, they may be more frequently available as fish habitat over a greater 
range of flows. In the Upper Colorado River basin, Colorado pikeminnow were found to utilize 
backwaters with average depths greater than 0.3 m (Trammell and Chart 1999) and average areas 
of 992 m2 (Dey et al 1999). The issue of backwater depth is a research need from the standpoint 
that while greater depths afford more availability over a wide range of flows (Muth et al. 2000), 
the concurrent increase in volume with depth may slow warming rates. 

3.2.3 Water Temperature and Flow Regime 
Glen Canyon Dam releases hypolimnetic water (the deeper layer of the reservoir) with a 
relatively constant temperature which ranges from 6-8 °C at high reservoir levels. In the summer, 
the surface layer (epilimnion) of Lake Powell warms to nearly 30 °C as a result of warm inflows, 
ambient air temperature, wind mixing and solar radiation. However, while release temperatures 
remain relatively constant, they are influenced by lake elevation, inflow hydrology, and to a 
lesser extent, release volumes and meteorological conditions. Release temperatures have varied 
from 7 to 16 °C through 2006 (Figure 9). Between 1999 and 2005, Lake Powell elevations 
dropped more than 140 feet as a result of a basin-wide drought. While winter release 
temperatures remained cold, Glen Canyon Dam release temperatures increased to 16 °C in the 
fall of 2005. The drop in Lake Powell elevation resulted in warmer releases because the 
epilimnion was closer to the penstock withdrawal zone. Release temperatures from Glen Canyon 
Dam during 2004 and 2005 were the highest since August 1971 when the reservoir was filling.  
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Figure 9. Release water temperature data from Glen Canyon Dam, AZ from 1990 to 2007. 
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As water travels downstream from Glen Canyon Dam to Lake Mead the water temperature 
increases by an average of 9 °C during summer months. The amount of warming is directly 
affected by seasonal air temperature, winds and water velocity, with highest warming rates 
occurring in mid-summer at low release volumes (Vernieu et. al. 2005). Generally, as air 
temperatures decrease during late fall, water released from Glen Canyon Dam cools as it moves 
downstream towards Diamond Creek. River temperatures across the channel are nearly uniform 
due to turbulence and mixing, but nearshore areas typically exhibit higher water temperatures 
during summer and early autumn months (Vernieu et al. 2005). Temperature differences between 
mainchannel and nearshore habitats are especially pronounced in backwaters and other low 
velocity areas. The amount of warming that occurs in backwaters is affected by daily 
fluctuations, which cause mixing with cold mainchannel waters (Arizona Game and Fish 
Department 1996).  

Hoffnagle (1996) found that mean, minimum, maximum and diel range of backwaters were 
higher under steady versus daily fluctuating flows, with mean daily temperatures (14.5 °C) under 
steady flows about 2.5 °C greater than those under fluctuating flows. Differences in the 
mainchannel temperatures during steady and fluctuating flows were also statistically significant, 
but mean temperatures differed by only 0.5 °C. Similar results were documented by Trammell et 
al. (2002), who found backwater temperatures during the 2000 low steady summer flow 
experiment to be 2-4 °C above those during 1991-1994 under fluctuating flows.  

Korman et al (2006) also found warmer backwater temperatures under steady flow conditions, 
concluding that backwaters were cooler during fluctuations because of the daily influx of cold 
main channel water. These effects were documented during the months of August and 
September, but not October, when cooler air temperatures caused backwaters to be about 1 °C 
cooler than the mainchannel. However, they also noted that the extent of the effect was variable 
and depended on the timing of daily minimum and maximum flows, the difference between air 
and water temperatures, and the topography and orientation of the backwater.  

Perhaps more importantly, Korman et al. (2006) also noted that nearshore areas affected by 
fluctuating flows (i.e., in the varial zone) warmed substantially for brief periods each day, which 
posits an ecological trade-off for fish utilizing these areas. On the one hand, fish may choose to 
exploit the warmer temperatures of the fluctuating zone on a daily basis and simply sustain any 
bioenergetic disadvantages of acclimating to rapidly changing discharge; or they may choose to 
remain in permanently wetted zone which is always wetted, but colder than the immediate near 
shore margin.  

In a separate study, Korman et al (2005) observed that slightly more than half of observed YOY 
rainbow trout in the Lees Ferry reach maintained their position as flows fluctuated rather than 
follow the stream margin up slope. Thus, for trout, it appears that the bioenergetic cost of 
changing stream position with fluctuations in discharge perhaps outweighs the benefits of 
exploiting the slightly warmer stream margins. It is clear from this work that understanding the 
trade-off between temperature and fluctuating flows as it affects growth and survival of early life 
stages of Grand Canyon fish (native and non-native) is an important research question. 

To assess the likelihood of water temperatures during the Proposed Action without a TCD 
installed on Glen Canyon Dam, the probabilities of cold (<11 °C), cool (>11 C - 17 °C) and 
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warm (>17 °C) releases from the dam in July were estimated for the five-year period beginning 
in 2009. The analysis was based on 1,700 separate data points of reservoir elevations using 
sequential incremental methodology of calculating elevation with a given starting elevation.  

Projected reservoir release temperatures were identified based on previous empirical data and 
modeling outputs. Reservoir elevation was used as the driving variable most affecting release 
temperature with consideration for the affects of runoff volume in affecting the depth of the 
reservoir thermocline. Larger runoff volumes deepen the epilimnion creating a larger, deeper 
body of warm water that is relatively closer to the penstocks at a given reservoir elevation, and 
therefore available to be released, than do smaller runoff volumes. Using this approach, the 
following elevations were determined likely to produce the associated dam release temperatures: 

• > 3600 feet elevation produced cold releases 
• > 3550 and < 3599 feet elevation produced cool releases 
• > 3490 and < 3550 feet elevation produced warm releases 
 

The overall probabilities for these three temperature ranges over the long term in the month of 
July were: (<11 °C) = 75 percent; (>11 °C and <17 °C) = 21 percent; and (> 17 °C) = 4 percent. 
Thus, the modeling output predicts that release temperatures in 3 out of 4 years in the time period 
of the Proposed Action will be cold. 

To further differentiate the prospective release temperatures in the five-year period identified for 
the Proposed Action, we estimated the probabilities of delivering cold, cool, and warm waters for 
2-5 year successive periods. Probabilities for the first two years using all combinations of cold, 
cool, and warm releases show that by far the highest likelihood is for two successive years of 
cold water, with the lowest probability being for a cold release year followed by a warm release 
year (Table 6). 

Table 6. Probabilities of water temperatures for two succeeding years (2 years total) 
 Succeeding Years Temperature (Probabilities in percent) 

Initial Water Temperature Cold Cool Warm 
Cold 90.9 8.9 0.2 
Cool 32.6 52.8 14.5 
Warm 4.2 63.8 31.9 
 

The probabilities for the remaining three years are provided for cold to cold, cool to cool and 
warm to warm release temperatures (Table 7). Again, the highest probability is for release water 
remaining cold during the five year period and the lowest probabilities are for successive years 
of warm water. Based on this analysis, we predict that waters released from Glen Canyon Dam 
during the period 2009-2013 without selective withdrawal will most likely be cold (< 11 °C). 
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Table 7. Probabilities of similar water temperatures for two, three and four succeeding years 
when year one releases are cold, cool or warm 
  Succeeding Years Temperature 
 
Initial Water Temperature 

 
Succeeding Year 

 
Cold 

 
Cool 

 
Warm 

3 82.6   
4 75.1   

Cold 

5 68.3   
3  27.9  
4  14.7  

Cool 

5  7.8  
3   10.2 
4   3.3 

Warm 

5   1.1 
 

3.2.4 Humpback Chub 
An overview of the information on the life history and ecology of the humpback chub in the 
action area is provided in Section 2.4.1, Species Accounts, Humpback Chub. The humpback 
chub presently occurs as nine aggregations within the action area. The largest aggregation is the 
LCR population which is self-sustaining and had an estimated 5,300-6,800 adults in 2006. Fish 
in the LCR aggregation spawn in the LCR in the spring. Evidence of reproduction was reported 
for the 30-Mile aggregation in 1994. At the time of the 1995 biological opinion, the distribution 
of humpback chub aggregation had just been reported and little was known about the habitat use 
of especially the young fish along shoreline habitats and their response to various flow regimes. 
 
A considerable amount of new information has been gathered on the humpback chub since the 
1995 biological opinion. This information has been summarized in various documents including 
Valdez and Carothers (1998), Gloss and Coggins (2005), and Coggins (2007). This new 
information has provided more reliable and precise estimates and trends of the humpback chub 
population in Grand Canyon, use of shoreline habitats by young humpback chub and their 
response to flow experiments such as high flow tests and steady summer flows, as well as the 
genetic character of humpback chub aggregations in Grand Canyon. There is also new 
information that suggests mainstem reproduction by humpback chub in one or more of the 
mainstem aggregations. Also, the nature of the Lake Mead inflow area, Lake Mead elevation, 
and the fish community has also changed considerably. 
 
Apparent recruitment failure through the mid 1990s resulted in decline of the Little Colorado 
River humpback chub adult population to a low in 2001 of between 2,400 and 4,400 age 4+ fish 
(Gloss and Coggins 2005; Coggins et al. 2006). The population has since increased by 
approximately 20-25 percent and in 2006 consisted of about 6,000 individuals (Coggins 2007). 
This increase has previously been attributed in part to the results of non-native fish mechanical 
removal, increases in temperature due to lower reservoir elevations and inflow events, the 2000 
low steady summer flow experiment, or other experimental flows (USGS 2006a). However, the 
most recent population modeling indicates that the increase was actually due to increased 
recruitment rates as early as 1996 but no later than 1999 (Coggins 2007). Thus, the increase in 
recruitment under MLFF began at least four and as many as nine years prior to implementation 
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of non-native fish control, incidence of warmer water temperatures, the 2000 steady flow 
experiment, and the 2004 high flow test. To date, no analysis of humpback chub recruitment 
dynamics has been conducted during the early years of MLFF, and the reason for increased 
recruitment during those years is uncertain. 
 
New information also shows greater numbers of young humpback chub in the mainstem than in 
previous years. During 2002-2006, a total of 442 humpback chub <100 mm TL was captured 
upstream of the Little Colorado River inflow (RM 61.3) as far upstream as RM 30.7 
(Ackmerman 2007). Of the 442 fish, 225 (13-66 mm TL) were caught between RM 30 and RM 
50. The 30-Mile aggregation is located 31 miles upstream of the Little Colorado River inflow 
and it is unlikely that the young humpback chub swam upstream for that distance, especially in 
the cool mainstem temperatures. Furthermore, the distribution of these fish, as well as averages 
size above (mean = 38 mm TL) and below the LCR (mean = 67 mm TL), indicate that the natal 
source is upstream of RM 50 and not from the LCR.  
 
Young-of-year and juvenile humpback chub observed outside the LCR aggregation were most 
abundant at RM 110-130 (Stephen Aisle and Middle Granite Gorge aggregations) during 2000 
and 2004 and RM 160-200 during 2000 (Ackerman 2007; AGFD 1996; Johnstone and Lauretta 
2004, 2007; Trammell et al. 2002). However, seine catches of all young-of-year humpback chub 
outside the nine aggregations during 2004 were at their highest in 21 years (Johnstone and 
Lauretta 2007). Four humpback chub were also collected at Separation Canyon (RM 239.5) in 
2005 (Ackerman et al. 2006). The Middle Granite Gorge aggregation (which includes adults) has 
been stable or increasing in size since 1993 (Trammell et al. 2002) and may be sustained via 
immigration from the LCR aggregation, as well as local reproduction. Valdez et al. (2000a) 
identified this aggregation as the most likely candidate for a second spawning population in the 
mainchannel given favorable conditions (mainly temperature). No humpback chub have been 
caught at the Havasu Inflow and Pumpkin Spring aggregations since 2000 (Ackerman 2007). 
Population estimates have not been made for other mainstream aggregations since 1993 
(Trammell et al. 2002).  
 
Studies to assess habitat of young humpback chub have revealed important information to help 
determine suitable flows for the species. Converse et al. (1998) identified shoreline habitats used 
by subadult humpback chub and related spatial habitat variability with flow regulation. Most 
humpback chub utilized talus, debris fans or vegetated shorelines in depths of water less than 1 
m and velocities of 0.1 to 0.2 m/s, and that these parameters covaried by geomorphic reach. 
Korman et al. (2004) found that habitat stability as determined by flow was important to 
minimize displacement of young humpback chub. They also found that humpback chub suitable 
habitat (depth and velocity as based on Converse et al. 1998, among others) declines by about 78 
percent as discharge increases from 3,000 to 32,000 cfs, but tends to increase slightly at higher 
elevations (Korman et al. 2004). As the role of backwaters and near shore areas in humpback 
chub survival and recruitment is presently unclear, this remains an important resource question to 
be addressed through the Proposed Action and ongoing monitoring and research. 

There is also new information on our ability to translocate humpback chub, their survival, 
growth, and reproduction. As a conservation measure for humpback chub (Interior 2002), 
Reclamation, NPS, and USGS proposed to implement translocation of young humpback chub 
above Chute Falls in the Little Colorado River (ca. 16 km from the confluence). In August 2003, 
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nearly 300 young humpback chub were translocated above a natural barrier in the Little 
Colorado River located 16 km above the confluence. This translocation was followed by another 
300 fish in July 2004, and finally by another 567 fish in July 2005 (Sponholtz et al. 2005; Stone 
2006). Results indicated that translocated fish survival and growth rates were high. Reproduction 
and downstream movement below Chute Falls has also been documented (Sponholtz et al. 2005; 
Stone 2006). The Chute Falls aggregation now appears to be a source of recruitment to the lower 
portions of the Little Colorado River and the mainstem Colorado River (Stone 2007).  

Non-native removal has been conducted in Bright Angel Creek (Leibfried and others 2003) and 
the feasibility of extending this work to other tributaries to the Colorado River in Grand Canyon 
National Park (GCNP) is being investigated by NPS (Leibfried et al. 2006). If non-native 
removal is successful and suitable, additional translocations can be contemplated. Moving young 
HBC to other tributaries as in-situ refugia would decrease the risk of catastrophic events to the 
LCR humpback chub population and allow opportunities for translocated humpback chub to 
grow prior to migrating to the mainstream. The NPS is also exploring the possibility of 
translocating humpback chub to other tributaries, such as Shinumo Creek (SWCA and GCWC 
2007). 

Studies of effects of high experimental flows on young-of-year humpback chub dispersal rates 
have yielded conflicting results. Based largely on catch rate information, abundance of 
humpback chub and other native fish species did not differ following the 1996 experimental flow 
(Hoffnagle et al. 1999). Trammell et al. (2002) showed similar results during 2000 when habitat 
maintenance flows (ca. 30,000-31,000 cfs) were conducted during the month of September, 
although reinvasion of non-native fathead minnow was relatively rapid. Catch rates of humpback 
chub in hoopnets declined following the 2004 high flow test, however, and suggested that 
humpback chub may be vulnerable to displacement by such flows, at least for the smallest 
individuals during late autumn-early winter months (GCMRC, unpublished data). This apparent 
decline in humpback chub catch rates in 2004 may be partially attributed to variable capture 
probabilities between sample periods (turbid vs. clear water) (Lew Coggins, GCMRC, personal 
communication). Differences between the 1996 high flow and the 2004 high flow test may also 
be attributed to the time of year in which the high flow test occurred. The 1996 high flow was in 
April when the fish were about 10 months old and the 2004 high flow test was conducted in 
September when the fish were about 5 months of age and perhaps less able to maintain their 
position in the channel or adjust to more suitable water depths and velocities. 

Significant information has also come forth recently on the genetic structure of humpback chub 
in Grand Canyon. Douglas and Douglas (2007) concluded that some differences among the 
Marble and Grand Canyon ‘aggregates’ of G. cypha were difficult to distinguish at the 
microsatellite level. Aggregates appeared to be connected by geneflow, suggesting downstream 
drift of larvae and juveniles as a likely scenario. The Little Colorado River population would be 
the primary source, but contribution from occasional local reproduction by mainstem aggregates 
cannot be excluded. The G. cypha population at 30-mile in Marble Canyon was recorded as 
having two individuals with G. elegans haplotypes, and the microsatellite profile for this 
population was intermediate between genotypes found in Desolation Canyon (a hypothesized 
hybrid population) and Grand Canyon. Although reproduction has been documented for the 30-
mile population, it suffers from chronic low numbers (at least chronic low numbers of catchable 
fish). However, this is the only population in Grand Canyon that is upstream from the Little 
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Colorado River and is least likely to receive migrants from downstream locations. Douglas and 
Douglas (2007) recommended further study of the 30-mile aggregation to evaluate the potential 
distinctiveness of these fish. 

Studies in western Grand Canyon show that the Lake Mead inflow has changed considerably 
with lower lake levels such that the former inflow has transformed from an expansive area of 
inundated vegetation to a narrow sand bed river. The lake fish community reported by Valdez 
(1994) and Valdez et al. (1995) in this inflow region is now a riverine community (Ackerman et 
al. 2006). Studies and monitoring should continue to evaluate the effect of this changed 
community on the fish community further upstream in Grand Canyon. 

New information was also reported for infestation rates of Asian tapeworm and effects of this 
parasite on fish. Infestation rates were reported by Hoffnagle et al. (2006), Cole et al. (2002), and 
Choudhoury et al. (2001). Meretsky et al. (2000) reported a decline in condition factor of adult 
humpback chub not in immediate spawning condition from the Little Colorado River confluence 
from 1978 to 1996, hypothesizing that the decline could be caused by one or more factors; e.g., a 
recent invasion of the Asian tapeworm (Bothriocephalus acheilognathi), researcher variation in 
weighing fish, or natural population variation. Hoffnagle (2000) reported that condition and 
abdominal fat were greater in the mainstem Colorado River than in the Little Colorado River 
during 1996, 1998, and 1999 possibly because of an increased prevalence and abundance of 
parasites (especially Lernaea cyprinacea and Bothriocephalus acheilognathi) in the LCR fish 
and/or greater food availability in the Colorado River. 

3.2.5 Non-Listed Native and Non-native Fish 
Background. The Lee’s Ferry Reach (dam to Paria River) supports a self-sustaining fishery of 
rainbow trout, Oncorhynchus mykiss, whose population and food base are influenced by dam 
operations (McKinney et al. 1999b; McKinney and Persons 1999; McKinney et al. 2001; Speas 
et al. 2004a, 2004b; Korman et al. 2005). Brown trout, Salmo trutta, occasionally move into the 
reach between the dam and the Paria River from downstream populations, but is not managed as 
part of the sport fishery and is not a desired species in this reach. The Lee’s Ferry Reach also 
supports small numbers of flannelmouth suckers, bluehead suckers, and speckled dace. The 
flannelmouth sucker spawns in this reach (McIvor and Thieme 2000; McKinney et al. 1999c; 
Thieme 1998), although the water generally is too cold for survival of eggs and larvae. The 
flannelmouth sucker also spawns in the Paria River (Weiss 1993), where the inflow serves as a 
nursery habitat when impounded by mainstem flows above 11,866 cfs (Thieme 1998).  

The 61-mile reach of the Colorado River from the Paria River to the Little Colorado River 
supports low to moderate numbers of flannelmouth suckers, bluehead suckers, speckled dace, 
and humpback chub. Most native fish in the mainstem are large juveniles and adults. Earlier life 
stages rely extensively on more protected nearshore habitats throughout the river, primarily 
backwaters (AGFD 1996; Lauretta and Serrato 2006; Maddux et al. 1987; Trammel et al. 2002). 
Native fish spawning may occur in warm springs at RM 30-32 (Valdez and Masslich 1999). 
Although their abundance has declined significantly over the last seven years, rainbow trout are 
still the dominant non-native species between the Paria River and the Little Colorado River 
(Ackerman 2007; Johnstone and Lauretta 2007). Other non-native species sporadically found in 
that reach include brown trout, common carp, channel catfish and fathead minnow, Pimephales 
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promelas. Invasion of non-native fish from the upper LCR has recently been documented (Stone 
et al. 2007) 

The 174 miles from the LCR confluence to Bridge Canyon has six major tributaries and supports 
a diverse fish fauna of cool- to warm-water species to about Havasu Creek, including the three 
non-listed native species and seven known aggregations of humpback chub (Section 2.4.1). Non-
listed native fish are also well represented in Bright Angel, Shinumo, Tapeats, Kanab, and 
Havasu creeks (Leibfried et al. 2006), especially during spawning periods. The Little Colorado 
River supports comparatively large populations of the three non-listed species and the largest 
aggregation of humpback chub, all of which also inhabit the main channel near the LCR in 
comparable densities.  

 
Below the Little Colorado River, rainbow trout numbers drop dramatically, although brown trout 
are common near Bright Angel Creek where they spawn and maintain a resident tributary 
population. Warm water species such as common carp, channel catfish, and fathead minnow 
increase in numbers downstream of the Little Colorado River and are most abundant between 
Shinumo and Diamond creeks. (Ackerman 2007). Red shiner and plains killifish, Fundulus 
zebrinus, are common in backwaters immediately below the Little Colorado River and occur 
sporadically downstream from that point (Johnstone and Lauretta 2007; Lauretta and Serrato 
2006). 
 
The 45-mi. reach of the Colorado River from Bridge Canyon to Pearce Ferry is flat and muddy 
due to high lake elevation sediment deposition on the old river channel. Abundance of 
flannelmouth suckers, speckled dace, and bluehead suckers are generally limited due to lack of 
spawning habitat and large numbers of predators (Valdez 1994; Valdez et al. 1995).  

 
Distribution of fish parasites found in Grand Canyon fishes is related to thermal tolerances of 
host species along the longitudinal gradient of the river. Trittaedacnitis truttae, Nematoda, 
specifically affects rainbow trout and is prevalent in the Lees Ferry reach of the Colorado River 
below Glen Canyon Dam (McKinney et al. 2001). Whirling disease was discovered in the 
rainbow trout population below Glen Canyon Dam in June of 2007. Asian fish tapeworm, 
Bothriocephalus acheilognathi, and anchor worm, Lernaea cyprinacea, may pose threats to 
native fish below Glen Canyon Dam. Asian tapeworm is currently the most abundant fish 
parasite in the Little Colorado River, infecting 23-51 percent of all humpback chub (AGFD 
1996; Choudhury et al. 2004; Clarkson et al. 1997) and also a variety of cyprinids. Main channel 
infestation rates are much lower and may be temperature-limited (4-22 percent) (AGFD 1996; 
Valdez and Ryel 1995). Optimal B. acheilognathi development occurs at 20-30 °C (Granath and 
Esch 1983). Choudhury et al. (2004) hypothesized that infection rates were positively related to 
both fish host and copepod density in the Little Colorado and parasitic fauna found there have 
diversified through invasion of non-native host fish species. Lernae cyprinacea infects 
humpback chub at a higher rate than other species of fish in Grand Canyon (Hoffnagle 2000) and 
favors temperatures greater than 18 °C (Grabda 1963), with 23-30 °C being optimum (Bulow et 
al. 1979). Post-dam mainstream temperatures have prevented L. cyprinacea from completing its 
life cycle and limited its distribution to warmer backwaters. Infestation apparently does not 
increase fish mortality in the Upper Colorado Basin (Valdez and Ryel 1995). 
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The Grand Canyon fish community has shifted over the past five years from one dominated by 
non-native salmonids to one dominated by native species (Ackerman 2007; AGFD 2006; 
Johnstone et al. 2003; Lauretta and Serrato 2006; Trammell et al. 2002). Electrofishing catch 
rates of flannelmouth and bluehead suckers have increased four to six-fold in the past seven 
years, whereas trout catch rates have correspondingly declined (AGFD 2006); a similar trend is 
evident from trammel net data (Johnstone et al. 2003; Lauretta and Serrato 2006). Riverwide, 
young flannelmouth suckers were more abundant in 2004 than the previous 16 years (Johnstone 
and Lauretta 2007) and speckled dace are abundant in hoop net and seining samples, particularly 
in downstream reaches (Ackerman 2007). It is hypothesized that the recent shift from non-native 
to native fish is due in part to warmer than average water temperatures, although the decline of 
coldwater salmonid competitors (due to mechanical removal or temperature increases) also has 
been implicated (Ackerman 2007; Persons and Rogers 2006; USGS 2006a). Population size of 
humpback chub has also increased from about 4,500 – 5,700 in 2001 to an estimated 5,300 – 
6,800 adult fish in 2006 (Figure 26 in Coggins 2007; see Section 2.4.1).  
 
The increase in native fish abundance apparently began about the year 2000 although increases 
in humpback chub abundance appear to have begun earlier (Section 3.2.4). Relative abundance 
of young-of-year (YOY) flannelmouth suckers was higher during the summer 2000 steady flow 
experiment than at any point during the previous 10 years, which was thought to be directly 
related to warmer than average temperatures associated with the steady flow experiment 
(Trammell et al. 2002). A similar trend was identified for fathead minnow, however, although 
both their abundance and that of flannelmouth sucker were subsequently reduced by a 30,000 cfs 
habitat maintenance flow in September 2000. Young bluehead sucker catch rates during 2000 
were also among the highest on record (Johnstone and Lauretta 2007). Speckled dace catch rates 
have been variable over the past two decades or so, with no apparent trend (Johnstone and 
Lauretta 2007). Mainchannel YOY and juvenile flannelmouth suckers have remained abundant 
since 2000 in association with warmer water (Johnstone and Lauretta 2007; Lauretta and Seratto 
2006). Catch rates of speckled dace in recent years have been generally higher than historical 
levels and were highest in the vicinity of tributaries. Juvenile and adult bluehead suckers 
continued to occur in low numbers, usually in association with tributaries.  
 
Recent declines in trout abundance in the Lees Ferry tailwater are attributed less to increased 
daily fluctuations during 2003-2005 and more to increased water temperatures and trout 
metabolic demands coupled with a static or declining food base, periodic oxygen deficiencies 
and nuisance aquatic invertebrates (New Zealand mudsnails; AGFD unpublished; Persons and 
Rogers 2006). Concurrent with these declines in abundance, however, trout condition (a measure 
of plumpness or optimal proportionality of weight to fish length) has increased, reflecting a 
strongly density dependent fish population where growth and condition are inversely related to 
fish abundance (McKinney and Speas 2001; McKinney et al. 2001).  

Whirling disease was discovered in the rainbow trout population below Glen Canyon Dam in 
June of 2007. Additionally, highly invasive quagga mussels (Dreissena sp.) were discovered in 
Lake Powell during the summer of 2007. Because of their high filtration and reproductive rates, 
quagga mussels frequently alter aquatic food webs and damage water supply infrastructure. 
Kennedy (2006) performed a risk assessment on establishment potential of quagga mussels in the 
Colorado River below Glen Canyon Dam, concluding that there is low risk of these mussels 
becoming established in high densities in the Colorado River or its tributaries below Lees Ferry. 
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In contrast, conditions in the clear tailwater reach below the dam appear more suitable for 
establishment of this species. 

Korman et al. (2005) and Korman and Kaplinski (in preparation) documented increased 
mortality of rainbow trout eggs due to increased flow fluctuations (15,000 cfs/day) in 2003-2005, 
however survival rates of hatched fish compensated for these losses and did not affect abundance 
of young-of-year trout. Korman et al. (2005) and Korman and Campana (in preparation) also 
noted improved young-of-year growth rates during periods of stable daily flows due to lower 
water velocities and warmer temperatures at stream margins.  

Korman et al. (2005) and Korman and Kaplinski (in preparation) also determined that most YOY 
rainbow trout maintained their position in the streambed as flows increased during the daily 
hydropower generation cycle. They hypothesized that during the 24 hour power generation cycle, 
fish are essentially faced with a series of choices imposed by hourly changes in discharge. 
Maintaining one’s position in the streambed during fluctuating discharge ensures minimal 
bioenergetic expenditure in searching for a new stream position. While bioenergetic costs of 
maintaining stream position are uncertain, it is assumed that the larger proportion of fish which 
did move indicates a bioenergetic advantage to maintaining position. However, maintaining 
position also precludes fish from exploiting slightly warmer temperatures at the stream margins, 
which occur at higher elevations in the water column at peak discharge; this would require 
searching and movement.  

The non-native fish fauna of the Lees Ferry reach historically included less frequent taxa 
including common carp, largemouth bass, golden shiner, Notemigonus crysoleucas, redside 
shiner, Richardsonius balteatus, striped bass, and threadfin shad (GCMRC unpublished data). In 
more recent years, however, YOY green sunfish, Lepomis cyanellus, smallmouth bass, brown 
trout, and channel catfish have been collected in this reach; mature smallmouth bass and walleye 
have also been collected (GCMRC unpublished data). Sources of these fish are unknown, but the 
closest source containing green sunfish, catfish and smallmouth bass would be Lake Powell; 
means of introduction is unknown, but Reclamation is currently assessing risk potential for 
entrainment of Lake Powell fish through the dam penstocks.  

Recently, a few smallmouth bass and striped bass were collected in the vicinity of the Little 
Colorado River (GCMRC unpublished data), but no population-level establishment has been 
documented to date. There are also recent records of green sunfish, black bullhead, yellow 
bullhead, red shiner, plains killifish and largemouth bass downstream of the Little Colorado 
River, usually associated with warm springs, tributaries, and backwaters (Johnstone and Lauretta 
2007; GCMRC unpublished data). Striped bass are found in relatively low numbers below Lava 
Falls (Ackerman 2007; Valdez and Leibfried 1999).  

 
Stone et al. (2007) reported common carp, fathead minnow and red shiner below Grand Falls (an 
ephemeral reach of the river), which indicates that the LCR is a viable conduit for introduction of 
non-native fish from areas higher in the watershed. Other non-native fish documented in the 
upstream reaches of the Little Colorado River basin include golden shiner, black bullhead, 
yellow bullhead, channel catfish, rock bass Ambloplites rupestris, bluegill, green sunfish, 
smallmouth bass, and largemouth bass (Stone et al. 2007); thus these species could eventually 
occur in Grand Canyon. 
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Fish samples collected below Diamond Creek in 2005 (Ackerman et al. 2006) were comprised 
primarily of red shiner (28 percent), channel catfish (18 percent), common carp (12 percent), and 
striped bass (9 percent); smallmouth bass, mosquitofish, Gambusia affinis, and fathead minnow 
were also present in low numbers. Bridge Canyon Rapid impedes upstream movement of most 
fish species, except for the striped bass, walleye, and channel catfish (Valdez 1994; Valdez et al. 
1995; Valdez and Leibfried 1999). Non-native fish species increased from 11 above to 18 below 
the rapid (Valdez 1994; Valdez et al. 1995). Above Bridge Canyon Rapid, the red shiner was 
absent, but below the rapid it comprised 50 percent and 72 percent of all fish captured in 
tributaries and the mainstream, respectively (Valdez 1994; Valdez et al. 1995). Other common 
fish species found below Bridge Canyon Rapid include the common carp, fathead minnow, and 
channel catfish; however, very little fish habitat exists in this reach due to declining elevations of 
Lake Mead and subsequent downcutting of accumulated deltaic sediments in inflow areas. 
Flannelmouth suckers comprised about 15 percent of the total catch from this reach during 2005 
(Ackerman et al. 2006), several times greater than the 1.3 percent observed during 1992-1995 
(Valdez et al. 1995). Percentage of speckled dace in the reach has not changed appreciably over 
the last decade, and no bluehead suckers were collected during 2005 (Ackerman et al. 2006; 
Valdez et al. 1995).  

3.2.6 Non-native Fish Control Undertaken 2003-2006 
In an attempt to benefit native species, mechanical removal targeted at non-native salmonid 
species in the mainchannel Colorado River and tributaries in Grand Canyon took place during 
2003-2006 (Interior 2002; Coggins and Yard 2003). Removal of salmonids and other non-native 
fish (black bullhead, fathead minnow, common carp, brown trout) in the vicinity of the Little 
Colorado River by electrofishing contributed to a 90 percent reduction in rainbow trout over a 
four year period, although part of the decline is attributed to warmer main channel temperatures 
and higher flow daily fluctuations (GCMRC unpublished data). Main channel water temperatures 
during the removal period were as high as 6 °C above the 1990-2002 average. At the same time, 
electrofishing catch rates of YOY and age 1 flannelmouth sucker, bluehead sucker, and 
humpback increased by as much as a factor of ten; catch rates of speckled dace also increased. 

 
Mechanical removal of spawning brown trout through weir operations in Bright Angel creek 
yielded inconclusive results. During operations in 2002 (November—January), over 400 brown 
trout were removed from Bright Angel Creek and euthanized (Leibfried et al. 2005). When a 
similar removal effort was conducted in November—January of 2006, only 54 brown trout were 
removed, and a rainbow trout catches were decreased by a similar proportion (Sponholtz and 
VanHaverbeke 2007). The decline cannot be attributed to weir operations alone, however, as 
both trout species experienced a considerable system-wide decline in abundance between the two 
removal periods. 

 
Most brown trout from Bright Angel Creek were captured during the spawning period between 
late November and mid-December. The onset of rainbow trout spawning was documented in 
mid-January. For both species of trout, short term increases in water temperature (over the course 
of a week or less) were often associated with increases in catch rates. Returns of tagging data 
indicate that most spawning brown trout move 10 miles or less to access Bright Angel Creek, 
however some individuals were tagged over 32 river miles away.  
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Multi-pass backpack electrofishing was also evaluated as a mechanical control technique in 
Bright Angel and Shinumo Creeks. In a 3.35 km reach of Bright Angel Creek, approximately 55 
percent and 57 percent of the brown and rainbow trout populations, respectively, were removed 
through as many as 4 electrofishing passes. At Shinumo Creek, 35 to 85 percent of rainbow trout 
were removed through similar methods (Leibfried et al. 2006). In both creeks, however, 
recolonization rates from upstream and downstream have not been evaluated. 

 
Recently, GCMRC has proposed to implement a strategy to reduce warmwater non-native fish 
(including crayfish) abundance and negative impacts to native fish found in the Colorado River 
in Grand Canyon (Hilwig et al., in review). This strategy would very likely be needed to offset 
potential undesirable positive responses of non-native fish to artificial or natural increases in 
river temperatures. The draft plan consists of short-term (ca. 1-2 y) fulfillment of baseline 
information needs followed by implementation of longer-term (8+ y) non-native fish control and 
management programs.  

 
The initial phase of the draft management plan (1-2 y) would identify the geographic extent of 
non-native fish occurrence in the watershed immediately surrounding the Colorado River below 
Glen Canyon Dam, assign risks posed by individual species, evaluate efficacy of current 
monitoring methods to detect changes, identify effective management methodologies, and assess 
feasibility of management options. “High risk” species are those (1) currently residing within the 
immediate Grand Canyon watershed with the strong potential for expansion during warm water 
periods; (2) possessing a strong proclivity for predation or aggressive behavior; and (3) 
displaying considerable spatiotemporal overlap with native species of concern. This assessment 
would likely be informed through bioenergetic investigations (e.g., Petersen and Paukert 2005) 
and be complemented by investigations into environmental tolerances, life histories and habits of 
problem species. Management options for high-risk species would include conventional 
“mechanical” approaches as well as hypothetical use of Glen Canyon Dam operations 
specifically targeted at disadvantaging non-native fish. Additionally, a more comprehensive 
system for reporting non-native fish would be developed to allow better information sharing and 
timelier reporting of new species occurrences to managers. Management of coldwater species 
(rainbow trout) would be reinitiated and used as an interim methodology to track warmwater 
occurrence in the Little Colorado River inflow reach. 

 
The long-term aspects of the draft management plan would implement actions identified in the 
initial phase. Effective strategies for the control of high risk species would be developed and 
implemented. Considerable emphasis would be placed on implementation of cost-effective, 
sustainable management strategies. Control measures would focus on exploiting weaknesses of 
non-native fish life histories, which would likely involve recommendations for specific dam 
operations. As control measures are undetermined at this time, additional environmental 
compliance would likely be needed in the future. Management strategies would also be 
implemented to prevent invasions by source populations of non-native fish, particularly via the 
Little Colorado River watershed. Results of all management efforts (including response of native 
fish) would be evaluated at the population level.  
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4 Effects Analysis 

4.1 Humpback chub analytical approach and assumptions 

We identified five hypothetical mechanisms by which we expect the Proposed Action to affect 
humpback chub, two associated with the high flow test and three associated with steady fall 
flows. The mechanisms are listed below, followed by a description of the analytical approach 
and assumptions we made in their evaluation. 

4.1.1 Displacement of young-of-year humpback chub by high flow tests  
Small-bodied humpback chub may be vulnerable to displacement by high flows conducted 
during periods of cold dam releases (8-10 °C), when their swimming performance is reduced 
(Bulkley et al. 1982). Likewise, adverse effects of high flow tests on humpback chub during 
November-December was a concern of the FWS in their 2005 biological opinion and provisions 
for incidental take were made in the 1995 biological opinion. The high flow test proposed for 
2008 wouldn’t occur until March, which historically has been viewed as the timeframe posing 
the least amount of risk to a number of species, including humpback chub (Hoffnagle et al. 1999; 
Reclamation 1995), the young of which are generally thought to utilize deeper eddies and 
shoreline cover in the fall and winter months (Valdez and Ryel 1995). However as in 2004, the 
Colorado River currently supports high numbers of young-of-year humpback chub (Ackerman 
2007; Andersen 2007) which would theoretically be vulnerable to displacement by high flow 
tests, and for that reason we present the following analysis. 

Effects of high flows were evaluated by comparing retention rates (i.e., the opposite of 
displacement, or percentage of fish able to maintain their position in a given reach) expected 
during a high flow test to those predicted for the median monthly flow in March under MLFF. 
Retention rates over a range of flows was modeled using a particle tracking algorithm in 
conjunction with velocity predictions from a 2-D hydrodynamic model developed by Korman et 
al. (2004). This model was developed using channel bathymetry from seven transects located 
from RM 61.5 to 66.5, below the LCR confluence. The model contains four assumptions of fish 
swimming behavior: 1) passive, no swimming behavior; 2) rheotactic, in which particles (or 
“fish”) swim toward lower velocity currents at 0.1 to 0.2 m/s; 3) geotactic, in which particles 
swim toward the closest bank at 0.2 m/s; and 4) upstream, in which the particle attempts to move 
upstream at 0.2 m/s. Temperature of the Colorado River in the LCR inflow reach during the 
proposed time period for high flow tests (early March) typically ranges from 8 to 10 °C (AGFD 
1996). At these levels, subadults and young of year may fatigue rapidly and may be unable to 
withstand swift currents, forage efficiently, or escape predators. Bulkley et al. (1982) reported 
that swimming ability of juvenile humpback chub (73–134 mm TL) in a laboratory swimming 
tunnel was positively and significantly related to temperature. Humpback chub forced to swim at 
a velocity of 0.51 m/sec fatigued after an average of 85 minutes at 20 °C, but fatigued after only 
2 minutes at 14 °C, a reduction in time to fatigue by 98 percent. Time to fatigue is presumably 
further reduced below 14 °C, especially for the smallest individuals. For these reasons, and also 
to identify the “worst case scenario” of fish displacement, we focused primarily on results for 
passive swimming behavior in this analysis. 
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4.1.2 Creation or Improvement of Backwater Habitats 
Impacts of high flow tests on backwater habitats manifest both at short-term (i.e., weeks to 
months following high flow tests) and long-term time scales. While a good deal of information 
exists on short-term impacts (Brouder et al. 1999; Parnell et al. 1997; Wiele et al. 1999), long-
term impacts are more difficult to predict owing to varied sediment availability prior to the test 
and uncertainties of post-test flow regimes. Effects of high flow tests will be evaluated 
qualitatively and will weigh short-term impacts to backwater habitats against potential long-term 
outcomes, as well as impacts to the non-native fish community and other aspects of the Proposed 
Action.  

In this biological assessment, the assumption is that number of backwaters is correlated with 
those of reattachment sandbars in eddy complexes. That is, since backwaters in Grand Canyon 
are mostly inundated, but non-flowing, eddy return current channels, sandbars are a requisite 
condition for their occurrence. Another assumption is that elevation of sandbars and depth of 
recirculation channels are significant correlates reflecting the availability of backwaters over 
range of flows (Dr. John C. Schmidt, Utah State University, pers. comm.). First, the higher the 
sandbar elevation, the more likely the separation of the backwater from mainchannel currents 
would occur over a range of flows. The depth of the recirculation channel serves the same 
function as height of the sandbar, with the greatest depths creating more frequent availability 
over the greatest range of flows. Finally, high flow tests tend to increase the elevation of the 
sandbar and deepen the return current channel (Andrews 1999; Goeking et al. 2003), although 
there are exceptions to this general pattern (Parnell et al. 1997).  

4.1.3 Creation of More Persistent Suitable Habitat Conditions  
The 2-D hydrodynamic model was used to predict two-dimensional fields of depth and velocity 
over the range of daily flow fluctuations and monthly volumes proposed under the various 
alternatives (Korman et al. 2004). Specifically, the model evaluated YOY fish habitat availability 
and suitable habitat persistence in Grand Canyon under MLFF and the Proposed Action. Depth 
and velocity at seven transects in the first 10 km below the LCR were modeled over the range of 
flows proposed in the alternative. This model was developed using channel bathymetry from 
seven transects located from RM 61.5 to 66.5 (Wiele et al. 1996, 1999; Wiele, 1998; Appendix 
A). Transects ranged from 253 to 993 m in length and represented the full range of shoreline 
types typically utilized by YOY humpback chub: talus slopes, debris fans, vegetated shorelines, 
cobble bars, bedrock and sandbars. Descriptions of these shoreline types can be found in 
Converse et al. (1998). The hydrodynamic model was used successfully to predict patterns of 
sand deposition following the 1993 flood from the Little Colorado River and during and after the 
1996 high flow test (Wiele et al. 1999; Wiele 1998; Wiele et al. 1996). Accuracy of these 
predictions of erosion and deposition provide a sensitive test of the accuracy of calculated flow 
fields. 

The amount of total suitable habitat at a given flow elevation was computed by summing the 
total wetted area of each reach where velocity was less than or equal to critical values. Two 
criteria were evaluated for suitable water velocity: < 0.25 m/s and <0.10 m/s. The first criterion 
was a composite of several field and laboratory studies published previously, including Bulkley 
et al. (1982), Valdez et al. (1990) and Converse et al. (1998) (Figure 10). The second criterion 
was selected to be more representative of a suite of non-native species currently found in the 
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Little Colorado River or the adjacent mainchannel Colorado River (Table 8; see also Meffe and 
Minckley 1987; Minckley and Meffe 1987). Depths of <1 m (maximum depth of most HBC 
habitats sampled in Converse et al. 1998) were used to further restrict predictions on suitable HBC 
and non-native fish habitat. To further simulate YOY habitat availability, we limited habitat 
predictions to areas which intersected the streambed and computed habitat over shoreline types.  

0 0.1 0.2 0.3 0.4 0.5 0.6
Velocity m/s

Bedrock, cobble bars (1)

Debris fans, talus slopes (1)

Lab cruising speed (14 C; 30-100 mm)(2)

Lab sustained sw imming (30-100 mm)(2)

Upper CO avg. and max for 21-74 mm (3)

 

Figure 10. Velocity preference criteria for humpback chub in the Colorado River, Grand Canyon. 
Sources include (1) Converse et al 1998; (2) Bulkley et al. 1982; and (3) Valdez et al. 1990. 

Persistent suitable habitat was used to determine the area of suitable habitat that is stable across daily 
ranges in discharge (Bowen et al. 1998; Freeman et al. 2001; Korman et al. 2004). The suitable 
habitat areas at 5,000 cfs, 8,000 cfs, and 15,000 cfs were calculated for each transect. The total area 
of habitat common to flow elevations is referred to as the amount of “persistent suitable habitat.”  

Table 8. Preferred water velocities (m/s) for non-native fish found in the vicinity of the Little 
Colorado River 

Species Velocity Source 
Rainbow trout 0.13 Moyle and Baltz 1985 
Rainbow trout 0.07 Korman et al. 2005 
Rainbow trout 0.1 Baltz et al. 1991 
Brown trout 0.03 Heggenes et al. 1990 
Common carp 0.11 Aadland 1993 
Golden shiner 0.04 Aadland 1993 
Green sunfish 0.05 Aadland 1993 
Smallmouth bass 0.12 Aadland 1993 
Black bullhead 0 Aadland 1993 
Channel catfish 0.25 Aadland 1993 
Smallmouth bass 0.1 Leonard and Orth 1988 
Fathead minnow 0.15 Kolok and Oris 1995 
Red shiner 0.15 Shyi-Liang and Peters 2002 
Red shiner 0.09 Edwards 1997 
Average NNF velocity 0.10  
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Habitat predictions for discrete flow elevations during September and October were not 
available, so we used previously published predictions for flows to approximate effects of the 
Proposed Action (Korman et al. 2004). The assumption is that predictions for habitat persistence 
at a steady release of 8,000 cfs would approximate September and October steady releases in the 
Proposed Action (8,000 or 9,000 to 10,000 cfs per day), and that daily ranges between 5,000 cfs 
and 8,000 cfs would approximate MLLF conditions for the same period (5,000 to 12,000 
cfs/day). Higher fluctuations of 8,000 cfs to 20,000 cfs were used to approximate fluctuations at 
higher flow elevations such as those in July and August. This demonstrated relationships across a 
range of flows.  

We also present absolute values for suitable habitat specific to discrete shoreline types to show 
habitat availability over a range of discharge found in the Proposed Action and MLFF. We 
considered the three shoreline types most commonly utilized by humpback chub (talus, vegetated 
shorelines, debris fans) as well as the total habitat area (<0.25 m/s, <1 m depth) intersecting all 
shoreline types.  

4.1.4 Creation of Warmer Nearshore Habitats 
We hypothesized that young-of-year humpback chub growth rates would vary as a function of 
water temperatures, which in turn vary with flow regime (monthly volume, steady and 
fluctuating flows during September and October). Since monthly volumes in the Proposed 
Action and the MLFF are the same, we considered only steady versus fluctuating flows in this 
analysis. Both mainchannel and backwater temperatures were considered.  

We analyzed effects of steady and fluctuating flows using modeled data and empirical backwater 
and mainchannel temperatures reported in Trammell et al. (2002) in relation to young-of-year 
humpback chub growth rates (Figure 11). We derived a relationship between water temperature 
and humpback chub growth rates (mm/day) using observations from laboratory and field studies 
(Peterson and Paukert 2005; Gorman and VanHoosen 2000; Clarkson and Childs 2000; Lupher 
and Clarkson 1995; Valdez and Ryel 1995). Test subjects in laboratory studies ranged from 
about 10 to 80 mm total length at the onset of each study. Growth rates were plotted against 
temperatures evaluated in each study and fitted the data with a logarithmic regression line 
(Figure 12). We then evaluated total growth during the month of September by substituting 
backwater and mainchannel temperatures into the equation shown in Figure 12. 

We modeled water temperatures of nearshore habitats, including backwaters, using a 3-D 
temperature model (Generalized Environmental Modeling System for Surface waters model, or 
GEMSS; Kolluru and Fichera 2003) in conjunction with reservoir temperature predictions (CE-
QUAL-W2; Cole and Wells 2000) routed through the Colorado River in Grand Canyon with a 1-
D GEMMS model. The 3-D model focused on nearshore habitats in the Colorado River 
immediately below the LCR. We evaluated output from the 1-D model, which predicts 
mainchannel thalweg water temperatures for the LCR inflow reach (approximately RM 61.5). 

The 3-D model underestimated water temperatures when compared with empirical observations 
(AGFD 1996; Trammell et al. 2002) and results are not presented here. This was due to the large 
cell size in the model (25 m X 25 m). These large cells are too large for fine-scale water 
temperature predictions, which were shown by Korman et al. (2006) to occur mainly in the zone 
of flow fluctuations as they intersect the backwater shoreline any backwater in stretch of river 
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below the Little Colorado River. This is a fairly small spatial scale (1-10 m) which will require 
smaller model cell sizes and additional data collection for calibration. 
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Figure 11. Average river temperatures in the mainchannel Colorado River (MC) and backwaters 
(BW) under fluctuating discharge (“flux”) and steady releases (“steady”). Fluctuating flow data 
are from 1991-1994 (AGFD, in Trammell et al. 2002) and steady flow observations are from 
2000 (Trammell et al. 2002). 

y = 0.2789Ln(x) - 0.5776
R2 = 0.8229

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 15 20 25

Temp C

m
m

/d
ay

 

Figure 12. Growth rate of humpback chub (10-80 mm total length) in relation to temperature. 
Regression line is statistically significant (P < 0.01). 
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4.1.5 Creation of More Productive Nearshore Environments 
The effects of the Proposed Action on the availability of invertebrate prey in backwater habitats 
is evaluated qualitatively in the following sections using existing literature. No modeling was 
performed for this part of the analysis. 

4.2 Humpback Chub Effects Analysis 

4.2.1 High Flow Tests and Displacement 
Adult humpback chub are expected to be little affected by high flows (Hoffnagle et al. 1999; 
Valdez and Hoffnagle 1999), although high flows would occur at a time of the year prior to the 
rise of the pre-dam hydrograph. Little is known about the extent to which humpback chub rely 
on changes in flow as a reproductive cue. Valdez and Ryel (1995) held that neither water 
quantity or quality serve as cues for gonadal development or staging behavior in humpback chub; 
rather they hypothesized that climatic factors, such as photoperiod, were important. Humpback 
chub typically begin to spawn on the receding hydrograph as water temperatures start to rise 
(Tyus and Karp 1989, Kaeding and Zimmerman 1983, Valdez and Ryel 1995, Kaeding et al. 
1990), but the LCR population also spawns in years with little appreciable runoff.  

Korman et al. (2004) predicted that retention rates of small-bodied fish in the Colorado River 
immediately below the LCR will decrease with increased discharge, but that this pattern tended 
to vary considerably with reach geomorphology and assumptions on swimming behavior of the 
fish. Passively drifting fish were the most susceptible to displacement, but also the least sensitive 
to the effects of variable discharge magnitude. Assuming that passively drifting fish can be used 
to represent the poor swimming ability of humpback chub at low temperatures, then we would 
expect that about 21 percent of these fish would be able to maintain their position within a given 
river reach during high flow tests of 41,500 (Korman et al. 2004) (Figure 13). The retention rate 
at mean monthly flows for March under MLFF (about 9,400 cfs), by contrast, is predicted to be 
about 36 percent. Therefore we would expect retention to decrease by 15 percentage points 
during the Proposed Action; absolute numbers of fish swept downstream would be dependent on 
young of year population size during March 2008, although this information is unlikely to be 
available.  

Total suitable habitat would also be at a low level across the continuum of flow elevations 
(Figure 14). However, available habitat over talus and debris fan substrates is not expected to 
change during high flows as compared to regular MLFF releases (about 9,700 cfs), and area of 
vegetated shorelines would actually be near its maximum predicted values. Thus if the fish could 
exploit these unchanged or improved habitats as refuge from high flows, displacement could be 
minimized (see also Converse et al. 1998).  

Conducting a high flow test during the month of March nevertheless appears to pose the fewest 
risks to young-of-year humpback chub. During this period, occurrence of larval humpback chub 
in the Colorado River should be minimal or nonexistent. In contrast to the November 2004 high 
flow test, humpback chub would be about 10 months old in March (as opposed to 5 months), and 
presumably stronger and better able to adjust position with varying flows. Depending on habitat 
use and growth rate assumptions, humpback chub should be from 5 to 20 mm larger in March 
than in November at 8-12 °C (Petersen and Paukert 2005; Gorman and VanHoosen 2000; Valdez 
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and Ryel 1995; Lupher and Clarkson 1994). Hoffnagle et al. (1999) reported no statistically 
significant change in catch rates of young humpback chub along shorelines before and after the 
March-April 1996 controlled flood of 45,000 cfs, although catch rates may have declined in 2004 
(GCMRC, unpublished).  

It is also very likely that non-native fish will experience negative impacts of the high flow tests, 
perhaps more so than humpback chub due to their preferences for lower water velocities (Table 
8). Hoffnagle et al. (1999) noted that the 1996 test had few discernable effects on native fish, but 
reduced numbers of fathead minnow and plains killifish, presumably by downstream 
displacement. Trammell et al. (2002) found similar results for fathead minnow during the 
September 2000 habitat maintenance flow.  

Predictions made in Korman et al. (2004) have not been validated via empirical data, so 
displacement rates of young-of-year humpback chub over a range of operational and 
experimental flows remain uncertain and should be evaluated. Furthermore, the fate of these fish 
in downstream reaches is unknown, as neither the exact river reaches they are likely to arrive at 
nor habitat conditions therein are known. Also, the exact number of fish displaced by high flows 
will vary markedly by the distribution of fish among discrete shoreline types, as certain shoreline 
types afford more refuge from high flow velocities than others (i.e., talus slopes as compared to 
sandbars, etc.). Downstream displacement could provide positive effects for some humpback 
chub if they are carried to downstream aggregations, survive, and increase the size of these 
groups. 
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Figure 13. Average percent of simulated young-of-year fish retained within a given river reach 
over a range of river flows and swimming behavior assumptions. Red vertical line indicates 
mean flow for MLFF; the green vertical line indicates mean flow during a high flow test. Legend 
refers to swimming performance assumptions (see text). Data are from Korman et al. 2004.  
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Figure 14. Total suitable habitat (line) and breakdown by shoreline types used by humpback 
chub. Not shown are habitat areas for cobble bars, sand and bedrock and unmapped portions of 
transects. 8,000 cfs and 15,000-20,000 cfs estimates approximate habitat conditions for July-
August and September-October for both MLFF and the Proposed Action.  

High flow tests and backwaters 
Immediate physical impacts of high flow tests on backwater habitats include increased relief of 
bed topography, increased elevation of reattachment bars and deepened return current channels 
(Andrews et al. 1999). Biologically, the 1996 test significantly reduced backwater 
macroinvertebrate standing stocks due to scouring of the return current channel, but key taxa 
(i.e., chironomids) recovered to pre-flood levels within three months (Brouder et al. 1999). 
Nutrient enrichment due to burial and decomposition of organic matter during the high flow test 
(Parnell et al. 1999) probably enhanced recovery of benthic macroinvertebrates. As a result, 
reductions of invertebrate prey had little or no impact on food availability to fish (McKinney et 
al. 1999; Valdez and Hoffnagle 1999). Finally, since humpback chub probably do not commonly 
utilize backwaters in March (Valdez and Ryel 1995; proposed time frame for the 2008 high flow 
test), we do not expect negative effects due to reduced food availability.  

One goal of test flows conducted during 1996 and 2004 was redistribution of channel bottom 
sediment to the channel margins to establish and maintain habitats for young life stages of 
humpback chub in the mainstream. The chief difference between the proposed 2008 high flow 
test and previous experiments is that the amount of fine sediment in the system is about 3 times 
greater than that which triggered the 2004 high flow test. We perceive no significant negative 
impact on humpback chub from this change. Instead, we anticipate that greater sediment 
availability during 2008 should lead to more widespread construction of sandbars (Schmidt 
1999; Topping et al. 2006), which should increase the likelihood of backwater formation and 
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more nursery habitat for humpback chub. This assumption is an uncertainty that should be 
framed as a research question and tested.  

An outstanding information need for management of Grand Canyon backwaters is the 
relationship between backwater bathymetry and suitability as fish habitat, specifically the 
relationship between dam operations, depth, area, volume and thermal characteristics. Goeking et 
al (2003) point out that large backwaters may not incur as many benefits to young native fish as 
smaller backwaters because the latter will warm faster and thus remain warmer over time than 
larger backwaters; however, due to their depth, they may be more frequently available as fish 
habitat over a greater range of flows. In the Upper Colorado River basin, Colorado pikeminnow 
were found to utilize backwaters with average depths greater than 0.3 m (Trammell and Chart 
1999) and average areas of 992 m2 (Day et al 1999). The issue of backwater depth is a research 
need from the standpoint that while greater depths afford more availability over a wide range of 
flows (Muth et al. 2000), the concurrent increase in volume with depth may slow warming rates. 

Persistence of backwaters created during 1996 appeared to be strongly governed by post-high 
flow dam operations. Whereas the 1996 test resulted in creation of 26 percent more backwaters 
available as rearing areas for Grand Canyon fishes, most of these newly created habitats 
disappeared within two weeks due to reattachment bar erosion (Brouder et al. 1999; Hazel et al. 
1999; Parnell et al. 1997; Schmidt et al. 2004). Nearly half of the total sediment aggradation in 
recirculation zones had eroded away during the 10 months following the experiment and was 
associated in part with relatively high fluctuating flows of 15,000-20,000 cfs (Hazel et al. 1999). 
Post-test flow regimes to minimize erosion have yet to be developed and tested. 

Steady flows and persistent suitable habitat 
The net effect of steady flows during September and October on habitat persistence is most 
likely to be positive. Depending on river location, the amount of persistent habitat increases by 
63 to 400 percent when flows are held steady at 8,000 cfs as compared to fluctuations between 
5,000 and 8,000 cfs (Korman et al. 2004) (Figure 15). The increase is even more dramatic when 
compared to higher fluctuations (8,000 to 20,000 cfs), so we assume that the predictions for 
persistent habitat for flows included under the Proposed Action are similar (i.e., relatively steady 
flows of 9,000-10,000 cfs as compared to fluctuations between 5,000 to 12,000 cfs per day).  

The same benefits of a more stabilized nearshore environment would be accrued for non-native 
fish; however, their general preference for slightly lower water velocities restricts them to a 
smaller area than for humpback chub and perhaps other native fish, which tend to be more 
tolerant of higher velocities (Meffe and Minckley 1987; Minckley and Meffe 1987; Table 8; 
Figure 16). Depending on the transect, humpback chub have available for their use at any given 
point under steady flows 16 to 34 percent more habitat than non-native fish, which presumably 
translates into a competitive advantage for humpback chub and other native fish. Similar trends 
for both humpback chub and non-native fish are expected during dry years (7.48 maf).  

During wet years and years of high reservoir elevation, flow volumes during the transition from 
September to October could diminish by over 50 percent depending on real-time dam operations 
decisions; similar transitions could occur between August and September. With that change 
comes a dramatic decrease in daily minimum flows, which is expected to increase available 
habitat for humpback chub (Figure 14). However, the rate at which this shift is expected to occur 
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is very rapid and may entail bioenergetic costs to humpback chub forced to relocate in favorable 
habitat at low velocities. This effect could be exacerbated, for example, if chub are using the 
vegetated portion of the channel inundated at high flows but then need to readjust at the lower 
elevations (talus, debris fans; Figure 14). The risk of stranding is also appreciable, so more 
gradual transitions from one water year to the next during wet years may have important benefits 
(Section 1.4.1). 
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Figure 15. Predicted habitat persistence (m2 X 1000) for humpback chub suitable habitat among 
transacts immediately below the Little Colorado River confluence under steady flow conditions 
(8K), low fluctuating flows (5,000-8,000 cfs daily) and high fluctuating flows (8,000-20,000 
cfs). See Figure A.1 for locations of transects. Predictions are from Korman et al. 2004. 
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Figure 16. Predicted habitat persistence (m2 X 1000) for non-native fish suitable habitat among 
transacts immediately below the Little Colorado River confluence under steady flow conditions 
(8K), low fluctuating flows (5,000-8,000 cfs daily) and high fluctuating flows (8,000-20,000 
cfs). See Figure A.1 for locations of transects. Predictions are from Korman et al. 2004. 

Steady flows and temperature 
Based on historic data (Trammell et al. 2002), mainchannel water temperatures in September are 
predicted to be 1-2 °C warmer under steady flow conditions than under fluctuating flows, and 
backwater temperatures are predicted to be 0.9 to 1.8 °C warmer than the mainchannel. 
Depending on river reach, humpback chub growth rates during the month of September are 
predicted to increase by 12 to 36 percent in the mainchannel environment and 9 to 19 percent 
more in backwaters (Table 9). This increase in growth due solely to changes in temperature 
could be augmented by any bioenergetic benefits accrued through increased habitat stability and 
increased abundance in prey. No assessment was possible for October due to lack of information, 
although Korman et al. (2005) found backwaters to be about 1 °C cooler than the mainchannel 
during that period.  

Modeling results predict much more modest increases in temperature under steady flows than 
under fluctuating flows, and mostly during the month of October (Figure 17). Thus, the actual 
warming rate of both the thalweg and backwaters is an uncertainty that should be addressed 
through monitoring and model validation. 
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Table 9. Expected changes in mainchannel and backwater temperatures and young-of-year humpback chub growth rates (mm/month) 
under MLFF and the Proposed Action among river reaches 

 Mainchannel Backwaters 

River Mile 

Temperatures 
Sept 1991-94 
(Fluctuating) 

Expected 
growth 
(mm) 
under 
Fluctuating 
Flows 

Temperatures 
in 2000 under 
Steady Flows 

Expected 
growth 
(mm) 
under 
Steady 
Flows 

Growth 
difference 
(percent), 
Increase 
under 
Steady 
Flows 

Temperatures 
Sept 1991-94 
(Fluctuating) 

Expected 
growth 
(mm) 
under 
Fluctuating 
Flows 

Temperatures 
in 2000 under 
Steady Flows 

Expected 
growth 
(mm) 
under 
Steady 
Flows 

Growth 
difference 
(percent), 
Increase 
under 
Steady 
Flows 

0-61 11.0 2.7 12.0 3.5 26.6 12.5 3.8 13.4 4.4 15.3 
61-88 12.0 3.5 13.9 4.7 35.5 14.5 5.0 15.6 5.7 12.1 
88-166 13.0 4.1 14.8 5.2 26.3 14.5 5.0 16.3 6.0 19.4 
166-226 14.5 5.0 15.6 5.7 12.1 16.0 5.9 17.0 6.4 8.6 

 



 88

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

8/23 9/2 9/12 9/22 10/2 10/12 10/22 11/1 11/11

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (C

)

 
Figure 17. Difference in modeled mainchannel (thalweg) water temperatures between No Action 
and the Proposed Action at the LCR inflow reach (RM 61.5). 

Steady flows and backwater prey availability 
In a study conducted in the upper Colorado River basin (middle Green River, Utah) Grand et al 
(2005) found that the most important biological effect of fluctuating flows in backwaters is 
reduced availability of invertebrate prey caused by dewatered substrates (see also Blinn et al. 
1995), exchange of water (and invertebrates) between the mainchannel and backwaters, and (to a 
lesser extent) reduced temperature. As the magnitude of within-day fluctuations increase, so to 
does the proportion of backwater water volume, which results in a net export in as much as 30 
percent of daily invertebrate production. Potential geomorphic differences between the Grand 
Canyon and the Upper Colorado River basin underline the need for additional research 
investigation. 

Prey availability may be further enhanced by the creation and improvement of new backwaters 
from the proposed high flow tests in March 2008. Arizona Game and Fish Department (1996) 
hypothesized that the 1993 Little Colorado River flood expanded the availability of stable 
backwater habitats, which coincided with increases of benthic invertebrate standing stocks the 
following year. Also, Parnell et al. (1999) documented burial of autochthonous vegetation during 
reattachment bar aggradation, which resulted in increased levels of dissolved organic carbon, 
nitrogen and phosphorus in sandbar ground water and in adjacent backwaters. These nutrients are 
thus available for uptake by aquatic or emergent vegetation in the backwater. 

Steady flows would occur during a period when benthic invertebrate standing stocks are 
declining to low winter levels (AGFD 1996). Thus, increases in benthic standing stocks during 
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that period caused by stable flows (and perhaps greater availability of backwaters) would be 
beneficial to humpback chub as their potential for added growth prior to the onset of winter 
would be enhanced.  

The role of non-native fish management 
While effects of increased temperature and invertebrate prey availability are thought to benefit 
humpback chub, the same could be said of non-native fish, primarily small-bodied cyprinids 
which utilize the same backwater habitats as humpback chub. Thus, in order for the Proposed 
Action to be most beneficial to humpback chub, a non-native fish control plan (coldwater and 
warmwater) would need to be developed and implemented. Progress to this end is being made at 
this time by GCMRC, and active management of warm water non-native fish should begin as 
soon as possible.  

In the Upper Colorado Basin, Trammell et al. (2004) investigated the feasibility of using 
mechanical removal to reduce non-native cyprinid fish species in backwater habitats. They 
concluded that their ability to reduce non-native cyprinid species was limited to short-lived, site-
specific reductions in abundance. However, they concluded that such programs could be 
beneficial to native fish if efficiency was improved and reductions were made just as endangered 
fish begin to use backwaters in the early summer. They also recommended that additional efforts 
be conducted in the fall to reduce over-winter competition and suppress non-native fish 
abundance during the following spring. Finally, they recommended evaluation of additional 
methods including chemical treatment. 
 
Backwaters tend to concentrate all Grand Canyon fishes. Investigations usually indicate that fish 
density in backwaters is invariably higher than adjacent mainchannel environments (AGFD 
1996; Parnell et al. 1997). This relationship contrasts with the Upper Colorado River basin in 
that backwater temperatures are often very similar to the mainchannel, so non-native fish are not 
necessarily restricted to backwaters and, if removed, can recolonize these habitats rapidly. Thus, 
if sources of non-native fish for recolonization of backwaters in Grand Canyon are relatively 
infrequent, vulnerability of small-bodied non-native fish to mechanical or chemical renovation of 
backwaters could be high, and reductions through these means could be longer-lived than in the 
Upper Basin. 

4.2.2 Summary of Effects: Humpback Chub 
Some aspects of dam operations contained in the 1996 and 2007 RODs will continue (i.e., daily 
ramp rates, fluctuation ranges, etc.). The most recent and best available science (Coggins 2007) 
indicates that there has been increased recruitment into the population from some year classes 
starting in the mid- to late-1990s, during the period of MLFF operations. This improvement has 
added credibility to the estimates and contributed to a better understanding of the status and 
trends of the population. This increase has previously been attributed in part to the results of non-
native fish mechanical removal, increases in temperature due to lower reservoir elevations and 
inflow events, the 2000 low steady summer flow experiment, and/or other experimental flows 
(USGS 2006a). However, the most recent population modeling indicates the increase was due to 
increased recruitment as early as 1996 but no later than 1999 (Coggins 2007). The increase in 
recruitment began at least four and as many as nine years prior to implementation of non-native 
fish control, incidence of warmer water temperatures, the 2000 low steady summer flow 
experiment, and the 2004 high flow test. It is also unclear as to whether this increase is 
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attributable to conditions in the mainstem or in the LCR. Population dynamics of non-native fish, 
humpback chub, hydrology, and other environmental variables in the LCR may have influenced 
the observed recruitment trends. Nevertheless, we hypothesize that recent changes in non-native 
fish abundance, temperature, and habitat conditions resulting from natural and experimental 
actions will likely be beneficial to humpback chub, and the proposed experimental action should 
provide opportunities to test this hypothesis.  

In the absence of conclusive information on factors governing humpback chub recruitment, 
Reclamation believes that those operational aspects of Glen Canyon Dam of the Proposed Action 
will not adversely affect humpback chub and hypothesize that the Proposed Action, when tested 
alongside current operational parameters from the 1996 and 2007 RODs, should actually cause 
further increases in humpback chub recruitment and abundance.  

Table 10. Summary of effects on humpback chub expected to result from the Proposed Action 

Proposed Action Mechanism Net result*       Duration 
High flow test displacement negative 60 hours 
High flow test habitat improvement positive 60 hours 
Steady flows stable habitat positive 2 months/yr for 5 years 
Steady flows temperature positive 2 months/yr for 5 years 
Steady flows prey abundance positive 2 months/yr for 5 years 

*assumes that non-native fish control actions are developed, implemented as necessary, and effective 

 
With respect to the Proposed Action, there could be potential take associated with downstream 
transport of humpback chub during the high flow test; therefore, Reclamation’s finding is the 
Proposed Action may affect, and is likely to adversely affect humpback chub. The Proposed 
Action is not expected to adversely modify or destroy critical habitat of humpback chub. 
 
Adverse effects are likely to be short-term and outweighed by benefits derived over longer 
timeframes. The long-term effects on humpback chub from creation and improvement of rearing 
habitats are expected to be positive. Effects of the fall steady flows are expected to be positive 
and result in improved growth and survival of young-of-year humpback chub prior to the onset 
of winter. Beneficial effects of steady flows in fall months should be especially pronounced 
during the first few years following the 2008 high flow test. Creation and improvement of 
backwater rearing habitats expected from the high flow test would expand habitat spatial extent, 
and steady flow would improve overall habitat stability (persistence) and quality (temperature, 
prey availability). Implementation of conservation measures identified in the Shortage biological 
opinion (FWS 2007) is also expected to be positive. 
 

4.2.3 Risks, Uncertainties, and Monitoring 
The preceding analysis raises a number of uncertainties associated with the Proposed Action. 
These uncertainties need to be evaluated through the AMP. These include: 

1) Relationship between antecedent sediment availability and backwater formation 
following a high flow test, including return channel depth and sandbar elevation. 
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2) Relationship between (1) and suitability of backwaters as humpback chub rearing habitat. 

3) Persistence of backwaters created by a high flow test in relation to the post-test flow 
regime (downramp rates, daily fluctuations, steady fall flows, etc.), including erosion and 
sedimentation rates.  

4) Response of young-of-year humpback chub to steady and fluctuating flows in terms of 
growth, bioenergetics, survival, behavior and habitat use. 

5) Warming rates of mainchannel and nearshore habitats (including backwaters) under 
steady and fluctuating flows and response of native and non-native fishes.  

6) Backwater primary and secondary production and standing mass under steady and 
fluctuating flows. 

7) Future climatic changes throughout the Upper Colorado River basin are uncertain. 
Responses to increased duration or intensity of droughts are discussed in the Shortage 
EIS (Appendix N). 

Risks have also been identified that are related to uncertainties and unknown responses. These 
include: 

1) Responses by non-native fish to warmer releases from a TCD, or conversely, responses 
by non-native fish to cold releases in the absence of a TCD. 

2) Displacement of humpback chub during high flows. 

4.3 Razorback Sucker Effects Analysis  

Razorback suckers have not been reported from the action area since 1995, and prior to that time, 
only 10 confirmed fish had been reported from Grand Canyon (Valdez 1996). The recent 
absence of wild razorback sucker in the action area has precluded studies of the species in the 
system and a better understanding of their ecology and life history, as well as habitat needs. The 
nearest occurrence of the species is downstream in Lake Mead proper with specimens rarely 
caught in the inflow. Radiotagged fish released in spring of 1997 in the Lake Mead inflow 
eventually moved into the reservoir and no specimens have been reported from the inflow in 
recent surveys (Ackerman et al. 2006; Van Haverbeke et al. 2007).  

Based on what is known of the razorback sucker from other parts of the Colorado River system, 
the species has variable habitat requirements. Adults in rivers use deep runs, eddies, backwaters, 
and flooded off-channel environments in spring; runs and pools often in shallow water associated 
with submerged sandbars in summer; and low-velocity runs, pools, and eddies in winter. These 
habitats are limited in Grand Canyon and the lack of suitable habitat is probably responsible for 
the low numbers of historical captures.  
 
Spring migrations of adult razorback sucker were associated with spawning in historic accounts 
and a variety of local and long-distance movements and habitat-use patterns have been 
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documented. Spawning in rivers occurs over bars of cobble, gravel, and sand substrates during 
spring runoff at widely ranging flows and water temperatures and spawning in reservoirs takes 
place over rocky shoals and shorelines. Spawning habitat may be available for razorback suckers 
in Grand Canyon, but cool temperatures could limit spawning. Young razorback suckers require 
nursery environments with quiet, warm, shallow water such as tributary mouths, backwaters, or 
inundated floodplains in rivers, and coves or shorelines in reservoirs. These habitats are not 
readily and reliable available in Grand Canyon. In the upper basin, floodplains that become 
inundated with spring runoff are vital habitat for larvae and young. 
 
High flow test and displacement 
The high flow is not expected to affect razorback suckers because there are probably few, if any, 
fish in the action area. Nevertheless, if adults were in the action area, they would not be affected 
and should be able to sustain their position because they are regularly exposed to variable flows. 
Newly hatched razorback suckers typically become transported downstream with spring flows 
following emergence as larvae. This is part of the natural life history of the species and 
downstream transport is not considered detrimental. However, there are few if any floodplain 
habitats in Grand Canyon that provide quiet food-rich habitats for the young fish. Hence, if 
larvae were present, downstream transport would probably carry the young fish into Lake Mead. 
This is unlikely since reproduction in Grand Canyon is unlikely.  
 
Steady median flows and persistent habitat 
Fall steady flows are not likely to adversely affect razorback suckers in the action area. If young 
are in the area, they would be several months old and would likely benefit from the stable flows 
and possibly warm, productive shoreline habitats. Adults, if they were present in the action area, 
would also likely not be adversely affected by the steady flows, but could benefit from the more 
stable habitat. 

In summary, the Proposed Action is not likely to adversely affect razorback sucker or adversely 
modify or destroy critical habitat.  

4.4 Kanab Ambersnail Effects Analysis 

Based on the following analysis, there is potential for take of individual ambersnail and 
Reclamation has concluded the Proposed Action may affect and is likely to adversely affect the 
Kanab ambersnail. 

The Proposed Action will have no effect on the water flow from the side canyon spring that 
maintains wetland and aquatic habitat at Vasey’s paradise. Kanab ambersnail habitat can be 
adversely affected by scouring at Colorado River flows exceeding 17,000 cfs. The high flow test 
will increase flows to 41,500 cfs. These flows will inundate Kanab ambersnail habitat and likely 
scour the vegetation and carry the snails downstream. During the March 1996 high flow test 
(45,000 cfs) in the Grand Canyon, up to 17 percent of Kanab ambersnail habitat at Vaseys 
Paradise was lost or degraded, hundreds of snails were lost, and it took over two years for the 
habitat to recover to pre-flood conditions (IKAMT 1998; Stevens et al. 1997b). In 2004 during 
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the high flow test, 120 m2 of the habitat was temporarily removed previous to the high release 
and replaced following the high flow. 

4.5 Southwestern Willow Flycatcher Effects Analysis 

The Proposed Action may affect, but is not likely to adversely affect the southwestern willow 
flycatcher. Critical habitat for the Southwestern willow flycatcher is located beyond the action 
area. The northern boundary of the critical habitat forms the southern boundary for the action 
area. Downstream flows as a result of the Proposed Action are not expected to have adverse 
effects below Separation Canyon. 

Southwestern willow flycatchers are known to nest in tamarisk along the Colorado River in the 
Grand Canyon. The southwestern willow flycatcher can be affected by high flows through 
scouring and destruction of willow-tamarisk shrub nesting habitat or wetland foraging habitat. 
Conversely, a reduction in flows could have adverse effects on riparian and marsh vegetation, 
which could adversely affect southwestern willow flycatcher. Willow flycatcher nests in the 
Grand Canyon are typically above the 45,000 cfs stage (Gloss et al. 2005), which will not be 
exceeded for the high-flow test. Furthermore, the time frame for the planned high-flow test is 
outside of the nesting period for southwestern willow flycatchers. Southwestern willow 
flycatcher nest in primarily tamarisk shrub in the lower Grand Canyon which is quite common 
along the Colorado River in the Grand Canyon. Tamarisk is not an obligate phreatophtye and is 
capable of surviving lowered water levels. Therefore, the potentially lower flows in September 
and October associated with the Proposed Action are not expected to kill tamarisk and thus no 
loss of southwestern willow flycatcher nesting habitat is anticipated.  

An important element of flycatcher nesting habitat is the presence of moist surface soil 
conditions. Moist surface soil conditions are maintained by overbank flow or high groundwater 
elevations supported by river stage. During September and October steady flow periods flows 
will likely be lower than those found under the no-action peak releases. The potential exists for 
groundwater elevations adjacent to the channel to decline through the steady flows, which could 
desiccate nesting habitat and result in take of southwestern willow flycatcher. The probability for 
such take is considered to be low since the period for the Proposed Action is outside of the 
normal nesting period for southwestern willow flycatcher and the level of any such take would 
be low because only a few nest sites are known from this reach of the Colorado River and. The 
level of this effect is not expected to substantively affect the abundance or distribution of 
southwestern willow flycatcher in the action area or regionally.  

4.6 Effects of Climate Change 

The Fourth Assessment Report (Summary for Policymakers) of the Intergovernmental Panel on 
Climate Change (IPCC 2007), presented a selection of key findings regarding projected changes 
in precipitation and other climate variables as a result of a range of unmitigated climate changes 
projected over the next century. Although annual average river runoff and water availability are 
projected to decrease by 10-30 percent over some dry regions at mid-latitudes, information with 
regard to potential impacts on specific river basins is not included. Recently published 
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projections of potential reductions in natural flow on the Colorado River Basin by the mid 21st 
century range from approximately 45 percent by Hoerling and Eischeid (2006), to approximately 
6 percent by Christensen and Lettenmaier (2006), but, as documented in the Shortage EIS 
(Appendix N), these projections are not at the spatial scale needed for CRSS, the model used to 
project future flows. 

The hydrologic model, CRSS, used as the primary basis of the effects analysis does not project 
future flows or take into consideration projections such as those cited above, but rather relies on 
the historic record of the Colorado River Basin to analyze a range of possible future flows. Using 
CRSS, projections of future Lake Powell reservoir elevations are probabilistic, based on the 100-
year historic record. This record includes periods of drought and periods with above average 
flow. However, studies of proxy records, in particular analyses of tree-rings throughout the upper 
Colorado River Basin indicate that droughts lasting 15-20 years are not uncommon in the late 
Holocene. Such findings, when coupled with today’s understanding of decadal cycles brought on 
by ENSO and PDO (and upstream consumptive use), suggest that the current drought could 
continue for several more years, or the current dry conditions could shift to wetter conditions at 
any time (Webb et al. 2005). Thus, the action period may include wetter or drier conditions than 
today. An analysis of hydrologic variability and potential alternative climate scenarios is more 
thoroughly discussed in the Shortage EIS (Appendix N) and is incorporated by reference here. 

Although precise estimates of the future impacts of climate change throughout the Colorado 
River Basin at appropriate spatial scales are not currently available, these impacts may include 
decreased mean annual inflow to Lake Powell, including more frequent and more severe 
droughts. Such droughts may decrease the average storage level of Lake Powell, which could 
correspondingly increase the temperature of dam releases. Increased release temperatures have 
been cited as one potential factor in the recent increase of juvenile humpback chub (USGS Fact 
Sheet 2007) but concerns also exist that warmer aquatic habitat will also increase the risk of 
warm water non-native fish predation. To allay this risk if such warming occurs, in the Shortage 
biological opinion Reclamation has committed to the monitoring and control of non-native fish 
as necessary, in coordination with other Department of the Interior agencies and working through 
the AMP (FWS 2007). 

5 Incidental Take 
The Reasonable and Prudent alternative of the 1995 biological opinion (FWS 1995) includes 
habitat/beach building flows; however, the FWS determined some humpback chub and Kanab 
ambersnail would be taken during such an event. Similar judgments accompanied the 2004 high 
flow test. The discussion of incidental take in the 1995 biological opinion considers testing and 
studies to determine impacts of flows on young humpback chub. We anticipate a similar 
requirement for take under the current Proposed Action to evaluate the fate of humpback chub 
and Kanab ambersnail displaced by high flow tests, including numbers displaced and final 
disposition (location and habitat availability) of surviving humpback chub individuals.  
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6 Conservation Measures 
Reclamation recognizes that conservation measures contained in the Shortage biological opinion 
(Section 2.1.5) will materially contribute to the conservation and protection of listed species in 
the action area. In addition, Reclamation offers the following conservation measures to enhance 
humpback chub conservation and reduce incidental take of Kanab ambersnail. 

Humpback chub 
In addition to the anticipated positive benefits to humpback chub conservation that have been 
used to develop the Proposed Action, during the five year experimental period, Reclamation will 
also use its available discretion in determining monthly release volumes so that monthly releases 
during the proposed steady flow months of September and October remain fairly similar. Our 
ability to achieve this transition depends not only on the state of the reservoir and on any need 
for equalization releases, but also the official inflow forecast received from the Colorado River 
Forecast Center throughout the water year and consultation within the Colorado River 
Management Work Group. A more gradual transition in the dam release volumes of those 
months should minimize sudden changes in humpback chub habitat type and any bioenergetic 
costs associated with their adaptation to the change. Notwithstanding the potential for modest 
variation in the monthly volumes during September and October, Reclamation will implement 
the steady flow element of the Proposed Action set forth in Section 1.3.1 above.  

Kanab ambersnail  
Prior to the high flow test, Reclamation proposes to move approximately 25 percent of the area 
of Kanab ambersnail habitat (150 m2; watercress, monkeyflower, and other plants) and the 
ambersnails living in that habitat at Vaseys Paradise from below the zone of inundation prior to 
an above power plant capacity experimental flow. This action would be conducted only during 
March 2008 under the current proposal. The habitat and ambersnails would be held locally above 
the level of inundation until the experimental flow, which has an expected duration of 60 hours, 
has receded. At that time, the habitat and associated ambersnails would be replaced in such a 
manner as to facilitate the regrowth of the vegetation forming the habitat for the ambersnails. 
Past experience gained during the 1996 high flow test (45,000 cfs) revealed that nearly all 
vegetation and ambersnails below the level of inundation were scoured and carried downstream. 
This experience also indicated that, without supplementation, it took approximately two years for 
the vegetation to reach its former area and volume. The proposed conservation measure is 
designed decrease the incidental take from mortality during experimental flows, which will be 
particularly important if the action agencies and the AMP propose even higher experimental 
flows in the future. Subsequent monitoring of the effects of this action conducted under the 
auspices of the GCMRC would be used to determine the survivorship of ambersnails and the rate 
of regrowth of the replaced vegetation. 

A second potential agency action for Kanab ambersnail, which was identified in the  
September 2002 environmental assessment/biological assessment, was to augment the Elves 
Chasm population that was established by translocation of individuals from Vaseys Paradise in 
1998. Periodic augmentation of translocated populations by Kanab ambersnails from Vaseys 
Paradise was identified in the biological opinion on the 1998 translocation as an action that the 
National Park Service may undertake. The primary purpose of augmentation would be to help 
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ensure that the genetic identity of the translocated population does not deviate from the source 
population at Vaseys Paradise. 
 
The Elves Chasm translocation was one of three undertaken by the National Park Service, AGFD 
and cooperators in an attempt to achieve a goal of redundant populations in the recovery plan and 
to address a reasonable and prudent measure in the February 1996 biological opinion on the 1996 
high flow test. Reclamation has supported monitoring of both Vaseys Paradise and Elves Chasm 
populations of Kanab ambersnail through the AMP. This reasonable and prudent measure was 
removed by the FWS on July 12, 2000, pursuant to their discovery that the level of incidental 
take for the beach habitat building flow had been underestimated. 
 
In addition, the FWS is in the process of evaluating the genetic status of the Vaseys Paradise 
population of ambersnail. Reclamation suggests that at the conclusion of this work that 
Reclamation and the FWS discuss what measures, if any, should be taken with respect to the 
Elves Chasm population of ambersnail. 
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8 Appendix A 
Figure A1. Transects used in 2-D hydrodynamic model (Korman et al. 2004). 
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Figure A2. Transect R-1 from Korman et al (2004; see Figure A-1). Upstream direction is toward 
the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 8,000 
cfs, HAB_425 refers to 15,000 cfs. 
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Figure A3. Transect R-2 from Korman et al (2004; see Figure A-1). Upstream direction is toward 
the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 8,000 
cfs, HAB_425 refers to 15,000 cfs. 
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Figure A4. Transect R-3 from Korman et al (2004; see Figure A-1). Upstream direction is toward 
the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 8,000 
cfs, HAB_425 refers to 15,000 cfs.
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Figure A5. Transect R-4 from Korman et al (2004; see Figure A-1). Upstream direction is toward 
the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 8,000 
cfs, HAB_425 refers to 15,000 cfs.
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Figure A6. Transect R-5 from Korman et al (2004; see Figure A-1). Upstream direction is toward 
the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 8,000 
cfs, HAB_425 refers to 15,000 cfs.
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Figure A7. Transect ALC from Korman et al (2004; see Figure A-1). Upstream direction is 
toward the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 
8,000 cfs, HAB_425 refers to 15,000 cfs. 
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Figure A8. Transect PAL from Korman et al (2004; see Figure A-1). Upstream direction is 
toward the top of the figure. HAB_141 refers to suitable habitat at 5,000 cfs, HAB_226 refers to 
8,000 cfs, HAB_425 refers to 15,000 cfs. 


