Hazardous Materials in Coatings

Kevin L. Kelly, Ph.D.
Research Chemist
Materials & Corrosion Laboratory Group
Webinar Objectives

• What are hazardous materials?

• Understand what hazardous materials may be present in existing coatings in Reclamation facilities.

• Regulations and directives for the removal and disposal of hazardous materials in existing coatings.

• Evaluation process for identifying and documenting potentially hazardous waste that may be generated from the removal of existing coatings or equipment with existing coatings.
Bureau of Reclamation
- Established June 17, 1902
- Federal water management agency.
- Most of Reclamation’s infrastructure > 50 years.
- Many materials used during construction were not as regulated as they are today.

Environmental Protection Agency
- Established December 2, 1970
- Consolidates federal environmental research, monitoring, and enforcement activities in a single agency.
- Mission: To protect human health by safeguarding air, water, and land.
Hazardous Materials – Working Definition

• An existing material, when being removed and disposed of, generates a solid waste that is subject to hazardous waste regulations. In other words, we are looking at the potential of an existing material becoming a hazardous waste. If it has the potential of becoming hazardous waste during solid waste generation, we preemptively call it a hazardous material.

• For coatings, a solid waste may be generated during the removal of existing coatings or the removal of equipment that has existing coatings.

• We will not discuss OSHA regulations........
Primary Federal Regulation
Resource Conservation and Recovery Act (RCRA) - 1976

40 CFR 239-282 (www.ecfr.gov)

“Hazardous Waste Cradle to Grave”

- Governs the disposal of solid and hazardous waste.

Source: www.epa.gov/hw/learn-basics-hazardous-waste
What is a Solid Waste? (40 CFR 261.2)

A solid waste is any material that is discarded by being:

• **Abandoned**: A material is abandoned if it is disposed of, burned, incinerated, or sham recycled.

• **Inherently Waste-Like**: Materials that pose such a threat to human health and the environment that they are always considered solid wastes.

• **Discarded Military Munition**: Ammunition products and components produced for or used by the U.S. Department of Defense.

• **Recycled**: Material is recycled to be used or reused, reclaimed, or used in certain ways.
What is a Hazardous Waste?

“Hazardous wastes are solid wastes that cause or significantly increase mortality or serious irreversible or incapacitating reversible illness or that pose a substantial present or potential hazard to human health or the environment when improperly managed.”

Uniform Hazardous Waste Manifest

“Cradle to Grave”
All hazardous waste are solid waste, but not all solid waste are hazardous waste.
Reclamation Directive on Hazardous Waste

Reclamation’s facility managers shall consider hazardous waste handling before the initial purchase of hazardous materials, hazardous substances, oils, or as early as possible in the design of processes which use hazardous materials or have the potential to generate hazardous wastes. It is Reclamation policy to carefully consider such purchases or designs with the intention of substituting nonhazardous materials or of making process changes where possible to avoid or reduce the generation of hazardous wastes. Whenever the generation of hazardous waste is unavoidable, Reclamation will ensure effective management is employed to minimize potential releases to the environment and any long-term liability.

- Reclamation Manual ENV P15 Section 5A
Executive Order 12088
Federal Compliance with Pollution Control Standards

- The head of each Executive agency is responsible for:
 - Ensuring that all necessary actions are taken for the prevention, control, and abatement of environmental pollution with respect to Federal facilities and activities under the control of the agency.
 - Compliance with applicable pollution control standards. *(including RCRA)*
 - “Applicable control standards” means the same substantive, procedural, and other requirements that would apply to a private person.
- Each Executive agency shall cooperate with the Administrator (EPA), and State, interstate, and local agencies in the prevention, control, and abatement of environmental pollution.
The EPA Hazardous Waste Identification Process

1. Is the material a solid waste?
 - Yes ★
 - No ➤

2. Is the waste excluded from the definition of solid waste or hazardous waste?
 - Yes ➤ The material is not subject to RCRA Subtitle C Regulation
 - No ➤

3. Is the waste a listed or characteristic hazardous waste?
 - Yes ➤ The waste is subject to RCRA Subtitle C regulation
 - No ➤
The EPA Hazardous Waste Identification Process

3. Is the waste a listed or **characteristic** hazardous waste?

Four Characteristic Wastes – hazardous waste characteristics that pose a sufficient threat to merit regulation as hazardous.

- Ignitability
- Corrosivity
- Reactivity
- Toxicity
The EPA Hazardous Waste Identification Process

How do we determine *toxicity* characteristic?

Toxicity Characteristic Leaching Procedure (TCLP)
- 40 CFR 261.24
- SW-846 Test Method 1311

DC-20 Rotary Agitator (Analytical Testing Corp)
TCLP (or RCRA)

Target Analyte List and Action Levels

<table>
<thead>
<tr>
<th>EPA Hazardous Waste No.</th>
<th>Contaminant</th>
<th>Regulatory Level (mg/L)</th>
<th>Total Concentration above which a solid waste may fail TCLP (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D004</td>
<td>Arsenic</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>D005</td>
<td>Barium</td>
<td>100.0</td>
<td>2000</td>
</tr>
<tr>
<td>D018</td>
<td>Benzene</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>D006</td>
<td>Cadmium</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>D019</td>
<td>Carbon tetrachloride</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>D020</td>
<td>Chlordane</td>
<td>0.03</td>
<td>0.6</td>
</tr>
<tr>
<td>D021</td>
<td>Chlorobenzene</td>
<td>100.0</td>
<td>2000</td>
</tr>
<tr>
<td>D022</td>
<td>Chloroform</td>
<td>6.0</td>
<td>120</td>
</tr>
<tr>
<td>D007</td>
<td>Chromium</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>D023</td>
<td>o-cresol</td>
<td>200.0</td>
<td>4000</td>
</tr>
<tr>
<td>D024</td>
<td>m-cresol</td>
<td>200.0</td>
<td>4000</td>
</tr>
<tr>
<td>D025</td>
<td>p-cresol</td>
<td>200.0</td>
<td>4000</td>
</tr>
<tr>
<td>D026</td>
<td>Cresol</td>
<td>200.0</td>
<td>4000</td>
</tr>
<tr>
<td>D016</td>
<td>2,4 D</td>
<td>10.0</td>
<td>200</td>
</tr>
<tr>
<td>D027</td>
<td>1,4-Dichlorobenzene</td>
<td>7.5</td>
<td>150</td>
</tr>
<tr>
<td>D028</td>
<td>1,2-Dichloroethane</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>D029</td>
<td>1,1-Dichloroethylene</td>
<td>0.7</td>
<td>14</td>
</tr>
<tr>
<td>D030</td>
<td>2,4 Dinitrotoluene</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>D012</td>
<td>Endrin</td>
<td>0.02</td>
<td>0.4</td>
</tr>
<tr>
<td>D031</td>
<td>Heptachlor (and its epoxide)</td>
<td>0.008</td>
<td>0.16</td>
</tr>
<tr>
<td>D032</td>
<td>Hexachlorobenzene</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>D033</td>
<td>Hexachlorobutadine</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>D034</td>
<td>Hexachloroethane</td>
<td>3.0</td>
<td>60</td>
</tr>
<tr>
<td>D008</td>
<td>Lead</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>D013</td>
<td>Lindane</td>
<td>0.4</td>
<td>8</td>
</tr>
<tr>
<td>D009</td>
<td>Mercury</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>D014</td>
<td>Methoxychlor</td>
<td>10.0</td>
<td>200</td>
</tr>
<tr>
<td>D035</td>
<td>Methyl Ethyl Ketone</td>
<td>200.0</td>
<td>4000</td>
</tr>
<tr>
<td>D036</td>
<td>Nitrobenzene</td>
<td>2.0</td>
<td>40</td>
</tr>
<tr>
<td>D037</td>
<td>Pentachlorophenol</td>
<td>100.0</td>
<td>2000</td>
</tr>
<tr>
<td>D038</td>
<td>Pyridine</td>
<td>4.0</td>
<td>100</td>
</tr>
<tr>
<td>D010</td>
<td>Selenum</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>D011</td>
<td>Silver</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>D039</td>
<td>Tetrachloroethylene</td>
<td>0.7</td>
<td>14</td>
</tr>
<tr>
<td>D015</td>
<td>Torsophene</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>D040</td>
<td>Trichloroethylene</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>D041</td>
<td>2,4,5-Trichlorophenol</td>
<td>400.0</td>
<td>8000</td>
</tr>
<tr>
<td>D042</td>
<td>2,4,6-Trichlorophenol</td>
<td>20.0</td>
<td>40</td>
</tr>
<tr>
<td>D017</td>
<td>2,4,5-TP (Silvex)</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>D043</td>
<td>Vinyl chloride</td>
<td>0.2</td>
<td>4</td>
</tr>
</tbody>
</table>

Quantitation limit is greater than calculated regulatory level. The quantitation limits therefore becomes the regulatory level.
Other Federal Regulations -

Toxic Substance Control Act (TSCA) – 1979 (40 CFR 700 – 799)

- Wastes containing PCBs ≥ 50 ppm are regulated as hazardous waste.
- TSCA banned manufacturing, processing, distribution, and use of PCBs.

Asbestos Hazard Emergency Response Act (AHERA) – 1986 (40 CFR 763, Subpart E)

- Implemented under TSCA
- Asbestos-containing material (ACM) means any material containing more than 1% asbestos
- Model Accreditation Plan (must be certified)
- Asbestos School Hazard Abatement Reauthorization Act (ASHARA) – 1992
 - Extended AHERA to public and commercial buildings
Other Federal Regulations -

National Emission Standards for Hazardous Air Pollutants (NESHAP) – 1979
(40 CFR 700 – 799)

- Toxic air regulations under the Clean Air Act.
- Includes standards for renovations and demolitions
- Structures to be demolished or renovated, must be thoroughly inspected for the presence of asbestos. (also HAP = Hazardous Air Pollutants)
- Requires filing a notification (usually a state agency)
- Requires work practices designed to minimize release of asbestos fibers, waste packaging, transportation and disposal.
State Authorization Under RCRA

• A rulemaking process where EPA may delegate the primary responsibility of implementing the RCRA hazardous waste program to individual states.

• Currently, all 50 states and territories have been granted authority by the EPA to implement the base program.

• Important for our construction design specifications.

• Requires a lot of research into regulations to find the ones that apply to:
 • Type of hazardous materials to be removed and disposed
 • How will it be disposed of (landfill vs recycling vs treatment)
 • Location of the facility (state and local regulations)
 • Regulations that has “primacy”
Good Example - California

CAM17 Metals
- Antimony (Sb)
- Arsenic (As)
- Barium (Ba)
- Beryllium (Be)
- Cadmium (Cd)
- Chromium (Cr)
- Cobalt (Co)
- Copper (Cu)
- Lead (Pb)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Selenium (Se)
- Silver (Ag)
- Thallium (Tl)
- Vanadium (V)
- Zinc (Zn)

RCRA 8 Metals
- Arsenic (As)
- Barium (Ba)
- Cadmium (Cd)
- Chromium (Cr)
- Lead (Pb)
- Mercury (Hg)
- Selenium (Se)
- Silver (Ag)
What hazardous materials may be found in existing coatings at Reclamation facilities?

- Resource Conservation and Recovery Act
 “RCRA 8 Metals”
 - Arsenic (As)
 - Lead (Pb)
 - Barium (Ba)
 - Mercury (Hg)
 - Cadmium (Cd)
 - Selenium (Se)
 - Chromium (Cr)
 - Silver (Ag)

- Asbestos
 Naturally occurring silicate minerals
What hazardous materials may be regulated in existing coatings at Reclamation facilities?

- Polychlorinated Biphenyls (PCBs)
 - Arochlor – mixtures of PCB congeners
 - Used as plasticizers in paints

- Coal Tar
 - Byproduct of coking
 - Water-immersed structures
 - Penstocks, roofing, gates, trashracks, etc.
Common Misperceptions

Who is the hazardous waste generator?

• EPA Definition: “Generator means any person, by site, whose act or process produces hazardous waste identified or listed in [40 CFR 261] or whose act first causes a hazardous waste to become subject to regulation.”

• Co-generator status is common.
 • “person” = anyone! (could be the contractor)
 • “by site” = physical location where the waste is generated. (assigned an EPA identification number)

• Reclamation must ensure and fully document that the hazardous waste is properly identified, managed, and disposed.
Common Misperceptions

Lead-Based Paint

• Paint or other surface coatings that contain lead ≥ 1.0 mg/cm² or 0.5% by weight or 5,000 ppm by weight.
• Definition applies to a “child-occupied facility.”

X-ray Fluorescence (XRF) Metal Analyzer

• In-situ elemental surface analysis.
• Screening only.
• EPA requires BULK sampling for hazardous waste characterization.
Hazardous Materials Evaluation Process

1. Contact us
2. Purpose of Evaluation
3. Data Collection
 • Schedule a hazmat survey
 • Perform inspection
 • Archival research
 • Find Relevant Environmental Regulations
4. What we may need from client
 • Scope of work
 • Photographs
 • Historical Data
 • Drawings
5. Final products
 • Survey Report: data, photographs, observations, and recommendations/conclusions
 • Construction Design Specifications (Div 02 and 51)
 • Quantity Estimates

Kevin Kelly
kkelly@usbr.gov
720-663-7944

Lise Pederson
lpederson@usbr.gov
303-445-3095
Hazardous Materials Evaluation Process

Hazmat Survey

Ship to Laboratory under Chain of Custody (COC)

Lab Report
Hazardous Materials Evaluation Process

Survey Reports

Construction Design Specifications

Quantity Estimates
Materials and Corrosion Laboratory Group

MCL personnel have specialized training and certifications:

- Coating Specialists, Chemists, and Professional Engineers
- Asbestos Building Inspectors (AHERA)
- Certified Hazardous Materials Manager (CHHM)
- Safety and Health Training:
 - Hazardous Energy Control Program (HECP)
 - Confined Space
 - Fall Protection
 - Personal Protection Equipment
- Special Access Surveys (normally-inaccessible features)
 - Underwater Inspection
 - Rope Access
Materials and Corrosion Laboratory Staff - 8540

Cathodic Protection

Chrissy Henderson, Ph.D.
chenderson@usbr.gov
303-445-2348

Matt Jermyn
mjermyn@usbr.gov
303-445-2317

Daryl Little, Ph.D.
dlittle@usbr.gov
303-445-2384

David Tordonato, Ph.D., P.E.
dtordonato@usbr.gov
303-445-2394

Grace Weber
gweber@usbr.gov
303-445-2327

Hazardous Materials

Kevin Kelly, Ph.D.
kkelly@usbr.gov
303-445-7944

Lise Pederson, P.E.
lpederson@usbr.gov
303-445-3095

Group Manager

Jessica Torrey, Ph.D., P.E.
jtorrey@usbr.gov
303-445-2376

Protective Coatings

Brian Baumgarten
bbaumgarten@usbr.gov
303-445-2399

Carter Gulsvig
cgulsvig@usbr.gov
303-445-2329

Bobbi Jo Merten, Ph.D.
bmerten@usbr.gov
303-445-2380

Rick Pepin, PCS
rpepin@usbr.gov
303-445-2391

Stephanie Prochaska
sprochaska@usbr.gov
303-445-2323

Allen Skaja, Ph.D., PCS
askaja@usbr.gov
303-445-2396
Questions?

Kevin L. Kelly
kkelly@usbr.gov