

Presented by Bobbi Jo Merten, Ph.D.
Protective Coatings Specialist
TSC, Materials & Corrosion Laboratory
bmerten@usbr.gov
303-445-2380

Cathodic Protection Case Study

Checking Your System: Water Storage Tank Galvanic Anodes

Presented by Daryl Little, Ph.D.
Materials Engineer (Corrosion)
TSC, Materials & Corrosion Laboratory
dlittle@usbr.gov
303-445-2384

Tank Details:

- Bolted steel tank
- Glass lined
- Concrete floor
- Floor mounted anodes

Inspection report: "The tank's Cathodic Protection system does not seem to be performing properly."

Tank Anode and Cables

How to Check Your CP System

Learning Objectives

- Spot check your system
- Use equipment to test it
- Troubleshoot problems

CP System Check: Procedure

Steps: Test with voltmeter and reference electrode

- 1. Identify system components & ensure anode is submerged
- 2. "ON" potential
- 3. "instant OFF" potential
 - Record 2nd reading on voltmeter
 - Reconnect within 2-3 seconds
- 4. Anode current
- 5. Anode potential
- 6. Retest system

Visually inspect interior tank surfaces (if possible)

Coating Condition

Corrosion Damage

Anode Consumption

Step 1 – System Components

- Thin insulated cable and shunt connects anode and structure
- Large non-insulated cables are for grounding
 - May have grounded anode

Step 2 – "ON" Potential

- Positive terminal connected to tank manhole
- Negative connected to reference electrode (RE)
- -0.597 V vs Cu/CuSO₄ RE

Step 3 – "Instant OFF" Potential

(Also known as the polarized potential)

- Briefly disconnect anode at nut
- Reading should change

"ON" -0.597 V

"Instant OFF" -0.597 V

(no polarization observed)

Steps 1-3 - Troubleshooting

- Possible reasons:
 - CP system is not connected
 - Anode has been consumed
 - Anode type is incorrect or is passivated
 - Is it Zinc (Type I or II) or is it Magnesium?
 - What does water chemistry indicate?
 - Lightning system connected to anode is causing issue
- Possible solutions:
 - Clean connection points to ensure electrical continuity
 - Proceed with next steps
 - Get technical expert involved

Step 4 – Anode Current

- 0.01-ohm shunt
- Measure voltage across two posts and calculate current
- Measured 0.1 mV may be rounded

Shunt posts

 $I \leq 0.1 \,\text{mV} / 0.01 \,\text{ohm}$

 $I \leq 10 \text{ mA (little or no current)}$

Step 5 – Anode Potential

- One bolt has isolation kit, which should be anode
- Anode potential when disconnected = -1.066 V = Zinc
 - Zinc anode = -1.1 V
 - Magnesium anode = -1.5 to -1.7 V

Isolation prevents direct contact between anode and tank wall

Anode

Anode potential shows anode is not passivated

Step 6 – Retest

Always retest the CP system:

- After all connections are secured to ensure it is operating
- After any adjustments are made

Retested hours later: "ON" = -0.882 V

"OFF" = -0.672 V

Original "ON" of -0.597 V may be native potential (if disconnected for a significant amount of time allowing the tank to depolarize)

Visual Inspection

Zinc anodes with minimal degradation in each tank

Interior ladder corroding

 Aluminum poor choice in high chloride environment

Summary

1. Cable connections:

- ALWAYS check that CP system is operating (if potential drops when anode disconnected then the system was operating)
- External connections are vulnerable to damage
 - Did someone snag the cables and pull them apart?
 - Connection issues
 - Are bolts coming undone over time?
 - Oxidation of surface disrupting electrical connection?
- Labels help future testers
- Avoid connecting anode directly to lightning and ground system

2. Visually inspect anodes

- Active anodes change shape and degrade with time
 - No change could mean it is passivated or not connected
 - Potential readings aid in determining anode passivation
- Can be used to determine when to replace the anode

Questions?

Materials and Corrosion Laboratory Staff - 8540

Cathodic Protection

Chrissy Henderson, Ph.D., P.E. chenderson@usbr.gov 303-445-2348

Matt Jermyn mjermyn@usbr.gov 303-445-2317

Daryl Little, Ph.D. dlittle@usbr.gov 303-445-2384

<u>David Tordonato, Ph.D., P.E.</u> dtordonato@usbr.gov 303-445-2394

Grace Weber
GWeber@usbr.gov
303-445-2327

Hazardous Materials

Lise Pederson, P.E. Ipederson@usbr.gov 303-445-3095

Kevin Kelly, Ph.D KKelly@usbr.gov 303-445-7944

Group Manager

Jessica Torrey, Ph.D., P.E jtorrey@usbr.gov 303-445-2376

Protective Coatings

Brian Baumgarten bbaumgarten@usbr.gov 303-445-2399

Carter Gulsvig cgulsvig@usbr.gov 303-445-2329

Bobbi Jo Merten, Ph.D. bmerten@usbr.gov 303-445-2380

Rick Pepin, PCS rpepin@usbr.gov 303-445-2391

Stephanie Prochaska sprochaska@usbr.gov 303-445-2323

Allen Skaja, Ph.D., PCS askaja@usbr.gov 303-445-2396

