The webinar will begin at 10:00 a.m. MST

Corrosion and Coatings School
October 2014

Corrosion Webinar Series
February 2015
Coatings Inspection

Corrosion Website
http://www.usbr.gov/pmts/materials_lab/corrosion
Corrosion Mitigation of Gates

Jessica Torrey, PhD
Materials Engineer- Corrosion Group
TSC- Materials Engineering Research Laboratory (MERL)
Denver, CO
Today’s Topic: Gates

– Review of Corrosion, Coatings, and Cathodic Protection
– Why Protect Submerged Structures?
– CP System Components
– Typical Gate Protection Design
– CP System Components
– Installation Overview
– Testing and Inspection Guidelines
– MICA and Corrosion Database Research
Review of Corrosion and Cathodic Protection (CP)
The Corrosion Reaction

Electrochemical Reaction Between a Metal and an Electrolyte

ex. steel, copper, aluminum

ex. soil, water

AERATED WATER or CONDUCTIVE SOIL

2H₂O + O₂ + 4e⁻ → 4OH⁻

Fe₀ → Fe²⁺ + 2e⁻

Fe²⁺ + 2OH⁻ → Fe(OH)₂

rust

Four Required Components for Corrosion:
1. Anode (Corrodes)
2. Cathode (Protected)
3. Electrolyte (Usually Soil or Water)
4. Metallic Return Path (ex. Pipe)
Forms of Corrosion

Dealing with Corrosion:

- Create barrier between metal and electrolyte- **Coating**
- Eliminate potential differences on a structure’s surface- **Cathodic Protection**
- Avoid use of dissimilar metals- ex. mild steel gate with stainless steel guides
- Eliminate crevices- ex. no skip welding!
- Prevent standing water- ex. install drain holes
Protective Coatings

• “The total annual U.S. cost for organic and metallic protective coatings is $108.6 billion. 50% of all corrosion costs are preventable, and approximately 85% of these are in the area of coatings.” - NACE website, 2014

• Protective coatings (including paint) are the primary means employed by Reclamation to control corrosion.

 • Coating acts as a barrier between the metal and the water to electrically isolate the metal

• Examples of Coatings for Immersion:
 - Epoxies & Coal Tar Epoxies
 - Moisture Cured Polyurethanes and Siloxanes
 - Galvanized coating
Cathodic Protection

- **Current flows through Electrolyte from Anode to Structure**
 - Polarizes structure to eliminate potential differences between anodic and cathodic areas on structure surface
 - Corrosion rate ceases or is greatly reduced

- **Electrons are provided from source outside the structure**
 - Via a more active metal to be sacrificed- galvanic anode CP
 - Via a rectifier- impressed current CP

- **CP works with coating to protect structure at holidays and prevent undercutting of coating**

- **The most effective corrosion protection system for buried and submerged structures involves a good bonded coating and cathodic protection.**

adapted from NACE CP2 Manual
Galvanic Anode CP System

Palo Verde Diversion Dam Radial Gate, January 2013

- Also known as Sacrificial Anode Cathodic Protection
- This system provides a cathodic protection current by galvanic corrosion or by sacrificing one material to prevent corrosion of the other material
- Both the structure and the anode must be in contact with the electrolyte (water)

Features:
- Low current requirements
- Typically protect smaller surface areas
- No external power needed
- Low maintenance

Anodes:
- Soil and Fresh Water- Magnesium and Zinc
- Brackish Water- Aluminum and Zinc
Impressed Current CP System

This system provides a cathodic protection current from an external power source.

A direct current power source forces current to discharge from anodes, through the electrolyte, and onto the structure to be protected.

Both the structure and the anode must be in contact with the electrolyte.

Features:
- High flow of water
- High current requirements
- Can handle large or poorly coated structures

Anodes:
- Graphite, High-Si Cast Iron, Mixed Metal Oxide, Platinum
- Anodes Normally Connected Through Calibrated Shunts in Junction Box

Graphite Anodes

Mixed Metal Oxide Disk Anode
Why Protect Submerged Structures?
The most effective corrosion protection system for submerged structures involves a good bonded coating and cathodic protection.

- Coatings are the primary corrosion protection for gates, but today’s epoxy coating systems do not last as long as the vinyl systems used in the past.
- The costs for coating repairs or full recoating are constantly increasing.
- Cathodic protection will help extend the life of the coating and maximize time between recoats.
- The right corrosion mitigation system is a small up-front investment that will reduce long-term O&M costs on submerged structures (gates) and extend their useful lifetime.
Protected vs. Unprotected

• ICCP system using surface mounted mixed-metal oxide anodes
• Upstream side was recoated in ~1984—one of the first applications of epoxy based coating system; CP applied at that time
• Photos 10 years after application. Gates have still not required recoating now 30 years later.
CP System Components
Anodes

Magnesium Anodes
- Mg- GA, fresh water, lightweight
- Zn- GA, fresh or brackish water
- MMO- IC, all waters, often used as low profile disk anodes on gates
- PT- IC, all waters, high current density
- Also- Aluminum, Graphite, High-Si Cast Iron

Mixed Metal Oxide Anode

Zinc Anodes

Platinized wire anode in slotted PVC tube for submersion
Components

- Shunt
- Busbar
- HMWPE Cu Cable
- Variable Resistor
- Conduit and Mounting Hardware
- Dielectric Shield Material and Coating Repair
- Rectifier
- Junction Box
Typical CP System Design for Gates- New and Retrofit
General Design Considerations

- Cathodic Protection systems are designed for a minimum 20 year service life.
- Take into consideration ease of maintenance and replacement of anodes - for example we try to use GACP where possible.
- Try to provide uniformity of design across a site with multiple gates.

Factors affecting design:
- Size of structure - anodes must distribute current to entire submerged portion.
- Material, geometry, and weight of anode.
- Geometry of gate and guide structure - for example, some gates have minimal clearance between gate and guide and would do better with ribbon anodes or other low-profile designs.
- Design of gate - structural components can produce shielding of current, cellular designs will require drain holes.
- Operation of gate - what is the variation in water level, storage plan, anticipated availability for inspections and maintenance.
Flush Mounted Anodes

- ICCP only
- Low profile anode mounting
- Require drilling through gate
- Will have cables and attachments on back side running to junction box/rectifier
- Must have good seal between anode and gate skin plate to prevent leakage of water/crevice corrosion
- As with all ICCP systems, anode will not visibly deplete, but performance will diminish over time and must be monitored
Surface Mounted

- GACP only
- Dielectric shield needed for Mg anodes- not for Zn
- Tape wrap at bracket to prevent anode consumption and mechanical instability
- Ensure good metallurgical/mechanical bond of core to gate
- Larger profile of anodes means tight tolerances should be considered for each site, as well as occurrences of turbulence and debris
- Profile of gate (curvature) and variable water level dictate horizontal vs vertical orientation of anode
Compartment Mounted

- Current Shielding - in complex gate structure, each compartment needs an anode, support beams can shield current and limit protection.
- Need to know operation conditions - e.g., low clearance for pocket-style guides, etc.
- DRAIN HOLES!! Avoid standing water when gate is in storage - anodes will be out of water and cannot protect structure.
Other Types of Anode Attachment

Tracy Fish Collection Facility, March 2004

- ICCP Hanging Anodes, Remote, Vertical
- GACP, Direct Mounted Stub-type

Delta-Mendota Canal, February 2013

- GACP, Hull Mounted
- GACP Surface Mounted, Offset, Vertical

Laguna Inlet Gates, November 2013

- Angostura Dam Radial Gates, May 2011
Hot Spot Repair

Nimbus Dam Radial Gates

- Hoist rope assemblies had galvanized steel, stainless steel, and mild steel in contact
- Moving joints stripped coating and exposed bare metal
- Anodes were attached to each assembly to protect hot spot from corrosion
- Dielectric tape was applied to coating repairs over welds to prevent cathodic disbondment
Guidelines and Specifications

- Reclamation Corrosion staff follows the guidelines and criteria in NACE Standard SP0169 “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”

- Other References:
 - Your USBR-TSC-MERL Corrosion Team
 - NACE RP0285 “Corrosion Control of Underground Storage Tank Systems by Cathodic Protection”
 - NACE SP0388 “Impressed Current Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks”
 - NACE RP0196 “Galvanic Anode Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks”
Installation Overview
Installation Steps

- Step 1: Dielectric Shield Material (Mg anodes and ICCP systems)
 - Mark anode locations
 - Prepare surface for coating - could mean completely removing coating or roughening existing coating
 - Apply dielectric shield material (ex. capastic coating/ bituminous coating)
 - a high strength, high dielectric strength, high build epoxy
 - minimum thickness 75 mils
 - Apply top-coat, if required
 - NOTE - shield material is often built in to ICCP flush-mounted anodes
 - NOTE - Zinc anodes do not require dielectric shield due to lower output
Installation Steps

• Step 2: Prepare to Mount Anodes
 - Remove coating beneath bracket weld studs and anode core weld
 - Weld bracket studs to skin plate
 - Repair weld area with bituminous coating
 - Apply dielectric tape wrap or sleeve to area of anode beneath bracket
Installation Steps

- Step 3: Mount Anodes
 - Exothermically weld each end of anode core material or each mounting tab to skin plate
 - Secure U-brackets over anode
 - Test electrical continuity between gate and anode
 - Cover welds and exposed skin plate with bituminous coating, ~20 mils
Things to Avoid

- Crevice corrosion due to standing water
- Joints were not sealed
- Drain holes in wrong gate compartments
- No drain holes, neglected CP
- Skip welds

Palo Verde Diversion Dam Radial Gates, 2013
Fort Randall Dam Emergency Gate, 2005
Seminole Dam Bulkhead Gates, 2012
Testing and Inspection Guidelines
Testing Submerged CP Systems

• Structures with a submerged GACP system should be inspected whenever structure is removed for maintenance
 – What is the condition of the coating?
 – What is condition of anodes?
 – Are brackets still providing sufficient mechanical support?
 – Are metallurgical bonds still intact?
 – Is cable between structure and anode still electrically connected?

Delta-Mendota Canal, February 2013
Testing Submerged CP Systems

On a submerged ICCP system

- Perform same inspections as for galvanic system
- Check rectifier
- Test current at each anode in junction box and balance output using variable resistor
- Test V_{OFF} of structure
 - Install current interrupter
 - Reference electrode goes in water, close to structure
 - May use weighted submersible container or rigid PVC pipe to hold reference electrode securely, prevent loss of electrode, and position electrode at test depth
Record Keeping

• Testing Records should include:
 – General:
 • Tester’s Name
 • Date and Time of Test
 • Location of Test Site (GPS)
 – Measurement Data:
 • Type of Measurement (V_{ON}, V_{OFF})
 • Value/Polarity (+/-)/Units (V, mV, mA, A, etc)
 • Type of reference electrode (CSE)
 – Other Useful Information:
 • Drawings, photos, maps of site
 • Sketches or photos of rectifier/JB/TS
 • General inspection description
 • Description of problems or troubleshooting work
 – Test rectifiers monthly, rest of system should be checked annually

* Good historical record keeping is the best way to determine health of a CP system.
Research Project: MICA and Corrosion Database
USACE/USBR Collaborations

- Database of Corrosion Mitigation Installations aims to:
 - Catalogue types of protected structures and their locations
 - Document corrosion mitigation successes and failures
 - Share information between organizations

- Corrosion Detection and Monitoring Systems (USACE project)
 - Using FEA to improve efficiency of CP systems
 - Developing novel sensor for monitoring CP system and coating condition
 - Reclamation conducting inquiry to O&M corrosion-related issues- report at end of FY14
 - USBR seeking site for pilot test of USACE monitoring system
Use of Tablets for Field Work

- USBR working with USACE to employ MICA
- MICA- Mobile Information Collection Application
 - With one device collect:
 - GPS location
 - Photos, Video, Sketches
 - Field or Inspection Data
 - Eliminates paper forms and enables real-time updating

- Pilot Test for CP System Testing:
 - Mni Wiconi WTP, Pierre, SD
 - IC and GA system on >100 miles of pipe

- FY15 Tasks:
 - Expand MICA use to other departments across Reclamation
 - Develop database for long-term storage and analysis of data
 - Likely using USBR GIS Tessel site and DoD-based SDSFIE (with Steve Jalbert from PN)
Use of Tablets for Field Work
Use of Tablets for Field Work

Form for Rectifier Testing

<table>
<thead>
<tr>
<th>RECTIFIER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier Number</td>
<td>Bridge Rectifier</td>
</tr>
<tr>
<td>Tap or Dial Setting (C, a or %)</td>
<td>16</td>
</tr>
<tr>
<td>Panel Meter Voltage (V)</td>
<td>Panel Meter Current (A)</td>
</tr>
<tr>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>Measured Shunt (mV)</td>
<td>Shunt Rating (mV)</td>
</tr>
<tr>
<td>21.6</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNCTION BOX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode #1</td>
<td>Shunt Potencial (mV)</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Anode #2</td>
<td>Shunt Potencial (mV)</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>Anode #3</td>
<td>Shunt Potencial (mV)</td>
</tr>
<tr>
<td></td>
<td>5.9</td>
</tr>
</tbody>
</table>

MICA available on tablet and smartphone devices

Web-based Interface for Data Viewing
Upcoming Events

• **Coatings and Corrosion School**
 – October 2014 in Denver
 – Registration should be open in August
 – Contact Allen Skaja for more info

• **Next Corrosion Webinar:**
 – Tentative: February 2015
 – Topic: Coatings Field Inspection
 – What do you want to hear about? Please suggest topics for future webinars!
TSC Corrosion & Coatings Staff:

Corrosion
Roger Turcotte, Lee Sears, Jessica Torrey, Daryl Little

Contact:
Jessica Torrey
jtorrey@usbr.gov
303-445-2376

Coatings
Rick Pepin, Dave Tordonato, Bobbi Jo Merten, Allen Skaja

Contact:
Allen Skaja
askaja@usbr.gov
303-445-2396
De Sitter’s “Law of Fives”

$1 spent in getting the structure designed and built correctly is as effective as spending $5 when the structure has been constructed but corrosion has yet to start, $25 when corrosion has started at some points, and $125 when corrosion has become widespread.

Thank you to everyone who provided photos and information for this webinar!