

Presented by Jessica Torrey Materials Engineer TSC, Materials & Corrosion Laboratory jtorrey@usbr.gov 303-445-2376

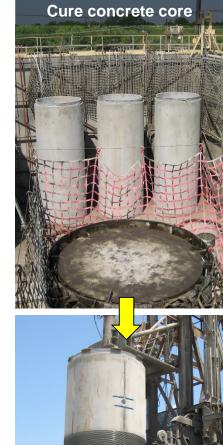
Corrosion Webinar Series PCCP at Reclamation

What is PCCP?

wires.

Source: Pure Technologies, www.puretechltd.com

What is PCCP?



Spray mortar coating

Historical Perspective

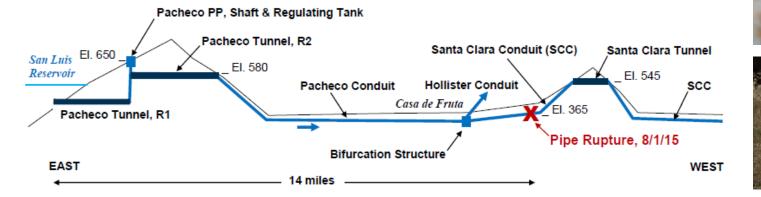
- Reclamation specified PCCP from ~1960 to 1990
- Current Reclamation-owned active inventory: ~90 miles in 48 sections
- In the 1970's, Class II and IV wire were introduced, and one manufacturer in particular produced pipe with wire that has had high probability of failure
- After several failures, Reclamation stopped installing PCCP in 1990
- AWWA C301 and C304 are the manufacture and design standards

PCCP: Principle Causes of Failure

- Corrosion of Wire leading to Breaks
 - Defective prestressing wire
 - Incomplete encasement of wire with mortar/cement slurry
 - Insufficient mortar cover
 - Cracking of mortar
 - Carbonation of mortar

Ak-Chin Link Pipeline

Santa Clara Conduit


CAP Causes and Extents Report

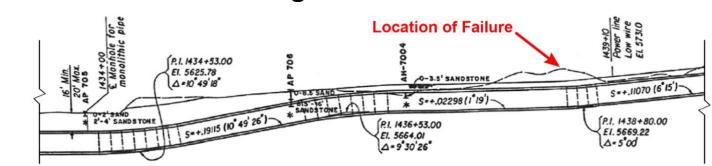
Reclamation PCCP Failures

- 1984- Central Utah Project (UT), Jordan Aqueduct Reach 3
 - Failed one month after going into service
 - Defective wire had longitudinal cracks, was wound exceeding specified tensile stresses
 - 2.3 miles lined with steel liner at cost of ~\$5 million
- 1990- Central Arizona Project (AZ)
 - 6.5 miles of 21' diameter PCCP siphons constructed from 1975-1980
 - Exposed 223 units, 40% were distressed and needed repair, 10% of those needed replacement
 - Estimated cost of implementing repairs at the time was \$117 million
- 2015- Central Valley Project (CA), Santa Clara Conduit
- 2016- Navajo Indian Irrigation Project (NM), Kutz Siphon

Santa Clara Conduit Failure

- •Central Valley Project, California
- •Saturday, August 1, 2015
- •10' long, 8' diameter PCCP section failed
- Failure mode: corrosion leading to broken wires
 - Corrosive soil
 - Microcracking and carbonation in mortar coating

Santa Clara Conduit Failure


- Emergency Repair:
 - Replaced with cement mortar lined and coated steel pipe

Kutz Siphon Failure

- •Navajo Indian Irrigation Project, New Mexico (now BIA owned)
- •Friday, May 13, 2016
- Two 40' long, 17.5' diameter PCCP sections failed
- Concrete and water projected 200'
- Lost 1,000 cfs into the San Juan River
- •Put 75,000 acres of irrigated land out of service

•Failure mode: corrosion leading to broken wires

Kutz Siphon Failure

- Emergency Repair:
 - Replace with steel
 - Fill with CLSM, no corrosion protection
- 2017-2018 Repair:
 - Line steel sections with epoxy
 - Install cathodic protection at repair

Lessons Learned

- Prevention!
 - Know your system- risk assessment
 - Regular electromagnetic (EM) inspections for wire breaks, 3-5 yrs
 - Timely action to address problem areas or institute more frequent monitoring
 - Install corrosion protection
 - Schedule future repairs/replacement for deteriorating sections
- Prepare for future emergencies
 - Have spare replacement sections and butt-straps on hand
 - Have design ready for future replacements
 - Have emergency action plan ready
- Maintenance and planned repairs are cheaper than reacting to pipe breaks.

Condition Assessment

- Site Evaluation
 - Topographic and geologic evaluation: near-surface groundwater, high corrosivity soils, arroyos and washes
 - Man-made features that could increase corrosion potential: electrical transmission lines, foreign line crossings, roadways
 - Soil resistivity surveys or corrosivity laboratory analysis
- Potential Surveys
 - Pipe-to-soil/close interval survey or cell-to-cell survey
 - Conducted above ground to identify areas of anomalous potential gradients indicating corrosion is occurring

Condition Assessment

- Visual Inspection (Pipe Interior)
 - Cracks in core
 - Leaks at joints
- Acoustic Inspection
 - Manual sounding- delamination of concrete or un-grouted areas/hollows
 - Impact Echo Testing- delamination, hollows, cracks
 - Free-floating acoustic sensor- leak detection
- Electromagnetic Inspection
 - Number and location of prestressing wire breaks
 - Can be conducted for in-service or dewatered pipe
- Acoustic Fiber Optic Monitoring
 - Continuous monitoring for wire breaks
 - Cables installed inside pipe
 - Requires monthly/annual monitoring contract


Repair Methods

- Interior Crack and Joint Repair
 - Reclamation's "Guide to Concrete Repair, 2nd ed."
 - Surface preparation, repair product application, curing
- Installation of Cathodic Protection
 - Requires electrical continuity of protected sections
 - Should not be polarized more negative than -1000 mV_{CSE} to avoid hydrogen embrittlement
- Wire Splicing and Tendon Wrapping
 - Exterior repair requiring pipe excavation
 - Use anchor blocks and tensioning devices to install replacement wire or tendons
- Structural Liner
 - Internal repair to provide structural support for distressed sections
 - Carbon Fiber Reinforced Polymer (CFRP)
 - Spray-in-Place Pipe (SIPP)

Current PCCP Activities in TSC

- Science & Technology Program research projects (Research Office)
 - ST-2019-7108-01/TM 8540-2019-31
 PCCP: Condition Assessment, Repair, Replacement Strategies
 - FY19-22: PCCP Educational Demonstration
- Inventory and GIS-Viewer for PCCP (Joint RO and PO)
- PCCP electromagnetic inspections (Policy Office)
 - Fund and award contract for EM inspection of prioritized Reclamation-owned PCCP installations
 - Coordinate and facilitate inspections
 - Compile all inspection data into PCCP database
 - TM OOP-PCCP-8140-RA-2019-1
 Risk Analysis Process for Prestressed Concrete Cylinder Pipe

PCCP Inventory

- Tabular inventory of Reclamation-owned PCCP
- Collected:
 - Basic pipe specs: age, diameter, length, operating pressure
 - Design data, as-built drawings, specs
 - Inspection reports
 - Monitoring or cathodic protection details
 - Details of repairs/replacements

Data linked to GIS-Viewer

Region	State	Project	# PCCP Sections	Length (miles)	Construction Year(s)
LC	AZ	Ak-Chin Indian Water Rights Settlement	3	15.7	1981
LC	AZ	Central Arizona	21	23.5	1980-1992
LC	AZ	Salt River	3	0.5	1992
MP	CA	Central Valley	9	27.3	1986-1987
MP	CA	Ventura River	3	2.5	1958
PN	WA	Columbia Basin	1	0.4	1976
UC	CO	Dolores	7	18.5	1982-1992
UC	UT	Central Utah	1	0.2	1987
		TOTAL:	48	89	

PCCP Web-based Geospatial Viewer

- Confirm all PCCP on map (start and end locations only)
 - Tool: visualize PCCP locations and identify those in proximity to high risk areas (high population, gas/power lines, etc.)
- Populate Master Table
 - Tool: manually query database to find high-risk sections (i.e., search for any pipe with max press > 650 and # breaks > 15)
- Tie Master Table to Graphic Data Table
 - Tool: query database and then locate exact pipe on map
 - Tool: snapshot summary box for each pipe
- Collect and Tie Relevant Documents to Database (ongoing)
 - Tool: access documents associated with a given PCCP section directly from map
- Stationing and Association with # of wire breaks (future work)
 - Tool: visualize wire breaks along pipe layout on map; see if breaks are dispersed or clustered

PCCP Viewer Demo

Resources

- TSC Materials and Corrosion Laboratory (S&T Research Projects)
 - POCs Jessica Torrey and Matt Jermyn
 - Project ID 7108: Critical Review of PCCP at Reclamation
 - Project ID 19275: PCCP Inspection Truthing and Educational Demonstration
- TSC Water Conveyance Group (EM Inspection Coordination)
 POCs Kylie Pelzer and Chris Duke
- Policy Office Asset Management Division (Inspection Contract and Viewer)

 POC Nick Casamatta
- <u>Corrosion Webinar Series</u>

Questions/Comments/Discussion

Materials and Corrosion Laboratory Staff - 8540

Cathodic Protection

Chrissy Henderson chenderson@usbr.gov 303-445-2348

Matt Jermyn mjermyn@usbr.gov 303-445-2317


Daryl Little, Ph.D. dlittle@usbr.gov 303-445-2384

David Tordonato, Ph.D., P.E. dtordonato@usbr.gov 303-445-2394

Grace Weber GWeber@usbr.gov 303-445-2327

Hazardous Materials

Lise Pederson, PE lpederson@usbr.gov 303-445-3095

Kevin Kelly, Ph.D KKelly@usbr.gov 303-445-7944

Protective Coatings

Brian Baumgarten bbaumgarten@usbr.gov 303-445-2399

Bobbi Jo Merten, Ph.D. bmerten@usbr.gov 303-445-2380

Carter Gulsvig

303-445-2329

cgulsvig@usbr.gov

Stephanie Prochaska sprochaska@usbr.gov 303-445-2323

Allen Skaja, Ph.D., PCS askaja@usbr.gov 303-445-2396