GR-85-10

CONCRETE PERFORMANCE IN GRAND COULEE FOREBAY DAM, WASHINGTON: 10-YEAR CORE REPORT

November 1985 Engineering and Research Center

U.S. Department of the Interior

Bureau of Reclamation Division of Research and Laboratory Services Concrete and Structural Branch

1. RECORT NO. GR-85-10 4. TITLE AND SUBTITLE 5. REPORT DATE Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report 5. REPORT DATE November 1985 7. AUTHOR(5) 6. PERFORMING ORGANIZATION REPORT NO. 7. AUTHOR(5) 6. PERFORMING ORGANIZATION REPORT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. VORK UNIT NO. 12. SPONSORING AGENCY NAME AND ADDRESS 10. YOR REPORT AND PERIOD COVERED 13. TYPE OF REPORT AND PERIOD COVERED 14. SPONSORING AGENCY NAME AND ADDRESS 10. YOR REPORT 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor: This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of Coule Forebay Dam, Washington, at 10-years' age indicate good quality, uniforn well-consolidated concorete, with no evidence of chemical attack o	 REPORT NO. GR-85-10 TITLE AND SUBTITLE Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report AUTHOR(S) William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	3. RECIPIENT'S CATALOG NO. 5. REPORT DATE November 1985 6. PERFORMING ORGANIZATION COD D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
GR-85-10 4. TITLE AND SUBTITLE Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report 7. AUTHOR(5) 7. AUTHOR(5) 8. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Engineers Bureau of Reclamation Engineering and Research Center Denver, CO 80225 Microfiche and/or hard copy available at the E&R Center, Denver, CO Its. SUPPLEMENTARY NOTES Microfiche and/or hard coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately	 GH-85-10 TITLE AND SUBTITLE Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report AUTHOR(S) William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	5. REPORT DATE November 1985 6. PERFORMING ORGANIZATION COD D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
4. TITLE AND SUBTITLE S. REPORT DATE Concrete Performance November 1985 in Grand Coulee Forebay Dam, Washington: D-1510 10-Year Core Report D-1510 7. AUTHOR(\$) B. PERFORMING ORGANIZATION CORGANIZATION William L. Tison and W. Ray Willingham GR-85-10 9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. WORK UNIT NO. U.S. Army Engineer Laboratory I1. CONTRACT OR GRANT NO. U.S. Army Corps of Engineers I1. CONTRACT OR GRANT NO. South Atlantic Division Theragency Agreement - Fund No. 340540 Marietta, GA I3. TYPE OF REPORT AND PERIOD 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reacutin.	 TITLE AND SUBTITLE Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report AUTHOR(5) William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	5. REPORT DATE November 1985 6. PERFORMING ORGANIZATION COD D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report November 1985 7. AUTHOR(5) D-1510 7. AUTHOR(5) 8. PERFORMING ORGANIZATION REPORT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING AGENCY NAME AND ADDRESS 10. WORK UNIT NO. 9. South Atlantic Division Interagency Agreement - Fund NO. 304540 11. CONTRACT OR GRANT AND PERIOD COVERED 12. SPONSORING AGENCY NAME AND ADDRESS 10-year Report 13. TYPE OF REPORT AND PERIOD COVERED 14. SPONSORING AGENCY CODE DIBR 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 6. ABSTRACT Editor:J	Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report 7. AUTHOR(S) William L. Tison and W. Ray Willingham 9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225	November 1985 6. PERFORMING ORGANIZATION COD D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
Contrete Forebay Dam, Washington: 10-Year Core Report . . Author(\$) . . Author(\$) . . Author(\$) .	 Concrete Performance in Grand Coulee Forebay Dam, Washington: 10-Year Core Report 7. AUTHOR(S) William L. Tison and W. Ray Willingham 9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	6. PERFORMING ORGANIZATION COD D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
10-Year Core Report D-1510 7. AUTHOR(\$) B. PERFORMING ORGANIZATION NAME AND ADDRESS GR-85-10 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 11. CONTRACT OR GRANT NO. 9. VI.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. 9. VI.S. Army Corps of Engineers 11. CONTRACT OR GRANT NO. 9. South Atlantic Division 11. CONTRACT OR GRANT NO. Marietta, GA 13. TYPE OF REPORT AND PERIOD 2. SPONSORING AGENCY NAME AND ADDRESS 10-year Report Bureau of Reclamation 10-year Report Engineering and Research Center DBR 5. SUPPLEMENTARY NOTES 14. SPONSORING AGENCY CODE Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coules Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 In Grand Codies Forebay Dam, Washington. 10-Year Core Report 7. AUTHOR(\$) William L. Tison and W. Ray Willingham 9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	D-1510 8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
7. AUTHOR(S) 8. PERFORMING ORGANIZATION William L. Tison and W. Ray Willingham 6. PERFORMING ORGANIZATION 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. U.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. I.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. I.S. Army Corps of Engineers 11. CONTRACT OR GRANT NO. South Atlantic Division 11. CONTRACT OR GRANT NO. Marietta, GA 13. TYPE OF REPORT AND PERIOD 2. SPONSORING AGENCY NAME AND ADDRESS 10-year Report Bureau of Reclamation 10-year Report Engineering and Research Center 10-year Report Denver, CO 80225 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J Editor:J 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-year's age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 AUTHOR(S) William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
7. AUTHOR(5) 8. PERFORMING ORGANIZATION William L. Tison and W. Ray Willingham 8. PERFORMING ORGANIZATION 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. U.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. U.S. Army Corps of Engineers 11. CONTRACT OR GRANT NO. South Atlantic Division 11. CONTRACT OR GRANT NO. Marietta, GA 13. TYPE OF REPORT AND PERIOD 2. SPONSORING AGENCY NAME AND ADDRESS 10-year Report Bureau of Reclamation 10-year Report Engineering and Research Center 10. YOP OF REPORT AND PERIOD Denver, CO 80225 14. SPONSORING AGENCY CODE Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 16. ABSTRACT Editor 17. ABSTRACT Editor 18. TYPE OF ments and 1-year old. The results of tests on the physical propertie of 1250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 AUTHOR(5) William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	8. PERFORMING ORGANIZATION REPORT NO. GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
William L. Tison and W. Ray Willingham GR-85-10 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. U.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. U.S. Army Corps of Engineers 11. CONTRACT OR GRANT NO. South Atlantic Division 11. CONTRACT OR GRANT NO. Marietta, GA 11. CONTRACT OR GRANT NO. 12. SPONSORING AGENCY NAME AND ADDRESS 10. YDE OF REPORT AND PERIOD Bureau of Reclamation 10-year Report Engineering and Research Center 10-year Report Denver, CO 80225 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 William L. Tison and W. Ray Willingham PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	GR-85-10 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. U.S. Army Engineer Laboratory 11. CONTRACT OR GRANT NO. U.S. Army Corps of Engineers 11. CONTRACT OR GRANT NO. South Atlantic Division 11. CONTRACT OR GRANT NO. Marietta, GA 13. TYPE OF REPORT AND PERIOD I2. SPONSORING AGENCY NAME AND ADDRESS 10-year Report Bureau of Reclamation 10-year Report Engineering and Research Center 14. SPONSORING AGENCY CODE Denver, CO 80225 14. SPONSORING AGENCY CODE I5. SUPPLEMENTARY NOTES DIBR Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor.J I6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concrete was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	 U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 	11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	U.S. Army Corps of Engineers South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225	11. CONTRACT OR GRANT NO. Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	South Atlantic Division Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225	Interagency Agreement - Fund No. 3-04540 13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
Marietta, GA 1 <t< td=""><th>Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225</th><th>13. TYPE OF REPORT AND PERIOD COVERED 10-year Report</th></t<>	Marietta, GA 2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225	13. TYPE OF REPORT AND PERIOD COVERED 10-year Report
2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225 14. SPONSORING AGENCY CODE DIBR 10-year Report 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	2. SPONSORING AGENCY NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, CO 80225	10-year Report
Bureau of Reclamation 10-year Report Engineering and Research Center 14. SPONSORING AGENCY CODE Denver, CO 80225 14. SPONSORING AGENCY CODE DIBR DIBR 5. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO 6. ABSTRACT Editor:J 7. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Bureau of Reclamation Engineering and Research Center Denver, CO 80225	10-year Report
Bureau of Reclamation 10-year Report Engineering and Research Center 14. SPONSORING AGENCY CODE Denver, CO 80225 DIBR 15. SUPPLEMENTARY NOTES DIBR Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 16. ABSTRACT Editor:J 17. This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Bureau of Reclamation Engineering and Research Center Denver, CO 80225	10-year Report
Indecenting and nessentin center Denver, CO 80225 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J Iditor:J Iditor:J Iditor:J This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Denver, CO 80225	
DIBR DIBR DIBR Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 16. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Denver, 00 00223	14. SPONSORING AGENCY CODE
 SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction. 		DIBR
Microfiche and/or hard copy available at the E&R Center, Denver, CO Editor:J 6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	5. SUPPLEMENTARY NOTES	
Editor:J 6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Microfiche and/or hard conv quailable at the E	BR Contor Dopuer CO
Editor:J 6. ABSTRACT 5. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	Microfiche and/or hard copy available at the E	an Center, Denver, CO
6. ABSTRACT This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.		Editor:JM1
This study is a continuation of the long-term evaluation of the strength and elastic propertie of the concrete in Grand Coulee Dam. Previously, cores were evaluated when the concret was approximately 6-months and 1-year old. The results of tests on the physical propertie of 250-mm (10-in) diameter cores extracted from interior and exterior mass concrete i Grand Coulee Forebay Dam, Washington, at 10-years' age indicate good quality, uniform well-consolidated concrete, with no evidence of chemical attack or alkali silica reaction.	6. ABSTRACT	
The tensile strength of the interior concrete averaged 0.36 MPa (52.2 lb/in ²) for jointe specimens and 1.1 MPa (160 lb/in ²) for unjointed specimens. The average 10-year compressive strength of the interior concrete was 34.2 MPa (4955 lb/in ²), which is 1.1 MP (160 lb/in ²) above the 1-year average. For the interior concrete, the average 10-year modulu of elasticity was 38.8 GPa (5.62 x 10 ⁶ lb/in ²), and the average Poisson's ratio was 0.18. The average 10-year compressive strength of the exterior concrete was 37.4 MPa (542 ⁴ lb/in ²), which is 0.1 MPa (14.5 lb/in ²) below the 1-year average. For the exterior concrete was average 10-year modulu of average 10-year compressive strength of the exterior concrete was 37.4 MPa (542 ⁴ lb/in ²), which is 0.1 MPa (14.5 lb/in ²) below the 1-year average. For the exterior concrete was average 10-year modulus of elasticity was 41.6 GPa (6 GPa (6 GPa (10 ⁶ m))) and the average the average 10-year modulus of elasticity was 41.6 GPa (10 ⁶ m) wa	well-consolidated concrete, with no evidence The tensile strength of the interior concrete specimens and 1.1 MPa (160 lb/in ²) for unjo pressive strength of the interior concrete wa (160 lb/in ²) above the 1-year average. For the i of elasticity was 38.8 GPa (5.62 x 10 ⁶ lb/in ²) The average 10-year compressive strength o lb/in ²), which is 0.1 MPa (14.5 lb/in ²) below t the average 10-year modulus of elasticity was Poisson's ratio was 0.16.	e of chemical attack or alkali silica reaction. averaged 0.36 MPa (52.2 lb/in ²) for jointed binted specimens. The average 10-year com- as 34.2 MPa (4955 lb/in ²), which is 1.1 MPa interior concrete, the average 10-year modulus), and the average Poisson's ratio was 0.18. of the exterior concrete was 37.4 MPa (5420 the 1-year average. For the exterior concrete, a 41.6 GPa (6.06 x 10 ⁶ lb/in ²), and the average
Poisson's ratio was 0.16.	7. KEY WORDS AND DOCUMENT ANALYSIS	n's ratio/ concrete testing/ modulus of hcrete/ concrete properties/ concrete
 Poisson's ratio was 0.16. I7. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS compressive strength/ Poisson's ratio/ concrete testing/ modulus of elasticity/ tensile strength/ cores/ mass concrete/ concrete properties/ concrete dams 	 DESCRIPTORS compressive strength/ Poissor elasticity/ tensile strength/ cores/ mass con dams 	
 Poisson's ratio was 0.16. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS compressive strength/ Poisson's ratio/ concrete testing/ modulus of elasticity/ tensile strength/ cores/ mass concrete/ concrete properties/ concrete dams b. IDENTIFIERS Grand Coulee Dam/ Columbia Basin Project, Washington. 	 DESCRIPTORS compressive strength/ Poissor elasticity/ tensile strength/ cores/ mass con dams IDENTIFIERS Grand Coulee Dam/ Columbia B 	Basin Project, Washington.
 Poisson's ratio was 0.16. 7. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS compressive strength/ Poisson's ratio/ concrete testing/ modulus of elasticity/ tensile strength/ cores/ mass concrete/ concrete properties/ concrete dams b. IDENTIFIERS Grand Coulee Dam/ Columbia Basin Project, Washington. c. COSATI Field/Group 13B, 13M COWRR: 1303.1 SRIM: 50B, 50C 	 DESCRIPTORS compressive strength/ Poissor elasticity/ tensile strength/ cores/ mass con dams IDENTIFIERS Grand Coulee Dam/ Columbia B COSATI Field/Group 13B, 13M COWRR: 1303. 	Basin Project, Washington. 1 srim: 50B, 50C
 Poisson's ratio was 0.16. 7. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS compressive strength/ Poisson's ratio/ concrete testing/ modulus of elasticity/ tensile strength/ cores/ mass concrete/ concrete properties/ concrete dams b. IDENTIFIERS Grand Coulee Dam/ Columbia Basin Project, Washington. c. COSATI Field/Group 13B, 13M COWRR: 1303.1 SRIM: 50B, 50C 19. SECURITY CLASS 21. NO. OF (THIS REPORT) 	 DESCRIPTORS compressive strength/ Poissor elasticity/ tensile strength/ cores/ mass con dams IDENTIFIERS Grand Coulee Dam/ Columbia B COSATI Field/Group 13B, 13M COWRR: 1303. DISTRIBUTION STATEMENT 	Basin Project, Washington. 1 SRIM: 50B, 50C 19. SECURITY CLASS 21. NO. OF PA (THIS REPORT) 11E
 Poisson's ratio was 0.16. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS compressive strength/ Poisson's ratio/ concrete testing/ modulus of elasticity/ tensile strength/ cores/ mass concrete/ concrete properties/ concrete dams b. IDENTIFIERS Grand Coulee Dam/ Columbia Basin Project, Washington. c. COSATI Field/Group 13B, 13M COWRR: 1303.1 SRIM: 50B, 50C 19. SECURITY CLASS 21. NO. OF (THIS REPORT) UNCLASS/FIED 115 	 DESCRIPTORS compressive strength/ Poissor elasticity/ tensile strength/ cores/ mass con dams IDENTIFIERS Grand Coulee Dam/ Columbia B COSATI Field/Group 13B, 13M COWRR: 1303. DISTRIBUTION STATEMENT 	Basin Project, Washington. 1 SRIM: 50B, 50C 19. SECURITY CLASS 21. NO. OF PA (THIS REPORT) UNCLASSIFIED 115

GR-85-10

CONCRETE PERFORMANCE IN GRAND COULEE FOREBAY DAM, WASHINGTON: 10-YEAR CORE REPORT

by

William L. Tison W. Ray Willingham

Performed by U.S. Army Engineer Laboratory U.S. Army Corps of Engineers South Atlantic Division Marietta, Georgia

Concrete and Structural Branch Division of Research and Laboratory Services Engineering and Research Center Denver, Colorado

SI METRIC

November 1985

UNITED STATES DEPARTMENT OF THE INTERIOR

 \star

BUREAU OF RECLAMATION

ACKNOWLEDGMENTS

Vinton Guy, the principal investigator for the Bureau of Reclamation, coordinated the work performed by the U.S. Army Corps of Engineers, SADL (South Atlantic Division Laboratory). The work was performed from August 1983, through September 1984, under the direction of William L. Tison, P. E. and W. Ray Willingham, Registered Professional Geologist. Harvey L. Mayes, Civil Engineering Technician, directly supervised the various phases of the work. The report was prepared by William L. Tison and W. Ray Willingham.

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

The research covered by this report was funded under the Bureau of Reclamation PRESS (Program Related Engineering and Scientific Studies) allocation No. DB-14, Longtime Concrete Studies.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

Page

Acknowledgments	ii
Introduction Background Purpose Scope	1 1 1 1
Conclusions	2
Description of the study Samples Selection of specimens	2 2 2
Physical property tests and petrographic analysis Preparation of specimens Compressive strength Elastic properties Direct tension Petrographic analysis	4 4 4 5 5
Analysis of results Density Compressive strength Elastic properties Tensile strength Petrographic	5 5 9 9
Bibliography	10
Appendixes A - Concrete core photographs	11 27 45 79 93 97

Table

TABLES

1	Core location data	- 3
2	Summary of compressive strength and elastic properties test results on 250-mm (10-in)	
	diameter cores at 10 years' age – Grand Coulee Forebay Dam	6
3	Summary of direct tensile strength test results on 250-mm (10-in) diameter cores at 10 years'	
	age – Grand Coulee Forebay Dam	7
4	Comparison of average compressive strengths of 250-mm (10-in) diameter cores	
	at various ages	7

<u> </u>	
H IO	IIIro
I IU	u =

FIGURE

1	Compressive strength development – Grand Coulee Forebay Dam	8
---	---	---

INTRODUCTION

. .1

5 AT 380

A program investigating the effects of age and loading on strength and elastic properties of concrete from Grand Coulee Forebay Dam was authorized by an interagency agreement, fund obligation No: 3-04540, dated August 5, 1983, between the U.S. Department of the Interior, Bureau of Reclamation, and the U.S. Army Corps of Engineers, SADL (South Atlantic Division Laboratory). The details of the investigation were outlined in the interagency agreement.

Background

The Grand Coulee Forebay Dam is located on the right bank of the Columbia River, downstream from and adjacent to Grand Coulee Dam, near Grand Coulee, Washington. It is a 61-m (201-ft) high gravity dam containing 463 000 m³ (605 000 yd³) of mass concrete. The dam is divided into monoliths by vertical transverse contraction joints. Galleries and adits provide access to selected locations inside the dam.

The effects of age and loading on the strengths and elastic properties of the interior and exterior concrete of the Forebay Dam had been studied previously. Cores were extracted and tested when the concrete was approximately 6 months old and 1 year old. USBR (Bureau of Reclamation) Laboratory Report No. GR-13-77 presents data and conclusions based on those tests.

Purpose

When the Forebay Dam concrete was 10 years old, 250-mm (10-in) diameter cores were extracted to test the uniformity of the concrete; to determine its physical properties; and to evaluate its structural behavior.

Scope

Thirty-three meters (109 ft) of 250-mm (10-in) diameter cores were extracted from 10 different holes and tested. All of these cores were logged and photographed. The unit weights of 31 selected specimens were measured. Twenty-three of these were tested for compressive strength, and their modulus of elasticity and Poisson's ratio were determined. The other eight selected cores were tested for direct tensile strength; four of these cores were jointed and four were unjointed. After testing, a cursory petrographic examination was performed on each compressive and tensile

strength specimen, and two interior and two exterior specimens were selected for detailed petrographic examination. All results were then compared with the results of previous tests.

CONCLUSIONS

Based on the analysis of the test results, visual observations, and petrographic analyses, the following conclusions are offered.

- 1. After 10 years, the concrete is in good condition. There is no evidence of chemical attack, alkali silica reaction, or damage from cyclic freezing and thawing.
- 2. The fact that the average 10-year compressive strength was less than the average 1-year strength in the exterior concrete seems reasonable.
- 3. The fact that the average 10-year compressive strength was greater than the average 1year strength in the interior concrete also seems reasonable.
- 4. The average 10-year tensile strength of the interior concrete was less than the 1-year average. This is strictly a function of the specimens tested rather than an indication of a decrease in the tensile strength.
- 5. Elastic stiffening of the concrete is indicated by an increase from the 1-year to the 10-year modulus of elasticity for both interior and exterior concrete.

DESCRIPTION OF THE STUDY

Samples

Table 1 summarizes the pertinent location information for the cores (from the 10 holes) furnished for testing.

The cores were received at Marietta, Georgia, on August 17, 1983, packed in 44 wooden boxes each 4 ft long. The cores were wrapped in brown waterproof paper and packed in sawdust. The sawdust and the cores were dry when they were received.

Selection of Specimens

₩° 1

All of the cores were removed from the boxes and stripped of the brown paper. The pieces from each hole were fitted together into their full length. The individual pieces were then assigned

		Table 1. – Cor	e location data.		
Hole	Block	No of test	Specime	en length	
No.	No.	specimens	m	ft	Location
		Interior	concrete		
106-1	106	3	2.7	9	Foundation adit
109-1	109	6	5.8	19	Inspection gallery
113-1	113	5	4.3	14	Inspection gallery
113-1a	113	4	2.7	9	Inspection gallery
116-1	116	4	2.7	9	Gate gallery
118-2	118	7	2.7	9	Access gallery
119-2	119	3	2.7	9	Downstream adit
120-1	120	4	2.7	9	Foundation gallery
		Exterior	concrete		
100-1	100	3	2.7	9	Crest of dam
WDB-1	Wing dam B	7	4.0	13	Crest of dam

laboratory identification numbers (SADL Lab. Nos.). The cores were logged by a petrographer, and photographs were taken (See app. A and app. B). These photographs and logs were used for selecting the test specimens. Specimens were selected in the following way:

- 1. First, compressive and tensile specimens were selected from lifts that had been tested previously, so that comparisons could be made.
- 2. Second, intact specimens containing construction joints were selected, particularly for the direct tensile tests.
- Finally, additional specimens were selected to complete the required 21 compressive and 8 direct tensile tests.

Twenty-three compressive strength specimens and eight direct tensile specimens were ultimately selected. Two intact joint specimens were sent back to Denver for direct shear testing by USBR personnel. This testing was done to define the shear strength displacement characteristics of the construction joints (app. G). All selected specimens were then marked with yellow tape before the final photographs were taken (See app. A).

PHYSICAL PROPERTY TESTS AND PETROGRAPHIC ANALYSIS

Preparation of Specimens

The specimens selected for the compressive and the direct tensile tests were sawed to the required nominal test length of 510 mm (20 in). The length of the compressive strength specimens ranged from 455 mm (17.9 in) to 530 mm (20.9 in). The lengths of the direct tensile test specimens ranged from 495 mm (19.5 in) to 515 mm (20.25 in). All specimens were sawed with a 610-mm (24-in) diameter Felker continuous rim diamond blade. The sawed ends were smooth, but not exactly perpendicular to the core axis. Tensile specimens with construction joints were sawed so the joint was positioned in the center. After sawing, the specimens were weighed in air and under water to determine their density (unit weight). The specimens were stored in a moist curing room before they were tested.

No equipment was available for lapping specimens of this size. Therefore, all specimens were capped with a thin, high-strength sulfur mortar cap. This was done in accordance with ASTM C 617, Standard Method of Capping Cylindrical Specimens (See fig. F1 in app. F).

Compressive Strength

Compressive strength was determined in accordance with ASTM C 39, Standard Method for Compressive Strength of Cylindrical Concrete Specimens. The specimens were tested using a Tinius-Olsen Universal hydraulic testing machine with a capacity of 1957 kN (440 000 lbf) (See fig. F3). The compressive strength of two specimens exceeded this capacity. These specimens were then tested on a 4448-kN (1 000 000-lbf) capacity Baldwin compression machine at the nearby Lockheed Georgia Aircraft Company.

Elastic Properties

JE 11 1

The elastic properties, modulus of elasticity, and Poisson's ratio were determined for each compressive strength test in accordance with ASTM C 469, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. The longitudinal and transverse strains were measured using a compressometer-extensometer furnished by the USBR Laboratory (See fig. F4).

Direct Tension

Direct tension specimens were attached to steel end-plates with epoxy adhesive (See fig. F2). The plates were then connected with chain links to two spherical rod end bearings. Tensile force was then applied until failure to these rod end bearings, using the same Tinius-Olsen testing machine. The plates used for these tests were furnished by the USBR Laboratory.

Petrographic Analysis

Each specimen subjected to strength testing received a cursory petrographic examination after the test. The failed specimens were photographed, and each failure was described by the nature of the structural surfaces, the percentage of broken aggregate, chemical deposits, and other characteristics. In addition, four specimens, two representative of interior and two representative of exterior concrete, were selected for detailed petrographic examination. This examination was performed in accordance with ASTM C 856, Petrographic Examination of Hardened Concrete.

ANALYSIS OF RESULTS

Density

Density determinations made on the 23 compressive strength specimens and on the 8 direct tensile specimens are shown in table C1. For the specimens tested, the density averaged 2499 kg/m³ (156.0 lb/ft³) and ranged from 2419 kg/m³ (151.0 lb/ft³) to 2595 kg/m³ (162.0 lb/ft³). This compares well with the average of 2483 kg/m³ (155 lb/ft³) for the 6-month and 1-year cores. There were no significant differences between the densities of the exterior and interior specimens.

Compressive Strength

The results of the individual compressive strength tests are shown in table C1. The results are summarized in tables 2 and 3.

The average compressive strength for the seven exterior concrete specimens tested was 37.4 MPa (5420 lb/in²). Results ranged from 32.5 MPa (4710 lb/in²) to 46.0 MPa (6665 lb/in²) with a coefficient of variation of 11.8 percent. The average strength is slightly less than the 1-year average of 37.5 MPa (5440 lb/in²) (See table 4 and fig. 1). There is no obvious explanation

	Comp stre	ressive ngth	Strength ratio: core/28-day 6-in by 12-in cyl	M	odulus of elasticity	Poisson's
Core No.	MPa	lb/in ²	%	GPa	lb/in ² X 10 ⁶	ratio
			Exterior concrete			
WDB-1-1	33.3	4830	111	37.3	5.40	0.17
WDB-1-2	37.2	5390	124	40.0	5.80	.17
WDB-1-3	46.0	6665	153	43.8	6.35	.13
WDB-1B-E	32.5	4710	111	46.2	6.70	.16
WDB-1B-5	37.8	5480	129	41.7	6.05	.14
100-1a-2	41.1	5955	117	44.2	6.40	.16
100-1a-3	33.9	4920	105	39.7	5.75	.19
Average	37.4	5420		41.8	6.06	0.16
			Interior concrete			
106-1-2	38.3	5560	151	49.0	7.10	0.13
109-1-2	36.3	5270		35.9	5.20	.14
109-1-5	25.2	3660	116	35.0	5.07	.14
113-1-1	32.6	4720	138	30.7	4.45	.14
113-1-2	30.5	4420	129	33.8	4.90	.24
113-1-4	34.6	5020		34.4	4.99	.16
113-1a-2	36.3	5260	153	33.1	4.80	.16
113-1a-3	30.8	4470	130	34.5	5.00	.23
116-1-2	34.3	4980	103	46.4	6.72	.25
116-1-3	38.2	5540	114	40.8	5.91	.21
118-2-2	34.1	4940		42.8	6.20	.22
118-2-3	35.8	5040		40.0	5.80	.11
118-2-7	39.2	5680		45.4	6.58	.22
119-2-1	34.3	4970	102	38.8	5.62	.21
119-2-2	34.3	4980	102	40.7	5.90	.20
120-1-1	33.0	4790	139	39.7	5.76	.19
Average	34.2	4955		38.8	5.62	0.18

Table 2. – Summary of compressive strength and elastic properties test results on 250-mm (10-in) diameter cores at 10 years' age – Grand Coulee Forebay Dam.

D

	Ter stre	nsile ngth	Core strength ratio: tensile/avg. compressive.	Disbonded area.	Distan break fro	ce of om end	
Core No.	MPa	lb/in ²	%	%	mm	in	Remarks
<u> </u>	<u></u>		Interior con	crete			
106-1-3	0.41	60	1.2	75	280	11	Jointed
109-1-3	0.31	45	0.9	90	50	2	Jointed
109-1-4	0.96	140	2.8	95	75	3	Unjointed
113-1-3	0.55	80	1.6	80	75	3	Unjointed
116-1-4	1.79	260	5.2	50	25	1	Unjointed
118-2-7	1.38	200	4.0	40	25	1	Unjointed
Average	0.90	130					

 Table 3. – Summary of direct tensile strength test results on 250-mm (10-in) diameter cores at 10 years' age – Grand Coulee Forebay Dam.

Table 4. - Comparison of average compressive strengths of 250-mm (10-in) diameter cores at various ages.

	Number of	Ave comp stre	erage ressive ength	Coefficient of variation
Age	Specimens	MPa	lb/in ²	%
	Exterio	r concrete		-
6 months	15	33.8	4900	19.2
1 year	13	37.5	5440	21.0
10 years	7	37.4	5420	11.8
	Interio	r concrete		
6 months	21	30.2	4380	17.5
1 year	21	32.4	4700	17.0
10 years	16	34.2	4955	8.7

Figure 1. - Compressive strength development - Grand Coulee Forebay Dam.

for this fact, but the results do indicate that there has been no strength gain in the exterior concrete after 1 year. This may be reasonable because the exterior concrete had higher early strengths and may have been subject to moisture and temperature variations that slowed or stopped hydration. As expected, the coefficient of variation for these cores was less than that for either the 6-month or 1-year test results. The most obvious reason for strength differences or variations is the size and distribution of coarse aggregate in the various cores. Some of the cores, such as WDB-1-3, contained only 38-mm (1½-in) maximum size aggregate; which resulted in higher strength. The lowest strength exterior core, 32.5 MPa (4710 lb/in²), contained plus 76-mm (3-in) aggregate, several pieces of which were on the outside of the core where they induced stress concentrations.

П

1 E

The 16 compressive strength specimens from interior concrete averaged 34.2 MPa (4955 lb/in²). They ranged from 25.2 MPa (3660 lb/in²) to 39.2 MPa (5680 lb/in²). The specimen that failed at 25.2 MPa (3660 lb/in²) had a large, 150-mm (6-in), piece of aggregate on the surface, which probably precipitated the failure. The coefficient of variation was 8.7 percent. There was a 2.2 MPa (155 lb/in²) strength gain between the 1-year-old and the 10-year-old samples of interior concrete (See table 4 and fig. 1). This may indicate that hydration and strength gain are continuing in the lower strength mixtures where moisture and temperature variation are small. The coefficient of variation at 10 years is half that of the 6-month and 1-year test results for both the interior and the exterior mixes.

e 11 mm

The small variation in density may indicate that there is very little variation in the uniformity or quality of the concrete from various locations. The variation in strengths seems to be related to the size and distribution of aggregate within the various cores. Low breaks are often caused by large aggregates on the outside of the core "popping out," resulting in a reduced cross-section and early failure. This phenomenon can be observed in some of the failure photographs (See app. D).

Elastic Properties

The results of the tests on elastic properties are summarized in table 3. The modulus of elasticity for the exterior concrete ranged from 37.3 GPa (5.40 x 10^6 lb/in²) to 46.2 GPa (6.70 x 10^6 lb/in²), with an average of 41.6 GPa (6.06 x 10^6 lb/in²). This is an increase from the 35.7 GPa (5.18 x 10^6 lb/in²) modulus of elasticity measured at 1 year. The modulus of elasticity for interior concrete ranged from 30.7 GPa (4.45 x 10^6 lb/in²) to 49.0 GPa (7.10 x 10^6 lb/in²), with an average of 38.8 GPa (5.62 x 10^6 lb/in²). This is an increase from the overall average of 35.7 GPa (5.18 x 10^6 lb/in²) measured at 1 year.

The Poisson's ratio averaged 0.16 for the exterior concrete and 0.18 for the interior concrete. This is a decrease from the 0.19 overall average at 1 year.

Tensile Strength

The results of the individual direct tensile strength tests are listed in table C1 and summarized in table 3. No specimens from the exterior concrete were tested in tension because there were no suitable jointed specimens. Six specimens from interior concrete were tested. The two jointed specimens averaged 0.36 MPa (53 lb/in²) tensile strength. The four unjointed specimens averaged

1.1 MPa (170 lb/in²) tensile strength. This average includes core No. 113-1-3, which broke at 0.55 MPa (80 lb/in²), probably because of a piece of weathered aggregate and a large piece of aggregate in the failure section (See photograph in app. D).

The average 10-year tensile strengths of the unjointed specimens was 3.4 percent of the average 10-year compressive strength. If the low break were not included, it would have been 4.0 percent greater than the 3.7-percent average at 1 year and comparable to other results for mass concrete. Most of the specimens, including the two jointed specimens, broke in the lower third. Both jointed specimens broke at the joints, which were in the lower third. As expected, the strength was inversely proportional to the amount of aggregate disbonding.

The few results obtained indicate that the bond strength of the joints is less than the tensile strength. This is contrary to the 1-year results.

Petrographic

ART 1

Concrete specimens from two interior cores and two exterior cores were examined petrographically. The concrete was found to be of good quality with no evidence of chemical attack, alkali silica reaction, or deterioration from cyclic freezing and thawing (See app. E).

BIBLIOGRAPHY

- American Society for Testing and Materials, *Annual Standards*, Part 14, "Concrete and Mineral Aggregates," Philadelphia, PA, 1982.
- Newsom, M. D., and J. D. Richards, *Concrete Performance in Grand Coulee Forebay Dam, Washington:* 1-year Core Report, Bureau of Reclamation Report No. GR-13-77, Denver, CO.
- Bureau of Reclamation, Division of Engineering Laboratories, "Properties of Mass Concrete in Bureau of Reclamation Dams," Concrete Laboratory Report No. C-1009, Denver, CO, 1961.
- American Society for Testing and Materials, *Annual Standards*, Part 41, 'ASTM E 380 Standard for Metric Practice,' Philadelphia, PA, 1982.

APPENDIX A

i sutimer

CONCRETE CORE PHOTOGRAPHS

7 **1** 1 1 1

Figure A1. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. WDB-1

Figure A2. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. WDB-lb.

ł

(...)...

Carlo Carlo Carlo Carlo

Figure A3. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 100-1a.

t. The second

Figure

Forebay

Q-in) diameter cores from hole No.

Figure A5. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 109-1.

17

t.

-eoây Dam. 250-mm (10-in) diameter cores from hôle No. 109

Figur

I,

Figure A7. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 113-1.

Figure A8. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 113-1a.

L.

۱

Ê

(______

U. K. 1 f.

r

0-in) Figure Grand Coulee Forebay

Figure A10. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 18-2.

1

) 🗘 🗳 🗠 1

I

l

l

Í

1

1

Figure A11. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 118-2.

T

Forebay Dam. 250-mm 0-m) diameter cores from hole No.

T T T

Figure A13. - Grand Coulee Forebay Dam. 250-mm (10-in) diameter cores from hole No. 120-1.

25

T

1 million

1

1

r

APPENDIX B

... F Alama

CONCRETE CORE LOGS

							Hole No.	WUB-1		
DRILL	ING LO	G 🔤	VISION	Bureau	L of Re	clamat	ion	OF 1 S	HEETS	
I. PROJECT				10. SIZE	AND TYP	OF BIT	IÙ IN.			
Grand Coulee Forebay Dam 2. LOCATION (Coordinates or Station)					TI. DATUM FOR ELEVATION SHOWN (THE C MSL)					
Sta. 112 +24.92, Offset Sta. 19+44.57					UFACTURI	R'S DESI	GNATION OF DRILL			
Contra	ç <u>t </u>			13. TOT	AL NO. OF	OVER-	DISTURSED	UNDISTU	ABED	
4. HOLE NO. and file num	(As shown mbed)	on drawi	WDB-1	BUADEN SAMPLES TAKEN						
S NAME OF	XXXX ^{ER}			14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER						
Ty . DIRECTIO	<u>pe of</u> N of Hol	Concre E	te: Exterior	IS. ELEVATION GROUND WATER						
T VERTIC	CAL []!	NCLINED	DEG. FROM VERT.	16. DATI	EHOLE		-3-82	-/-82		
7. THICKNES	S OF OVE	RBURDE	N	17. ELE	AL CORE I	POF HO	LE 1311.0			
S. DEPTH DR	ILLED IN	TO ROCK		19. SIGN	ATURE OF	INSPECT	OR			
S. TOTAL DE	PTHOF	OLE	14.80 ft.	l	1 CORE	BOX OR	REMA	RKS		
ELEVATION	DEPTH	LEGEND	(Description)		RECOV-	SAMPLE NO.	(Drilling time, we weathering, etc.	ter loss, dep , it significs	th of	
						<u> '</u>				
	E						Top of Borin	g		
					l			Ŭ 🦳		
1303.0	8.0 I						Drilling Rec	ord(f+	\mathbf{N}	
		<u> </u>							╤┺╼┥	
Í	Ξ	്പ	Concrete is fresh cour	nd and		Core				
			well consolidated. 6-in	n max.	I	No.1	ł			
	E	O_{\downarrow}	size well rounded aggre	egate.						
ł		. 0	erew crapped air voids. obvious reaction of any	kind		1				
	1		Rims on some particles	but				9.2		
		O ·	appears to be weatherin	ıg.						
	-	: O							Ę	
		0				446			sto	
	Ξ					÷5/2			es	
		0				L L			1 duic	
		0 :							ŭ	
		<u>_</u> 0						10.9	<u> </u>	
1299.7	.11.I	U ·					d.11.3			
		0								
	-	~ 0				Corri				
	E	0				No. 2				
	ㅋ	ŏΟ								
1	E	0								
	4	്റ								
		اٽم						12.9-	⊢	
				1						
	_=	. O				~				
	Ξ	0		1		447			u o	
		ň			ļ	45/			iss i	
									pre	
	ゴ	υ			1				Com	
1204 2	14 2	0			ĺ		d.14.80	14.6	┝─┤	
1470.4	<u></u>		<u> </u>					6 Da-1 -	7-1	
			Contractor Drilling Ree	cord		1		boring	/	
			Incomplete							
ľ	1					1				
	=									
NC FOOL			L				L			
NU FUKM	1836	PREVIOU	SEDITIONS ARE OBSOLETE.		Grand	Coule	e Forebay Da	n HOLE WD	B-1	

с.1

21 I 12 MAR

RE 1 14

. 1 10 11 2003

Mar 1 61

		TINSTALL	ATION		Hole	No.	113-1 HEET	 -				
DRILLING LOG		Bure	eau of	Reclam	ation	0	r 2 s	HEETS				
GRAND COULFE FOR	EBAY DAM	10. SIZE	10. SIZE AND TYPE OF BIT 10 in. 11. DATUM FOR ELEVATION SHOWN (THM - MSL)									
LOCATION (Coordinates of	$r_{\text{ffcot}} = 20 \pm 21.70$		The on the true shows (15m or MSL)									
DRILLING AGENCY	11Sec 20 + 31.79	12. MANI	12. MANUFACTURER'S DESIGNATION OF DRILL									
HOLE NO. (As shown on -	drawing title	13. TOT	L NO. OF	OVER-	DISTURBED	U	NDISTUI	NBED				
end tile number Block	113 Hole 113-1		L NUMBE	RCORE	OXES	<u>i</u>		{				
Type of Concrete	: Interior	IS. ELE	ATION GR	OUND WA	TER							
DIRECTION OF HOLE		16. DAT	E HOLE	6-	22-82	1 COMP	23-82					
INCL	INED DEG. FROM	17. ELE	ATION TO	P OF HO	E 1237.	5						
DEPTH DRULED INTO I		18. тот	AL CORE P	ECOVER	FOR BORING							
TOTAL DEPTH OF HOLT	ε 17.17 ft.	19. SIGN	ATURE OF	INSPECT	OR							
ELEVATION DEPTH LEG	CLASSIFICATION OF M	ATERIALS	S CORE	BOX OR	(Drilling time	EMARKS	an den					
a b	c d		ERY •	NO. f	weathering,	etc., if a	ignifica	<i>າ</i> ບິ				
					Drilling	Reco	rd (f	+)				
237.5 0.0					Top of	Boring	9					
							X					
/E	Core Missing							ļ				
	/			[
	\land											
-]/			l									
236.15 1.35		······································	L		d. 1.35	Top o	f Cor	e				
	0											
Ē			1	}			1.7 -	-				
	0 3/4 in sin word			CODE								
			1	NO.1*								
			}		* 1250100	#2 o	n	Ę				
	6				core	1 #2 01		sic				
- In In	-							res				
	6		ł	468				dwo				
				15/			3.4_	Ŭ				
1233 8 3 7 5	loose 6 in. aggreg	gate		~	d. 3.7							
				<u>+</u>								
<u>−</u> ',	C Concrete is fresh.	. sound										
	and well consolida	ated. Max.		0005			4.2-					
	Aggregate size is	6 in. ically wall		NO 2								
	rounded with smoot	th surfaces		10.2				5				
	Paste is gray and	contains	l					ssi				
	C a rew volds. Some	rimming te but	ļ	69				pre				
-A	appears to be weat	thering.		5/4				l m				
1221 65 5 05	n			4	d. 5.85		5.7-					
1231.03-3.83	V			63				1				
	d. 5.85' to 7.15']	15/4								
	O Numerous small aim	r voids		1								
	.			CORE	l			1				
	C			10.5				j i				
.1230.35 7.15	d. 7.15		}	È pcs] '				
0E	Construction joint	τ, open. el. l in		ſ.								
1 -1.	U steel inbedded in	concrete.		_								
0 F) Honeycombed in ar	ea.	1	/47	1							
	0			145				1				
-1229.3 -8.2 In	d. 8.2 Break in corre			<u> </u>	4							
	D break in core.]]								
	x . l							{				
∩ Γ) '		1	1	0.0 b.l			1				
1228.5 9.0 C					4. 510			L				
1228.5 9.0 C			+	+		Conti		<u>. </u>				
1228.5 9.0 C			+			Contin	ued	4				

al segme

								NO. 110-1				
DRILL	ING LO	ຮຸ່ິ	VISION	BUNG	ATION		tion	SHEET	1 41 FE TS			
I. PROJECT			·····	10. SIZE	AND TYP	E OF BIT						
Grand C	oulee	Foreba	y Dam	11. DATE	M FOR E	EVATIO	SHOWN (TBM	or MSL)				
LOCATION	(Coordin	ates or Sta	Him)	L								
<u>Sta 110</u> 3. DRILLING	HUL 88	. Offs	<u>set 20 + 18.60</u>	12. MANUFACTURER'S DESIGNATION OF DRILL								
Contrac	t	_		13 TOTAL NO OF OVER. DISTURBED UNDISTURBED								
4. HOLE NO. and file ma	(As show mbed)	n on drawi	ng title	BURG	EN SAMP	LES TAK	EN					
-	Blo	<u>ck 116</u>	Hole no. 116-1	14. TOT	L NUMBE	RCORE	BOXES					
Type of	Concr	ete: I	nterior	15. ELEN	ATION G	OUND W	TER					
6. DIRECTIO	N OF HOL	E				1.97	ATED	COMPLETE	2 1			
VERTO		NCLINED	DEG. FROM VERT.			6/	29/82	1/2/8	2			
7. THICKNES	S OF OVE	RBURDE		17. ELEN	ATION TO	OP OF HO	LE 1297.5					
. DEPTH DE	HLLED IN	TO ROCK		18. TOT	L CORE	RECOVER	Y FOR BORING					
			0. 6 F	19. SIGN	ATURE OF	INSPEC	ror					
			CLASSIFICATION OF MATERIA		1 CORE	BOX OR	1	REMARKS				
ELEVATION	DEPTH	LEGEND	(Description)		RECOV-	SAMPLE NO.	(Drilling tim	e, water loss, de l. etc., il signific	pth of end			
<u> </u>	b	د _	d			+		<u> </u>				
						1	Drilling	Record (f	t.)			
1297.5	0.0						Top of C	ore -				
		0				+ • • • • •		<u> </u>				
	=		0.0 to 1.5 ft.			Core			ł			
		O	l¼ in. max. size aggre	gate		No. 1	1		F			
		$ \mathbf{O}^{+} $				-			4 t			
	-					178			; i			
		$ \mathcal{O} $				5/4	1		1			
1296 17	1 27	O^{\cdot}	Rehar			14			÷ t			
- 1270.1/		\sim	Nebal .				d. 1. 5		· •			
		C C				1_			i F			
		IQ L				Core		1.7	┼─── ┠			
	_	[°]				No. 2	[1			
		1 C							1			
		n l					ł					
		\mathbf{U}_{i}	Concrete generally wel	1					Б			
		\circ	consolidated, fresh, s	ound]	ļ		s l			
	_		6 in. max. size aggreg	ate.					e e			
		6	Typically well rounded	with		479			Ē			
		[]	smooth suffaces. Cemen	t		5/1			S I			
	-	ĽΟ	paste is gray, iew sca	tterea		14		34				
	_	\cap	reaction products or w	atd 1		1		5.4				
1293.67	3.83		filling material.	010					(F			
	-	Ň					d.4.0					
		n. C							1			
						No 2		4.2				
	L,	· 0				10. 5	1					
									1			
	_	~ 🖝	d.4.7 ft.]			_			
		0	1% in. air void				1		1 2 1			
	7	0				80			SS			
		1× 1				14	1		l i i			
		O				145						
		n ·				-			Ŭ			
		VR.						5.85 -	<u>├</u> ──-{			
	H	. 0				1						
1291.25	6.25	•	'z" void			┝ ─ ──	1		1			
		2.0				1	a.b.5	6.5				
		0	No visible constructio	n		Core	}					
		$ \cdot \mathbf{O} $	Joint at 7.0"			No. 4			i t			
		\cap]		J			J			
	1	Yn.				ļ						
									l g			
Í		\mathbf{O}^{\cdot}				i	ł		i i			
		Ň							e			
						81	ł					
		D				5/4	1					
		- n				145		8.2	1			
		L, UI					[
1280 7	_ 。 _		Bottom of Core actually	.			1					
1288 5	- 0.6	>>	8 8 fr	y		\square	1.9.0					
			and the second			· · · · ·	Bottom of	Hole 1				
						ļ		····· /	f			
						L			{			
MAR 71	1836	PREVIOU	IS EDITIONS ARE OBSOLETE.	- 7	PROJECT			HOLI	E NO.			
			(TRANSLUCENT)		Grand	Coulee	e Forebay	Dam '11	6-1			

Ref 1 Di

È.I E BRA

DE 1 11

€I I.;;##8

APPENDIX C

PHYSICAL TEST RESULTS

TABLE _____

SUMMARY OF RESULTS OBTAINED FROM TESTS PERFORMED ON 10-INCH-DIAMETER CONCRETE CORES (INTERIOR AND EXTERIOR) AT 10 YEARS OF AGE GRAVD, COULEE FOREBAY DAY

	7	7 7		1	· T	1		T								T				-	OPERTIES OF	HARDENED CO	NCRE TE		_				
		1	Elevation				0		Candia			Prope	rties of F	resh Concre	te			COI]	
NO.	1		l of	Location	LIFE		of		of	. 1041	Nex.	T -	C	-	Air			Court		REAGTH	COMPRESSIVE		Г —	1		ensile Test	10]	
	Sta.	1	Hole	in	15	Date	Core	Joint	Concret	e in	Aggr	Land	Pozzolan	CONTENT	Lontent	(In/yel)			(i&/m²)		STREWSTH	E × 104	RATIO	(16/1) ^h	Strengtl	5 X Area	of Brea	SAD	
	No.	Off-Set	(ft)	Dam	Block	prille	d (ft)	Elev.	Core		(in.	(1)	ib/wd3	1.000	(\$)		. 28-04	10-04T		I-YEAR	(10.00)	(lb/in ²)	L		16/in.	Disbonded	From En	Lab No.	Remarks
		<u> </u>		I	I	-	1	1					ļ	Exterior	Concrete				-	-			L ~	L			1		L
WD8-1-1	112+24.92	19+44.57	1311.0	Ving Dam B	11	6-7-82	8.0-11		Good Conc	nete	14	34	361/119_	183	4.4	150.5	4350				4830	5.40	.17	160				145/446	
WD8-1-2	1 -	-	-	-	1		11.3-	14.8 -	Good Conc	nete		T			T			1	1		5390	5.80	.17	158	1			447	
MDB-18-	3 112+22.92	19+36.57	1311.0	fing Dam B	TI	6-9-82	0.0-2		Good Conc	mete I	1)	34	361/119	183	1.4	150.5	4350	1	1	T	6665	6.35	.13	151	1			448	Petro Exam.
WD8-18-	ε "	-			1	-	2.6-4	. 1				-		1	1			-					1	1	1	T		452	
WD8-18-	F 4				1-1-	1.	4 1.5	-		-		1-			1	1				1		t		1			<u> </u>	453	
WD8-18-	F H	1.	1.	-	\uparrow	5-10-9	2 5 7.6	d		1		-		1	1	1			1	t				1	1	1	T	449	
W08-18-					1/2		6.0-8	.0 1304	Good Conc	ete	6	24	223/96	113	3.0	155.3	4245	1		<u> </u>		1		t	+	1	t	450	
V08-18-	-	1.	1		1	1	8 5-1	0.0	Good Conr	I.	-	1		-			1			1	4710	6.70	.16	158	<u>+</u>	1	t	454	Petro Exam
MD8-18-		—	1.		1 2	+.	10.00		Good Conc	I		1-		-				1	1	1	5480	6.05	14	167	1	t	t	451	
100-1a-	101+09	20+26.31	1309.45	trest of Daw		6-15-8	20.0-2	.8 -			14	33	431/143	201	5.4	149.3	5470	75.60	1	1	27980	18-23	<u> </u>	1-124	<u> </u>		5	455	t
100-14-	2 101+09	20+26 31	1309.45	Frest of Dam	1	5-15-8	2 2 8-5		· [ff	1	1 27	280/120	147	115	153.4	1 5110	fram.	1	1	Ente	6.40	16	100	f	f		456	f
100 2	101409	20426 31	1300.45	Frank of Dam	1;-	E 16		1 1202 1	·			1.	100/100		1		19778	1	1		1. 2023	8.40		133	<u>+</u>	t	t	457	
100 1	101409	20+26.31	1309.45	Frest of Dam		B-13-04	10.4-0	<u>a 1303.</u>	Cand Can	1. 1		20	201 (1 22	145	1	166.3	6100	66.30	7970	0040	4070	1	10	1.00				458	
1	4101-03	100000	1 1.002.13	PIESE OF DE	╎┈	P-10-04	10.2-0	· · · · · · · · · · · · · · · · · · ·	GOOD CONC	arse.	,	1.60	K01/166	L'atanian (13.3	130.3	13100	193/0	140	1 3694	193KU	1 21/2		12	† —	t	<u> </u>		·
106-1-1	103+97.6	20+27 45	1112.5	Frandat ion 8d	274	7-8-82	0.0-2	1		1 1	6	25	194/83	133	1 5	158 5	3690	1	+	+		<u> </u>		t		t		459	· · · · · · · · · · · · · · · · · · ·
106-1-2	103+97.6	20+77.45	1117.5		274	7-8-82	2 8.5	1	Good Coor	tere		1.2			1	t		+	t	t	5550	1 10	12	150	ł			460	<u> </u>
106-1-2	103+97 6	20477 45	1117.6	H	174/278	7 8.97	6 3 0	1110	Const la	L.		26	100/82	125	2.5	157 1	2205	4570			1 3300	1.10		155	60	75	t	461	t
109-1-1	106+07.9	20+31.63	1217.5	PSpection	11	5-18-02	2.3-0		1 20025- 29		¢	1 26	1 85 /80	127	118	154 8	1.105	1	6010		t	t			1 °°	1 - 13	t-"	462	1
109-1-2	106+07.9	20+31.63	1237.5	la lei I	1 11	6-18-82	2 3-4			11	•	1.5			3.0	1.04.0	+	+	1 0010	+	6270	1. 20		1 1/0	ł	t	<u> </u>	467	· · · · · · · · · · · · · · · · · · ·
109-1-1	106+07.9	20+11 63	1237 6		11/12	K-21-02	4 7.8	1 1220 0	Come lat			+	1	1	t		+	1	1	t	3410	3.20		120	41		-	463	
109-1-4	106+07.9	20+31.63	1237.5		112	5-21-82	8.7-11	1.5 -	Good Conc	ate 1	6	26	0 86/80	123	3.4	155.9	1	<u> </u>	6770	t	<u> </u>		<u> </u>	101	1.00			465	<u>+</u>
109-1-6	106+07.9	20+31.63	1237.5	1	12/13	5-21-82	113.5-1	55 1222	d			<u> </u>			1		1	1	3/10	+	t			1.12/	140.			465	
109-1-5	106+07.9	20+31.63	1237.5		13	6-21-82	15.517	1	Broke ago	nd brge	6	25	185/80	115	1.3	155.3	3165			+	3660	5.07	14	156	1	·		460	Ret an Case
113-1-1	108+04.2	20+31,79	1237.5	pspection	1 II	6-22-82	1.4-3.		Hostly mit	us I	6	25	187/81	111	3.9	156.5	34.30		.	t	4720	4 45	14	152	<u> </u>			468	PECTU EXAM.
113-1-2	1.	1		harrery	11	6-22-B2	1.7-5.	4	Good Conci	te l	·	1.2	10//01		1	1	1	+	+	+ · · · ·	4420	4 90	24	166	<u> </u>			460	
113-1-54				-	11	6-23-82	5.9-7.	2		F		t				t	1	t	t	t					ł			420	
113.1.5	-	-		-	1.7	\$ 73.92	7 2.9	2 1220 2	-i		4	25	102/90	116	110	162.2	†	T	5490	t		t			t			471	
113-1-3	•	1 -		•	12	6-23-82	8.2-11	1 . <u></u>	Good Conci	t	9	- 63	193700		1		+	1	1	t				155	1	t		4/1	<u> </u>
113-1-4	•	1 .			12	6-23-82	11.4-14	1 .	Good Conce	ate 1		t	t	t	t	h	t	1	t	†	6020	4 00	16	1.00	184-	1 ^{BU}	1-176	472	
113-10-1	108+06.14	20+31.79	1237.5	inspection	1	k-22.02	0.0-1	1	1	F		+ >r	0.1/01	1	1	1000	2420	<u> </u>	t	t	- 3020	<u></u>		- ³² -	t	t		473	t

1.First No. is block number in dam, second is Hole No., third is Core No. 2.All cores drilled vertically. 3.E - Extra (no Core No.).

1 -

TABLE (CONTINUED)

														GRADUL CI	NASE F	ת ענגדבר	<u>112</u>												
		1	Flevation		T			1	T											PR	OPERTIES OF H	ARDENED CO	ICAE TE						Γ
			Top		1		Depth		Conditio	m	P P	ropert	ies of Fre	sh Concrete	•			cen	TROL CYL	- 02 99		CONC							
CORE NO.			of	Location	Life	1	of	1	of.		Hex.	I	6	Madan	1 41.	T					-				L	ensile_lesi	L		
	Sta.		Hole	1 .12	110	Date	Core	Joint	Loncrete	10	Şize	ا سما	Pozzolan	Content.	Content	Densita	L		(16-14-3)		at menatu	E X ID4	POISSON'S	DENDITY	trength	X Area	A SPECIAL	SAD	
	M0.	Off-Set	1	Uan	PIOCK	arit eq	1	Liev.			1792	1 (1)	1b/yd	(1b/yd ³)	(*)	(16/yd ³)	28-Day	NO-DAY	100-0AV	I-TEAR	(16/14/1	(lb/m ²)			16/1n.2	Disbonded	TTOM LING	Lab No.	Remerks
113-14-2	108+96.14	20+31.79	1237.5	Gallery	T II	6-24-8	21.3-3.	6				T						—			5260	4.80	. 16	151			L	145/475	
113-1a-3					11	6-24-8	2 3.6-5		Good Cond	ete	1	1		1	- ^		T		1		4470	5.00	.23	156				476	
113-14-4	108+06.14	20+31.79	1237.5		111	6-24-8	\$.6.7.	6	1	1	t	t			1		1		1	· · · · ·								477	
+16-1-1	110+01.88	20+18.60	1297.50	ate Chamber Gallery	3	6-27-8	2 0.0-1				6	24	230/97	121	3.0	157.9	4850	t	1		1			1			1	478	
116-1-2	•				3	6-30-8	1.3-3		Broke ar	and Tar	de -	t		T	1				1		4960	6.72	0.25	157				479	
116-1-3			1		3	7-1-82	3.8-6		Good Com	rete		1		1	1		1		1	T	5540	5.91	0.21	155				480	
116-1-4	-	•	1		3/4	7-2-82	6.3-8	B 1290.	Constr.	bint	6	25	189/79	126	3.0	153.9	4110		1		T			153	260	50	1.0	481	
118-2-1	111+43.48	20+31.56	1237.5	Inspection Gallery	11	6-24-82	2 0.0-1		1	<u> </u>	6	25	186/81	127	3.2	154.8	1		5280									482	
118-2-2	-	•	-	•	11	6-24-82	2 1.5-3	. 2	Good Com	rete	1	T			1				I		4940	6.20	0.22	158				483	
118-2-3	-		-		111	6-2-8	2 3.2-5	. s	Good Con	rete		T			T	[1	I —		5040	5.80	0.11	158				484	
118-2-4	•		-	•	11/12	6-25-82	2 5.6-8	1 1230.		T		1				[1	1	I —									485	
118-2-5		•	-	•	12	6-25-82	2 8.7-10	0			6	26	191/82	130	3.1	156.0	I	[6260									486	
118-2-6		•			12	6-25-82	2 10.7-1	3 2	of agg. m	Platt	Ce N				Γ.			I		L				159	200	40	1.0	487	
118-2-7	-		-	•	12	6-25-82	213.2-1	0 1222.	Slarge agg	egate		Γ					L	· · · ·			5680	6.58	0.22	162				488	Petro Exam.
119-2-1	111+89.88	21+04.97	1155.0	Forebay Da	t 22	7-7-82	0.0-2.	5	Large agg	agat tino	6	24	225/94	121	1.9	158.4	4890	6385	7770	6210	4970	5.62	0.21	152				489	
119-2-2	-	-		Forebay Dep	t 22	7-7-82	2.5-5.	6	Large 199	agate	[Γ			Ι						4980	5.90	0.20	157				490	
119-2-3	-		-		22/23	7-7-B2	5.6-8.	6 1147.	E		6	24	254/65	125	2.5	154.1	4790	6430	7055	8160				158				491	Sliding Friction
120-1-1	112+40.36	20+20.33	1117.50	ratinage Gal-	27	7-6-82	0.0-2.	2	Andregate	us 13-1	6	25	189/83	137	2.4	156.4	3450	[4790	5.76	0.19	151				492	
120-1-2			-	lery.	27	7-6-82	2.2-3.	9				L			1					L								493	_
120-1-3	-	•	-		27	7-6-82	3.9-5.	8		1		L																494	
120-1-4	<u> </u>	•		•	27	7-7-82	5.8-8.	3 1110.	bottom o	core														157				495	Recurned for
									1						L		[L											Sliding Friction
			L		L		I		L	L	l	L		L	L		L												
						L	I		L	L		L			L		L	L											
			L			1	1	1	1	1		1		L	l		I												
L	L	L		L	I	I	I	1	l	L	L	L		L	l		I	I		L							L		
	i				I	L	ł			l	L	L		L			I	L											
	L		 		I		L		↓	l	L	I		l	·		Į									·			
					ļ	1	_		ļ	L		L			I		I												
		L			I	 	_		L	I		1_		l															
			1			1	1	1	1	1	i											I							

a. -7 APPENDIX D

CURSORY PETROGRAPHIC REPORTS

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam
BORING NO. WDB-1 Block
TYPE CONCRETE: Exterior
COMPRESSIVE STRENGTH: (PSI) 4830
SAD LABORATORY NO. 145/446
DEPTH (FT.) <u>92 -10.9</u> Core No. 1

CONE

REMARKS:

Explosive break. Broke across large 6 in. aggregate particle (see photograph). Trapped air voids up to 3/8" in. visible in sockets of large aggregate particles. Cement matrix appears normal. No visible reaction products. Bond failure typical around larger coarse aggregate particles, however, many of the smaller coarse aggregate particles broke through. Percent of fractured particles estimated to be between 5-10%. Aggregate particles greater than 3 in. represent about 30% of total area of fracture surface. Coarse aggregate typically well rounded with smooth surfaces.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Da	m	
BORING NO. WDB-1 BLOCK		
TYPE CONCRETE: Exterior		
COMPRESSIVE STRENGTH: (PSI) 5390		
SAD LABORATORY NO. 145/447		
DEPTH (FT.) 12.9-14.6 CORE NO.	2	

SHEAR

REMARKS:

Explosive break. Well consolidated. No honeycombing or excessive trapped air. Cement matrix normal, no visible reaction products or deterioration. 10-15% coarse aggregate particles $(1-l_2^{1}$ in.) broke across. 10% of coarse aggregate pieces larger than 3 in. Coarse aggregate typically well rounded with smooth surfaces. Few subangular pieces.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay DamBORING NO: WDB-1BLOCKTYPE CONCRETE: ExteriorCOMPRESSIVE STRENGTH (PSI) 6665SAD LABORATORY NO. 145/448DEPTH (FT.) 0.8-2.5CORE NO. 3

REMARKS:

Explosive break. Relatively good bonding characteristics - abundance of particles broken through (estimate 40%). Few aggregate pieces larger than 1 inch. Cement matrix appears normal - no visible reaction products. No pieces larger than 3 in. Coarse aggregate typically well rounded with smooth surfaces.

... I 20 mma

CONE

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam
BORING NO. WDB-1b BLOCK
TYPE CONCRETE:Exterior
COMPRESSIVE STRENGTH (PSI) 5480
SAD LABORATORY NO. 145/451
DEPTH (FT.) 10.1 - 11.6 CORE NO. 5

REMARKS:

Explosive break. A few large 6 in. pieces. Break occured through a 6 in. quartzite aggregate as well as around other large ones. Nature of break dictated by larger aggregate pieces. About 25% of pieces larger than 3 in.-about 10% broken through. Cement matrix normal. No reactions or signs of deterioration. Coarse aggregate typically well rounded with smooth surface texture.

SHEAR SPLIT

54

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:Grand Coulee Forebay DamBORING NO.WDB-1bBLOCKTYPE CONCRETE:ExteriorCOMPRESSIVE STRENGTH (PSI)4710SAD LABORATORY NO.145/454DEPTH (Ft.)8.3-9.7CORE NO. "Extra"

CONE SHEAR

REMARKS:

Explosive break. Cement matrix normal, no reactions or excessive voids in sockets. Particles greater than 3 in. represent about 15% of exposed surface. About 10% of coarse aggregate pieces broken through. Coarse aggregate shape is well rounded with smooth surfaces.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam
BORING NO. 100-1a BLOCK: 100
TYPE CONCRETE: Exterior
COMPRESSIVE STRENGTH (PSI) 4920
SAD LABORATORY NO. 145/458
DEPTH (Ft.) <u>6.4-8.0</u> CORE NO. 3

REMARKS:

Explosive break. Well rounded coarse aggregate $1\frac{1}{2}$ in. maximum size. Break occured mostly around particles. Only about 5% broke through. No coarse aggregate particles over 3 in. in size. Cement matrix normal, no excessive trapped air voids or reaction products noted.

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee	Forebay Dam
BORING NO. 106-1	BLOCK 106
TYPE CONCRETE: Exterio	or
COMPRESSIVE STRENGTH (H	PSI) 5560
SAD LABORATORY NO. 145	5/460
DEPTH (Ft.) 3.4-5.0	CORE NO. 2

REMARKS:

Explosive break. Coarse aggregate well rounded with smooth surfaces. Maximum size up to 3 in. Cement matrix normal, no excessive air in sockets, no visible reaction products or deterioration. About 10% of coarse aggregate pieces broke through. Only about 5% are 3 inches in size or larger.

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee	Forebay Dam
BORING NO. 106-1	BLOCK 106
TYPE CONCRETE: Interi	or
TENSILE STRENGTH (PSI)	60
SAD LABORATORY NO. 14	5/461
DEPTH (Ft.) 6.0-7.7	CORE NO 3

REMARKS:

This core contains several large coarse aggregate particles which dictated break as shown in the photograph below. Note trapped air voids in sockets (right piece in photograph is botton segment). Cement matrix looks normal. Less than 1% of aggregate broke through. Pieces over 3 in. in size make up about 40% of exposed surface. Coarse aggregate typically rounded with smooth surfaces.

TENSION BREAK.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand	Coulee Forebay Dam
BORING NO. 109-1	BLOCK 109
TYPE CONCRETE: II	nterior
COMPRESSIVE STREE	NGTH (PSI) 5270
SAD LABORATORY NO	0. 145/463
DEPTH(Ft.) 2.5-4	4.2 CORE NO. 2

REMARKS:

Explosive break. Only about 2% of coarse aggregate particles broke through. About 15% of pieces are 3 in. or greater in size. Two large sockets remained in the intact core after testing. These did not have excessive trapped air voids. Cement matrix appears normal. No reaction products or signs of deterioration noted. Coarse aggregate pieces generally well rounded with smooth surfaces.

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: 0	Frand	Coulee	Forebay	Dam	
BORING NO.	145/4	64	BLOCK:	109	
TYPE CONCRE	ETE:	Interio	r	-	
TENSILE STR	RENGTH	(PSI)	45		
SAD LABORAT	ORY N	o. 145/	464		
DEPTH (Ft.)	6.2-	7.9	CORE NO		3

REMARKS:

This core broke in tension close to the bottom where $1\frac{1}{2}$ to plus 3 in. aggregate pieces were numerous. Numerous sockets left by the rounded coarse aggregate particles appear in the photograph below. Note moderate amount of trapped air voids and numerous rounded pieces. Only one aggregate particles broke. The cement matrix appears normal, no reaction products were noted. The voids were clean. About 50% of fracture surface appears to be 3 in. or larger.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand Coulee	Forebay Dam		
BORING NO	. 109-1	BLOCK 109		
TYPE CONC	RETE: Interio	or		
COMPRESSI	VE STRENGTH (1	PSI) 140		
SAD LABORATORY NO. 145/465				
DEPTH (Ft	.) 9.0-11.0	CORE NO. 4		

REMARKS:

Core pulled apart about 0.4 ft. from bottom. Only a small percent (\sim 2) of the coarse aggregate pieces broke apart in the test. About 20% of the coarse aggregate appears to be 3 in. or larger (see photograph). Core piece on right in photograph is the bottom portion. Note small amount of trapped air voids in sockets (this would be the bottom of the coarse aggregate pieces). Since more matrix and a greater quantity of smaller particles are present, the tensile strength is higher than most of the cores tested in tension.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand C	oulee	Foreba	y Dam	1
BORING NO.	109-1		BLOCK	109	
TYPE CONCE	ETE: In	terior			
COMPRESSIV	E STREN	GTH (P	SI) 3	660	
SAD LABORA	ATORY NO	. 145/	467		
DEPTH (Ft.) 16.0-	17.7	CORE	NO.	5

REMARKS:

Explosive break. Bond failure around larger coarse aggregate particles common (sæ photograph). On fracture surface these represent about 15% of the surface area. Trapped air voids common but not excessive. When present they are clean. Cement matrix looks normal - no reaction or alteration products noted. Percent of fractured coarse aggregate particles small (about 2%).

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam				
BORING NO. 113-1 BLOCK 113				
TYPE CONCRETE: Interior				
COMPRESSIVE STRENGTH (PSI) 4720				
SAD LABROATORY NO. 145/468				
DEPTH (Ft.) 17.7-3.4 CORE NO. 1*				

REMARKS:

Explosive break. About 10% of coarse aggregate pieces broke across (sheared) during test. There were no pieces 3 in. or larger in size. Coarse aggregate well rounded with smooth surfaces. Cement matrix looks normal. No reaction or alteration products noted. Voids are clean.

labeled No. 2 on core in error.

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam
BORING NO. 113-1 BLOCK: 113
TYPE CONCRETE: Interior
COMPRESSIVE STRENGTH (PSI) 4420
SAD LABORATORY NO. 145/469
DEPTH (Ft) 4.2 - 5.7 CORE No. 2

REMARKS:

Explosive break. Very small percent (5%) of broken coarse aggregate particles. Aggregate 3 in. or larger represents about 10% of fracture surfaces. Cement matrix appears normal - no visible reaction or deterioration products. No excessive voids but when present they are clean. Coarse aggregate is typically well rounded with smooth surface.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee	Forebay Dam				
BORING NO. 113-1	BLOCK 113				
TYPE CONCRETE: Interior					
TENSILE STRENGTH (PSI)	80				
SAD LABORATORY NO. 145/472					
DEPTH (Ft.) 9.2 - 10.9	OCORE NO. 3				

REMARKS:

Core contains an abundance of large (> 3 in.) coarse aggregate particles. Core broke in tension at bottom about 1-2 in.from steel plate. The photograph shows areas of epoxy failure and abundance of large aggregate. Large aggregate particles cover about 40% of fracture surface. Note yellow brown weathered particle and smooth sockets in photograph.

RSOTY PETROGRAPH EXAMINATION

PROJECT:Grand Coulee Forebay DamBORING NO.113-1BLOCK113TYPE CONCRETE :InteriorCOMPRESSIVE STRENGTH (PSI)5020SAD LABORATORY NO.145/473DEPTH (Ft.)12.0 to 13.7 CORE NO

REMARKS

Explosive break. Some large coarse aggregate particles (about 15%) are present. These left smooth sockets. Air voids were not abundant but when present they were clean and free of reaction products. Only about 5% of the coarse aggregate particles broke (sheared) during the test. Cement matrix appears normal.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand	Coulee	Forebay	7 Dam
BORING NO.	113-1	a	BLOCK 1	.13
TYPE CONCE	ETE:	Interio	or	
COMPRESSIV	E STRE	ENGTH (I	PSI) 526	0
SAD LABORA	TORY N	10. <u>145</u> /	475	
DEPTH(Ft.)	1.7 t	0 3.4	CORE NO). 2

REMARKS:

Explosive break. Well consolidated, sound concrete. Cement matrix appear normal. No evidence of reaction products or concrete deterioration. About 5% of coarse aggregate is 3 in. or larger. About 10% of the exposed aggregate are fractured or sheared. Few angular coarse aggregate particles but most are well rounded with smooth surfaces.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT :Grand Coulee Forebay DamBORING NO.113-1aBLOCK 113TYPE CONCRETE:InteriorCOMPRESSIVE STRENGTH (PSI)4470SAD LABORATORY NO.145/476DEPTH (Ft.)3.9 to 5.4CORE NO.

REMARKS:

Explosive break. Sound well consolidated concrete. No evidence of concrete deterioration or reaction products. Cement matrix appears normal. Aggregate well rounded with smooth surfaces. Pieces 3 in. or larger represent about 20% of exposed fracture furface. About 5% of aggregate (all sizes) particles sheared.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand Coulee	Forebay Dam
BORING NO.	116-1	BLOCK 116
TYPE CONCR	ETE: Interio	or
COMPRESSIV	E STRENGTH (I	PSI) 4980
SAD LABORA	TORY NO. 145	/479
DEPTH (Ft.) 1.7 to 3.4	CORE No. 2

REMARKS:

Explosive break. Numerous large sockets on intact core. Aggregate pieces 3 in. or larger make up about 25% of fracture surfaces. These are typically well rounded in shape. Only about 2% of the aggregate broke (sheared) during the test. The cement matrix appears normal. No gel or deterioration noted. Note smooth sockets on core outer surfaces.

CONE

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand	Coulee	Forebay	Dam
BORING NO.	. 116-	1	BLOCK:	116
TYPE CONCI	RETE:	Interio	or –	
COMPRESSI	/E STRE	NGTH (F	PSI) 554	40
SAD LABOR	ATORY N	0. 145/	480	
DEPTH (Ft.	.) 4.2	to 5.8	CORE NO.	. 3

REMARKS:

Explosive break. About 10% of coarse aggregate 3 in. or larger. Aggregate shape is well rounded. Aggregate surfaces are typically smooth. Few subangular particles. About 2% of particles sheared in test. Cement matrix appears normal. No excessive air or trapped air around aggregate. Concrete well consolidated.

CONE

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand Coulee	Forebay Dam
BORING NO.	116-1	BLOCK 116
TYPE CONCE	RETE: Interior	<u> </u>
TENSILE ST	RENGTH (PSI)	260
SAD LABORA	TORY NO. 14	5/481
DEPTH (FT.) 6.5 to 8.2	CORE NO. 4

REMARKS:

Core broke in tension near bottom where attached to steel plate. Reddish brown area in photograph is where the epoxy-concrete bond failed. Core contains an abundance of $l_2^{l_2}$ in. and smaller aggregate particles. About 10% of aggregate sheared in test. On fracture surface one 3 in. piece of aggregate is exposed. This piece makes up about 10% of surface area. No excessive air in sockets- Cement matrix appears normal.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Co	ulee Forebay Dam
BORING NO. 118-2	BLOCK 118
TYPE CONCRETE: In	terior
COMPRESSIVE STRENG	TH (PSI) 4940
SAD LABORATORY NO.	145/483
DEPTH (Ft.) 1.6 to	3.0 CORE No. 2

REMARKS:

Explosive break. General trend to break around larger coarse aggregate particles. Sockets have a moderate amount of trapped air voids. Note large sockets in photograph. Estimate about 15% of aggregate is 3 in. or larger. Cement matrix appears normal. No gel exduations or concrete deterioration noted. Sheared broken aggregate is about 10% of aggregate pcs.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:Grand Coulee Forebay DamBORING NO.118-2BLOCK118TYPE CONCRETE:InteriorCOMPRESSIVE STRENGTH (PSI)5040SAD LABORATORY NO.145/484DEPTH(Ft.)3.4 to5.1CORE NO.

REMARKS:

Explosive break. Core contains an abundance of l_2^1 in. to 3 in. coarse aggregate particles. These are usually well rounded with smooth surfaces. About 15% of the aggregate exceed 3 in. in size on fracture surfaces. Sheared, fractured pieces are about 10%. Cement matrix normal - no signs of deterioration or chemical reactions (e.g., siliceous gel, etc.

CONE

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand Coulee	Foreba	y Dai	n
BORING NO	. 118-2	BLOCK	118	
TYPE CONC	RETE: Interior			
TENSILE S'	IRENGTH (PSI)	200		
SAD LABOR	ATORY NO. 145	/487		
DEPTH (Ft.	.) 11.3 to 13	.0 CORE	NO.	6

REMARKS:

Epoxy - concrete bond failure occured near bottom of core where attached to steel plate. Reddish brown area is the epoxy on steel plate (see photograph below). One large coarse aggregate piece on fracture surface covers about 10% of area. Only about 2% of the aggregate broke across. Sockets contain a few trapped air voids. Cement matrix appear normal. No exudations or signs of deterioration.

Shaded area remained glued to bottom plate.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam				
BORING NO. 118-2 BLOCK 118				
TYPE CONCRETE: Interior				
COMPRESSIVE STRENGTH (PSI) 5680				
SAD LABORATORY NO. 145/488				
DEPTH (FT.) 14.0 to 15.7 CORE No. 7				

REMARKS:

Explosive break. Some large (about 20%) coarse aggregate pieces are present. Break occured around most of these but also through one 4 in piece. Sheared broken pieces represent about 15% of total aggregate exposed. Some sockets contain moderate amounts of trapped air voids. All are clean, that is, they have the color of normal cement No signs of concrete deterioration.

CONE SHEAR

CURSORY PETROGRAPHIC EXAMINATION

PROJECT:	Grand	Coulee	Foreba	ay Da	m
BORING NO.	119-	-2	BLOCK	119	
TYPE CONCR	ETE:	Interio	or		
COMPRESSIV	E STRE	ENGTH:	4970		
SAD LABORA	TORY N	lo. 145	5/489		
DEPTH (Ft.) 0.3	to 2.0	CORE	No.	1*

REMARKS:

Explosive break. Core sheared about 68[°] from the horizontal. Large coarse aggregate at top dictated break. Concrete is sound and well consolidated. Matrix appears normalno excessive air. Percent of sheared, broken aggregate about 2%; pieces 3 in. or larger make up about 5% of exposed fracture surface.

*Extra Core.

SHEAR SPLIT

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: Grand Coulee Forebay Dam
BORING NO. 119-2 BLOCK 119
TYPE CONCRETE: Interior
COMPRESSIVE STRENGTH (PSI) 4980
SAD LABORATORY NO. 145/490
DEPTH (Ft.) 3.3 to 5.0 CORE NO. 2

LARGE COARSE AGGREGATE

REMARKS:

Explosive break. Large coarse aggregate at top appears to have dictated fracture pattern. 15-20% of exposed aggregate is 3 in. or more in size. It is estimated that 30% of the aggregate sheared or broke across particle. Aggregates well rounded with smooth surfaces. Cement matrix appears normal - no excessive trapped air or signs of deterioration.

CURSORY PETROGRAPHIC EXAMINATION

PROJECT: _	Grand Co	ulee	Foret	bay Da	m
BORING No.	. 120-1		BLOCK	120	
TYPE CONCE	RETE: Inte	erior			
COMPRESSIV	/E STRENC	STH (P	SI)	4790	
SAD LABORA	ATORY NO.	145/	492		
DEPTH (Ft.	.) 0.2 to	1.9	CORE	NO.	1

REMARKS:

Explosive break. This core contains abundant aggregate $l_2^{l_2}$ in. and below. Only a few larger than $l_2^{l_2}$ in. None 3 in. or larger. About 2% of aggregate broke across or sheared during test. Aggregates generally subangular to well round. No signs of concrete deterioration or gel exudations. Concrete sound.

APPENDIX E

1.1 I AN

REPORT OF PETROGRAPHIC ANALYSIS

25 October 1984

SADEN-FL

DEPARTMENT OF THE ARMY SOUTH ATLANTIC DIVISION LABORATORY, CORPS OF ENGINEERS 611 SOUTH COBB DRIVE MARIETTA, GEORGIA 30060

PETROGRAPHIC REPORT GRAND COULEE FOREBAY DAM, WASHINGTON 10-Year Core Study

Project: <u>Grand Coulee Forebay Dam</u> Performed For: <u>Concrete and Structural Branch</u> <u>Engineering and Research Center</u> <u>Bureau of Reclamation</u> SAD Work Order No. <u>3710</u> SAD Lab. No. <u>145/448, 454, 467, 488</u> Interagency Agreement D-1511

SUMMARY

The concrete from two interior and two exterior concrete cores used in the unconfined compression tests and examined in this study appeared to be of good quality. The coarse and fine aggregates are sound and dense for the most part although the coarse aggregate is typically well-rounded in shape with smooth surfaces. Mode of failure in the compression tests was usually paste-aggregate bond failure. The low strengths recorded in the compression tests were usually due to bond failure around large coarse aggregate particles.

No evidence of chemical attack or alkali-silica reaction between aggregate and cement was found.

Prepared by: Ray Willingham Rev

Reviewed by: Lane Tison

E-1

. . .

INTRODUCTION

1. This is the report of the petrographic analyses conducted on four ten-inch (255 mm) diameter concrete core specimens from Grand Coulee Forebay Dam, Grand Coulee, Washington. This examination is part of the ten year concrete evaluation program being conducted by this laboratory in connection with an interagency agreement (D-1511) between the Bureau of Reclamation* and U.S. Army Corps of Engineers, South Atlantic Division Laboratory.

2. The four cores examined represent mass concrete from the interior and exterior concrete as stipulated in the interagency agreement. These are identified in Table 1 below:

TABLE 1

SPECIMENS SELECTED FOR PETROGRAPHIC ANALYSES

SAD Lab No.	Bureau Designation	Location	Depth (ft.)	Type of Concrete (Exterior or Interior)
145/448	WDB-1b, Core No. 3	Sta. 112+42.92 Offset 19+36.57	0.8-2.5	Exterior
145/454	WDB-1b, Extra Core	Sta. 112+42.92 Offset 19+36.57	8.3-9.7	Exterior
145/467	109-1, Block 109, Core No. 5	Sta. 106+07.91 Offset 20+31.63	16.0-17.7	Interior
145/488	118-2, Block 118, Core No. 7	Sta. 111+43.48 Offset 20+31.56	14.0-15.7	Interior

*Engineering and Research Center, Division of Research

E-2

3. The concrete cores listed in Table 1 were selected based on their performance in the unconfined compressive (UC) tests. Concrete cores with the highest and lowest compressive strengths representative of both exterior and interior concrete were examined. For example, specimen 145/448 had the highest UC strength whereas 145/454 had the lowest of all the exterior concrete cores tested. A total of 28 concrete cores were tested. It should be noted that only seven cores representative of exterior concrete were used in the UC tests whereas 16 interior concrete cores were tested in compression. Six cores were also tested in tensile strength. The inequity in number is due essentially to a lack of exterior concrete submitted in the original sample.

PURPOSE AND SCOPE OF EXAMINATION

4. The primary purpose of this study was to describe in detail the concrete cores tested in UC and listed in Table 1 using petrographic techniques proposed in ASTM C 856*. Secondary in importance was to determine if variations in the compressive strengths were the result of concrete quality (e.g., excessive air, alkali-silica reaction, etc.).

E-3

^{*}Standard Recommended Practice for "Petrographic Examination of Hardened Concrete".

SADEN-FL

5. To accomplish the above, the following techniques were employed:

Visual Examination Stereomicroscopic Examination Thin Section/Grain Mount Study (Polarizing Microscope) X-Ray Diffraction Analysis

DETAILED FINDINGS

Coarse Aggregate

6. The coarse aggregate used in this structure is from natural river deposits. These are typically clean, hard, dense, well rounded coarse aggregate particles with smooth surfaces. Maximum size of aggregate was 6-inches (152 mm). Most are fresh although a few weathered and surface weathered pieces were noted. Often the weathering appears as thin light or dark rims on particle surfaces.

7. A wide variety of igneous and volcanic rock types make up the bulk of the aggregate, however, dark gray to black rock particles are more prevalent. These are glassy basalts which are typically dense, sound rocks. However, a few vesicular types are present. Other rock types noted were granite, quartzite, gneiss and some sedimentary varieties.

8. The coarse aggregate being essentially round in shape tends to separate from the cement paste when tested to failure in

E-4

compression, that is, the concrete core broke around the coarse aggregate particles more often than through them. This was the general trend especially when large aggregate pieces were present in the test specimens. However, there were several exceptions. Aggregate sockets contained some trapped air voids but these were not excessive in quantity or size. The smaller aggregate particles broke through more frequently. This usually resulted in higher strengths for these cores with higher percentages of smaller particles.

9. The concrete cores do not appear to have an abundance of a particular size range, that is, there was no deficiency of sizes. This is also true of the concrete cores as a whole. The interior concrete cores contained aggregate pieces up to six inches (152 mm) in size. Maximum size of coarse aggregate in exterior concrete was typically 1½-inches (38 mm). However, specimen WDB-1b (d. 8.3-9.7) contained a large coarse aggregate piece approximately five inches in size*. In general, grading of coarse aggregate appeared normal. There was no honeycombing or excessive trapped air voids surrounding coarse aggregate particles. A summary of the concrete core UC strengths and general mode of failure appears in Table 2.

10. From the petrographic viewpoint a couple of coarse aggregate

E-5

^{*}Maximum size of coarse aggregate in exterior concrete is reported to be $l\frac{1}{2}$ -inch.

TABLE 2 SUMMARY OF CONCRETE COMPRESSIVE STRENGTHS AND MODES OF FAILURE

Bureau Designation	SAD Lab No.	Compressive Strength (PSI)	Type <u>Concrete</u>	Nature of Break	Features Associated with Failure
Hole WDB-1b, Core No. 3 (d. 0.8' to 2.5')	145/448	6665	Exterior	Explosive Break, cone-shaped.	Relatively good bonding- abundance of particles broken through. Few agg- regate pieces larger than l-inch.
Hole WDB-lb, Extra Core (d. 8.3' to 9.7')	145/454	4710	Exterior	Explosive Break, cone-shear.	Bond failure - broke around large coarse aggregate particles. 10 - 15% of particles broken through. Abundance of l½-inch and down (coarse aggregate pieces). No excessive air in sockets.
Hole 109-1, Block 109 Core No. 5 (d. 16.0' to 17.7')	145/467	3660	Interior	Explosive Break, cone shear.	Bond failure - numerous sockets - broke around most of larger particles. Low strength due to bond failure around 6-inch stone near center of core.
Hole 118-2, Block 118 Core No. 7 (d. 14.0' to 15.7')	145/488	5680	Interior	Explosive Break, cone shear.	Generally good bond. Broke across some large coarse aggregate particles. No excessive air in sockets.

68

E-6

周

-

1. 11.000

rock characteristics were noted that warrant mentioning. One was the presence of natural glass in the basalts. These rocks contain an abundance of brown natural glass. The index of refraction was found to be less than 1.57. Glasses, having an index of refraction lower than 1.57, are considered potentially reactive with "high alkali" portland cement. Also in recent years rocks containing strained quartz (quartz grains exhibiting undulose extinction in polarized microscopic light have been recognized as potentially alkali-silica reactive. Dolar-Mantuani's¹ technique for measuring the extinction angle is used. A few rock particles were noted during the thin section study that contained strained quartz (e.g., the quartzites). No extinction angles were recorded since an insignificant number of particles were observed. Since low alkali cement was used in this structure, strained quartz should not be a problem.

11. Both of the characteristics mentioned often warrant the use of low-alkali and/or a pozzolan according to our criteria. Since Type II low-alkali cement and Class F pozzolan were used in the structure, it was interesting to note that no reactions (formation of alkali-silica gel, rimming, etc.) were noted in this ten year old concrete.

¹Dolar-Mantuani, L.M.M., "Undulatory Extincion in Quartz Used for Identifying Potentially Alkali-Reactive Rocks," Proceedings of Conference on Alakli-Aggregate Reaction in Concrete, Capetown, S. Africa, 1981, paper No. S252/36, 6pp.

12. In paragraph 6 the presence of dark rims on coarse aggregate particles was mentioned. This feature was noted on a few coarse aggregate particles. Rims can be an indication of alkali-silica reaction if it can be assumed with some degree of accuracy that they formed after placement of the concrete. Rims can also be a result of weathering prior to placement. The rimmed particle shown in Figure 1 is the result of oxidation of the iron bearing carbonate mineral (probably ankerite) which is scattered throughout this particular rock particle.

Fine Aggregate_

13. The fine aggregate particles appear to be essentially from natural sources. Rock types noted in the coarse aggregate examination also make up the bulk of the fine aggregate population. Individual mineral grains (e.g., quartz and feldspar) make up a significant portion of these grains. Shape varies from round to angular and in general the fine aggregate particles are clean, sound, and fresh. Distribution and grading appear satisfactory.

Cement Paste

14. The cement paste or matrix is uniformly gray and in general good quality. There was no evidence of mottling or gradational color changes. Slight concentrations of calcium hydroxide were noted along the undersides of a few coarse and fine aggregate

E-8

particles which is considered normal. Relict cement grains were noted in the stereoscopic examination along with dark spheres (flyash) and other residual grains. Examination of several concrete thin sections revealed the presence of partially hydrated cement grains (alite, $C_{3}S$ and belite, $C_{2}S$), flyash (hollow and solid spheres), scattered calcium hydroxide crystals and some calcium carbonate. X-ray diffraction analysis of cement concentrates indicated a number of normal compounds present. Besides the constituents noted in thin section, a few normal compounds, mainly hydrated calcium aluminate and carboaluminate were detected. In summary no unusual compounds or deterioration products with exception of calcium carbonate were noted. Some calcium carbonate, in this case calcite, is considered normal due to carbonation. No evidence of sulfate attack or alkali-silica reaction was noted.

Air Voids

15. There were no areas or zones in the cores with excessive air (entrained or trapped). Air voids under particles were normal but in most all cases these were not excessively large nor numerous. Shape of entrained air was essentially spherical, however, trapped air varied from spherical to ellipsoidal. Most all air voids present in the concrete cores were clean and there was no color difference between voids and mortar or any reaction products.

E-9

16. The air-void content, specific surface and spacing factor were determined by microscopical examination (using the Modified Point Method, ASTM C 457). The concrete slabs that were subsequently polished and used in this part of the study were cut parallel to the placed concrete. The results appear in Table 3 below.

TABLE 3

MISCROSCOPICAL DETERMINATION OF AIR-VOID PARAMETERS*

SAD Lab. No.	Hole No.	Depth (ft.)	<u>Air**</u>	Specific Surface	Spacing Factor
145/448	WDB-1b	2.7	6.55	16.610	0.201
145/454	WDB-1b	8.0	3.52	16.949	0.358
145/467	109-1	17.9	7.12	14.803	0.185
145/488	118-2	15.9	6.89	13.976	0.157

*Values in millimeters, 50X magnification. **Entrained and Trapped Air.

17. There appears to be no correlation between the amount of air in the cores and their compressive strengths. The failure in most all cases, as mentioned previously, was bond failure around coarse aggregate particles. This mode of failure is understandable

E-10

2.1 I 488

due to the rounded shape and smooth surface texture charactistic of the aggregate in general.

CONCLUSIONS

18. Based on this examination, the concrete appears to be of good quality. No evidence of chemical attack or deleterious reactions between cement and paste were observed. The variations noted in the unconfined compression tests was usually due to bond failure around larger coarse aggregate particles.

RAY WILLINGHAM Geologist

E-11

25 October 1984

្វ

Figure 1. Polished surface (approx. 6.5x). Concrete core from Hole 109-1, Block 109. The rim on the particle to the right is the result of oxidation of the iron bearing carbonate mineral (probably ankerite) scattered throughout this rock particle.

Figure 2. Polished surface (approx. 16x). Concrete from Hole 118-2, Block 118. Characteristics of the cement paste are discernable in this view. Small dark specks are flyash grains. Two large voids occur near edges of photograph.

1.1 384

APPENDIX F

TESTING PHOTOGRAPHS

.

Figure Fl. Typical concrete core after capping for Compression testing. Shows method used for handling cores for capping and testing.

Figure F2. Typical concrete core being prepared for tensile testing.

Figure F3. Typical concrete core in testing machine prior to Compression Test.

Figure F4. Close up of typical concrete core in testing machine prior to Compression Test.

Lit I same

APPENDIX G

DIRECT SHEAR TESTS

-

(O/P 4-65) MAY 1982 EDITION GAS GEN. REG. NO. 37 UNITED STATES GOVERNMENT	
Memorandum	
Memorandum то : Head, Concrete Section	Denver, Colorado DATE: April 1, 1985
THROUGH: ACTING Chief, Concrete and Structural Branch 4-2-5- Chief, Geotechnical Branch TCL 4-1-85	
FROM : Head, Rock Mechanics Section	
SUBJECT: Direct Shear Tests on Concrete Core from Grand C	Coulee Forebay Dam
Geotechnical Branch Memorandum Reference No. 85-	• 34
Investigated and written by: R. Kelsic, R. Bran	nmer, and J. Montgomery
PURPOSE	

This memorandum transmits results from the following:

Date of D-1511 testing memorandum: January 15, 1985

Laboratory test results (and analyses) attached: Direct shear tests on core from Grand Coulee Forebay Dam.

Specimen(s) No.: 119, 120

Purpose of testing (analyses): To evaluate concrete lift joints at Grand Coulee Forebay Dam.

Date testing (analyses) completed: January 21, 1985

DISCUSSION

In response to a two-way memorandum dated January 15, 1985, direct shear tests were conducted on concrete cores from Grand Coulee Forebay Dam, Washington. Two 10-inch-diameter specimens from construction blocks 119 and 120 were tested to evaluate the shear strength along visible bonded construction joints in the dam. Ten direct shear runs were performed to define the shear strength-displacement characteristics of the construction joints.

Results of linear regression analyses on data for each specimen are summarized in table 1. Photographs of cores before and after testing, plots of shear stress versus displacement, plots of normal stress versus shear stress, and results of linear regression analysis summary sheet are shown in the appendix for each specimen. A linear regression analysis was also used to analyze combined sliding friction data from both specimens. These results are summarized in table 2 and shown graphically in figure 1.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

Since only two specimens were tested, the combined break bond data have no statistical correlation. Results from recent large diameter concrete direct shear programs generally indicate the that angle of internal friction, ϕ_b , for break bond tests is between 40° and 60°, with a cohesion between 300 and 500 lb/in². Specimen 119, which was tested at an initial normal stress of 130 lb/in², broke at a peak shear stress of 591 lb/in². The resulting slide surface was smooth and showed very little disturbance in the form of sheared or loose aggregate. Specimen 120 was tested at an initial normal stress of 255 lb/in² and broke at a peak shear stress of 1,015 lb/in². The resulting slide surface was inclined and wavy, and subsequent sliding shear strength may have been influenced by the encapsulation material at one end of the slide surface (see photograph in the appendix).

The combined sliding friction data show a high correlation coefficient which indicates a close statistical fit of linear regression analysis of the data. The angle of sliding friction, ϕ_S , of 47° and cohesion of 93 lb/in² are typical values for sliding friction test results based on the results of other large diameter concrete direct shear programs. For many design situations, it is not unreasonable to assume zero cohesion for joint or plane of weakness in situ even though laboratory shear testing may indicate a small value of cohesion. Such an assumption for the sliding friction case is based on the fact that a joint can experience progressive failure in which cohesive bonds are broken. Therefore, it is more conservative to use zero cohesion rather than the 93 lb/in² indicated by the sliding friction data.

CONCLUSIONS

Test results should be used with discretion because of the limited number of test specimens (two) employed in this test program. Before applying these test results, a thorough review of available drill logs and construction reports should be conducted to locate areas of joint contact similar to those found in these laboratory test specimens. It is considered essential to identify those areas where these shear strength parameters might be applicable.

W. M. Austin

Attachment

and 1 1

Copy to: D-1511 D-1540 D-1542 D-1543 (2)

Specimen No.	Feature	Surface condition	Area (in ²)	Shear ¹ stress (lb/in ²)	Cohesion (1b/in ²)	Friction angle (degrees)	Comments ²
Block 119	Intact joint	Smooth	77.44	591	95	43	130, 65, 130, 255, 380, 637
Block 120	Intact joint	Inclined and wavy	77.44	1,015	92	49	255, 65, 130, 255, 380, 637

Table 1. - Direct shear test results - summary

 1 Peak shearing stress developed at the first applied normal stress. 2 Loading sequence (normal stress in $\rm lb/in^2).$

Feature	Break bond linear regression results			Sliding friction		
	Angle	of internal friction (degrees)	Cohesion (1b/i	Angle of n ²)	sliding friction (degrees)	Cohesion (1b/in ²)
Closed join	l Its	<u>1</u> /	<u>1</u> /		47	93

Table	2.	-	Combined	test	data	summary
Tuble	C •	-	comprised	LC3L	uaca	Summary

¹ Insufficient number of specimens for statistical analysis.

102

Figure 1
APPENDIX

1.0 1 300

Parallel to sliding direction

Perpendicular to sliding direction

Specimen before testing

Specimen after testing

26 Jan 1985		10:56:12		130	145	.0155
				130	147	.0156
FINAL DATA				130	150	.0159
				130	152	0161
Project	COLUMBI	A RASIN		100	155	.0161
Feature	CRAND (NIN EE ENDEDAY	1	130	136	.0162
Tune	CONCERT	TE TOINT	1	130	158	.0164
Choc no	DLOCK 1	IE JUINI		130	161	.0165
Spec no.	BLUCK I			130	164	.0167
lested by:	J.M. P	к.в.		130	167	.0169
Date lested	01/21/8	35		130	169	.0171
Area	77.44 9	Sq. in.		130	172	.0173
				130	175	.0175
				130	177	.0178
NORMOI	CUEOD	DICDLOCEMENT		130	180	.0180
STREES	STERK	DISPERCEMENT		130	183	.0181
JE KEGO	SIRESS			130	196	0193
10/1n2	10/1n2	Inches		100	100	.0103
				130	100	.0104
130	2	0.0000		130	191	.0185
130	5	.0007		130	194	.0187
130	8	.0014		130	197	.0189
130	11	.0020		130	199	.0190
130	14	.0025		130	202	.0191
130	17	.0029		130	205	.0193
130	20	0024		130	207	0194
120	20	.0034		130	210	0195
100	23	.0038		130	210	0106
130	26	.0043		100	213	.0196
130	28	.0047		130	215	.0198
130	31	.0053		130	218	.0199
130	34	.0074		130	221	.0200
130	36	.0080		130	224	.0202
130	39	.0083		130	226	.0203
130	42	.0087		130	229	.0204
130	45	.0089		130	232	.0205
130	47	.0091		130	234	.0205
130	50	.0094		130	237	.0207
130	53	0094		130	240	. 0208
130	55	.0070		130	243	0209
100	50	.0077		130	245	0202
130	57	.0101		120	240	.0210
130	62	.0104		100	240	.0211
130	64	.0106		100	201	.0213
130	67	.0108		130	254	.0214
130	70	.0110		130	256	.0215
130	72	.0112		130	259	.0217
130	75	.0114		130	262	.0218
130	78	.0116		130	264	.0219
130	81	.0117		130	267	.0220
130	84	.0119		130	270	.0222
130	86	.0120		130	273	.0223
130	89	.0122		130	275	.0224
130	92	0124		130	278	.0224
130	95	0126		130	281	. 0226
130	<u> </u>	.0120		130	283	0227
120	100	.0127		130	200	0220
100	100	.0129		120	200	.0220
130	103	.0130		100	207	.0229
130	106	.0132		130	292	.0230
130	109	.0134		130	294	.0232
130	112	.0136		130	297	.0233
130	114	.0137		130	300	.0234
130	117	.0139		130	302	.0235
130	120	.0141		130	305	.0236
130	123	.0142		130	308	.0236
130	125	.0144		130	311	.0237
130	128	.0146		130	313	. 0239
130	131	0147		130	316	0240
120	104	0140		100	010	.0240
100	104	.0140		130	319	.0241
130	136	.0150		130	322	.0242
130	139	.0151		130	324	.0243
130	142	.0153		130	327	.0245

130	330	0246	100	517	
	000	.0240	130	517	.0325
130	333	.0247	130	520	0326
120	225	0240			.0020
130	335	.0240	130	522	.0327
130	338	.0249	130	525	0000
100	044	0050	100	020	.0320
130	341	.0200	130	528	.0329
130	343	. 0251	100	504	0000
			1.50	231	.0330
130	346	.0253	130	534	0331
100	249	0.054			.0001
130	347	.0234	130	536	.0333
130	352	.0255	120	500	0004
100			1.50	535	.0334
130	354	.0256	130	542	.0335
130	357	0252	100	E 4 E	
		.0201	130	545	.0336
130	360	.0257	130	547	0227
120	262	0250			.0331
130	302	.0230	130	550	.0338
130	365	.0260	130	550	0240
100	260	00/1	100	000	.0340
130	300	.0261	130	556	.0342
130	370	. 0261	100	EEO	
			130	228	.0344
130	373	.0262	130	561	. 0345
130	376	0264			.0040
100	510	.0204	130	564	.0347
130	379	.0265	130	566	0040
100	202	0067	100	500	.0340
130	202	.0207	130	569	.0349
130	384	. 0267	100	575	0000
100	007	00.00	150	010	.0301
130	387	.0269	130	582	.0353
130	390	0270	100	500	
		10210	130	388	.0355
130	392	.0271	130	591	0250
100	205	0222		071	.0339
130	373	.0272	130	589	.0363
130	398	.0273	100	407	0500
100			130	407	.0009
130	400	.0275	130	288	.0512
130	403	0276	100		
100	405	.0210	130	292	.0522
130	406	.0277	130	287	0525
100	400	0770			.0000
100	400	.0210	130	283	.0549
130	411	.0278	120	270	OFCO
100		0070	100	410	.0062
130	414	.0279	130	273	.0577
130	417	0 280	- 100	0.00	
100	711	.0200	-130	269	.0591
130	420	.0280			
120	400	0201			
100	720	.0201	65	8	0.0000
130	425	.0282		~~	0.0000
100	400	0000	60	20	.0025
130	428	.0283	65	32	0050
130	431	0284	00	52	.0010
		.0204	65	40	.0076
130	434	.0285	65	60	0101
130	436	0207	0.5	02	.0101
100	400	.0201	65	87	.0127
130	439	.0288	2 5	110	0450
120	440	0200	65	110	.0102
100	772	.0290	65	126	.0177
130	444	. 0291	 /=		
100		10271	60	139	.0202
130	447	.0293	65	148	0220
130	450	0295			
100		.02/0	65	149	.0253
130	453	.0296	65	145	0270
130	456	0297		140	.0219
		.02.77	65	141	.0305
130	459	.0298	65	137	0000
130	460	0200		1 U F	.0330
	702	.0300	65	134	.0355
130	465	.0301	45	120	0201
130	4 6 7	0202	0.0	102	.0381
130	<i></i>			101	0406
130	467	.0302	65	1.51	.0406
	467 470	.0303	65 65	131	.0406
100	467 470	.0303	65 65	129	.0406 .0431
130	467 470 473	.0302 .0303 .0304	65 65 65	129 128	.0406 .0431 .0456
130	467 470 473 476	.0302 .0303 .0304 .0305	65 65 65	129 128	.0406 .0431 .0456
130 130	467 470 473 476	.0302 .0303 .0304 .0305	65 65 65 65	129 128 126	.0406 .0431 .0456 .0482
130 130 130	467 470 473 476 479	.0302 .0304 .0305 .0306	65 65 65 65	129 128 126 125	.0406 .0431 .0456 .0482 .0508
130 130 130 130	467 470 473 476 479 492	.0302 .0303 .0304 .0305 .0306	65 65 65 65 65	129 128 126 125	.0406 .0431 .0456 .0482 .0508
130 130 130 130	467 470 473 476 479 482	.0302 .0303 .0304 .0305 .0306 .0307	65 65 65 65 65 65	129 128 126 125 122	.0406 .0431 .0456 .0482 .0508 .0533
130 130 130 130 130	467 470 473 476 479 482 484	.0302 .0304 .0305 .0306 .0307 .0310	65 65 65 65 65 65	131 129 128 126 125 122	.0406 .0431 .0456 .0482 .0508 .0533
130 130 130 130 130 130	467 470 473 476 479 482 484	.0302 .0303 .0304 .0305 .0306 .0307 .0310	65 65 65 65 65 65 -65	129 128 126 125 122 120	.0406 .0431 .0456 .0482 .0508 .0533 .0559
130 130 130 130 130 130	467 470 473 476 479 482 484 487	.0302 .0304 .0305 .0306 .0307 .0310 .0311	65 65 65 65 65 65 -65	129 128 126 125 122 120	.0406 .0431 .0456 .0482 .0508 .0533 .0559
130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490	.0302 .0304 .0304 .0305 .0306 .0307 .0310 .0311 .0312	65 65 65 65 65 65 -65	129 128 126 125 122 120	.0406 .0431 .0456 .0482 .0508 .0533 .0559
130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490	.0302 .0303 .0304 .0305 .0306 .0307 .0310 .0311 .0311	65 65 65 65 65 65 -65 130	129 128 126 125 122 120	.0406 .0431 .0456 .0482 .0508 .0508 .0533 .0559
130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490 493	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313	65 65 65 65 65 -65 130	131 129 128 126 125 122 120 2	.0405 .0431 .0456 .0508 .0508 .0559 0.0000
130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490 493 495	.0302 .0303 .0304 .0305 .0306 .0307 .0310 .0311 .0311 .0313 .0313	65 65 65 65 65 65 -65 130 130	131 129 128 126 125 122 120 2 15	.0406 .0431 .0456 .0482 .0508 .0533 .0559 0.0000 .0026
130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490 493 495	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314	65 65 65 65 65 -65 -65 130 130	131 129 128 126 125 122 120 2 15 31	.0405 .0431 .0456 .0482 .0508 .0533 .0559 0.0000 .0026 .0051
130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490 493 495 498	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315	65 65 65 65 65 -65 130 130 130	131 129 128 126 125 122 120 2 15 31	.0406 .0431 .0456 .0508 .0508 .0533 .0559 0.0000 .0026 .0051
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 499 493 495 495 495	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315	65 65 65 65 65 -65 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35	.0406 .0431 .0456 .0508 .0508 .0533 .0559 0.0000 .0026 .0051 .0076
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 482 484 487 490 493 495 498 501	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317	65 65 65 65 65 -65 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56	.0406 .0431 .0456 .0508 .0533 .0559 0.0000 .0026 .0051 .0076 .0101
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 493 493 495 495 501 503	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318	65 65 65 65 65 -65 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56	.0406 .0431 .0456 .0482 .0508 .0533 .0559 0.0000 .0026 .0051 .0076 .0101
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 498 493 495 498 501 502	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318	65 65 65 65 65 -65 -30 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82	.0406 .0431 .0456 .0508 .0533 .0559 0.0000 .0026 .0051 .0076 .0101 .0126
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 487 490 493 495 498 501 503 506	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318 .0318 .0320	65 65 65 65 65 -65 -30 130 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82 110	.0406 .0431 .0456 .0508 .0508 .0559 0.0000 .0026 .0051 .0076 .0101 .0126
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 482 484 493 493 495 498 503 506 509	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318 .0320 .0321	65 65 65 65 65 -65 130 130 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82 110	.0406 .0431 .0456 .0508 .0508 .0559 0.0000 .0026 .0051 .0076 .0101 .0126 .0151
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 493 493 493 495 498 501 503 506 506	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318 .0320 .0321	65 65 65 65 65 -65 130 130 130 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82 110 135	.0406 .0431 .0456 .0508 .0533 .0559 0.0000 .0026 .0051 .0076 .0101 .0126 .0151 .0177
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 493 493 495 498 501 503 506 509 512	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0314 .0315 .0317 .0318 .0320 .0321 .0321 .0323	65 65 65 65 65 -65 -65 130 130 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82 110 135 156	.0406 .0431 .0452 .0508 .0508 .0559 0.0000 .0026 .0051 .0076 .0101 .0126 .0151 .0177 .0222
130 130 130 130 130 130 130 130 130 130	467 470 473 476 479 482 484 493 493 493 493 495 501 503 506 509 512	.0302 .0304 .0305 .0306 .0307 .0310 .0311 .0312 .0313 .0314 .0315 .0317 .0318 .0320 .0321 .0323 .0323	65 65 65 65 65 -65 -65 130 130 130 130 130 130 130 130 130	131 129 128 126 125 122 120 2 15 31 35 56 82 110 135 156	.0406 .0431 .0456 .0588 .0533 .0559 0.0000 .0026 .0051 .0076 .0101 .0126 .0151 .0177 .0202

11 1 1006

130	184	.0253	200	000	0000
130	191	.0278	300 200	220	.0202
130	197	.0210	000 200	267	.0228
130	202	.0329	200	310	.0203
130	204	.0354	000 000	365	.0279
130	207	.0380	200	400	.0304
130	206	.0405	900 000	441	.0329
130	204	.0430	200	464	.0334
130	203	.0456	300	475	.03/9
130	202	.0481	200	407	.0405
-130	201	.0507	000 200	467	.0430
			-200	460	.0400
255	8	0.0000	-309	401	.0480
255	26	.0025			
255	34	.0051	637	3	0.0000
255	49	.0076	637	18	.0025
255	79	.0101	637	35	.0052
255	113	.0126	637	45	.0078
255	146	.0152	637	77	.0103
255	173	.0177	637	119	Ø129
255	210	.0203	637	162	.0122
255	244	.0228	637	202	.0179
255	278	.0253	637	259	.0205
255	305	.0278	637	320	.0230
255	326	.0304	637	386	.0255
255	341	.0329	637	449	.0281
255	350	.0354	637	507	.0306
255	351	.0379	637	562	.0331
255	350	.0405	637	609	.0356
255	348	.0430	637	645	.0381
-255	346	.0455	637	667	.0406
			637	679	.0432
380	0	0.0000	637	683	.0457
380	14	.0025	637	685	.0482
380	32	.0051	637	682	.0507
380	39	.0076	637	680	.0533
380	64	.0101	637	680	.0558
380	102	.0126	637	677	.0583
380	141	.0152	637	674	.0608
380	172	.0177	-637	672	.0634

Parallel to sliding direction

_

ŀ

Perpendicular to sliding direction

Specimen before testing

Specimen after testing

26 Jan 198	5	10:58:55	255	124	.0237
			255	127	.0238
FINAL DATA			255	130	.0240
			255	132	.0242
Project	COLUMB	IA BASIN	255	135	.0244
Feature	GRHND	COULEE FOREBAY	200	138	.0245
Туре		IE JUINT	200	140	.0247
Spec no.	BLUCK	120 D D	200	143	.0249
Dete Teste	J.M. 4 01/21/	K.D.	2JJ 255	140	.0200
Anos	77 44	oj Sa in	255	142	.0252
		9 4. m.	255	154	.0203
			255	157	.0257
NORMOL	0.0500		255	160	.0258
NURMHL	SHERK	DISPLACEMENT	255	163	0260
31KE33	31KE55	i u a la a a	255	166	.0262
10/112	10/11/2	inches	255	168	.0263
255	2	0 0000	255	171	.0265
255	5	0.0000	255	174	.0266
255	8	0027	255	177	.0268
255	10	.0046	255	179	.0269
255	13	.0053	255	182	.0271
255	16	.0059	255	185	.0273
255	18	.0065	255	187	.0275
255	21	.0071	255	190	.0276
255	24	.0077	255	193	.0278
255	27	.0083	200	196	.0280
255	29	.0088	200	198	.0281
255	32	.0094	255	201	.0203 0286
255	35	.0099	255	204	.0288
255	38	.0106	255	209	.0289
255	40	.0126	255	212	.0290
255	43	.0132	255	214	.0292
255	46	.0136	255	217	.0293
200	49	.0140	255	220	.0294
200	52 55	.0143	255	223	.0296
200	57	.0147	255	225	.0297
255	50	.0130	255	228	.0298
255	63	.0157	255	231	.0299
255	65	.0160	255	233	.0300
255	68	.0163	200	236	.0301
255	71	.0165	200	239	.0302
255	73	.0168	200	242	.0303
255	76	.0171	255	244	.0304 0205
255	79	.0174	255	250	0306
255	82	.0177	255	253	.0307
255	81	.0187	255	255	.0308
255	74	.0193	255	258	.0309
255	72	.0196	255	261	.0310
255	74	.0199	255	264	.0311
255	77	.0202	255	266	.0312
200	80	.0205	255	269	.0313
200	83	.0207	255	272	.0314
200	00	.0207	255	274	.0316
255	00 Q1	0212	255	277	.0317
255	94	0216	255	280	.0318
255	96	.0218	255	283	.0319
255	99	.0220	200	285	.0321
255	102	.0222	200	288	.0322
255	105	.0224	∠00 255	271 294	.0323 0324
255	108	.0226	200 255	274	. UJ24 0775
255	110	.0228	255	270	.0320
255	113	.0230	255	302	.0320
255	116	.0231	255	305	.0328
255	119	.0234	255	307	.0330
255	121	.0235	255	310	.0330

255	212	0000	0EE	E40	
200	313	.0332	200	510	.0403
255	315	.0333	255	513	.0404
255	318	.0334	255	517	.0405
255	321	. 0335	255	520	0406
255	224		200	500	.0400
200	327	.0336	200	JZ3	.0407
200	327	.0336	255	526	.0408
255	329	.0337	255	529	.0409
255	332	.0338	255	532	. 0410
255	335	0240	255	524	9411
255	000	.0040	200	534	.0411
200	338	.0341	200	537	.0412
255	341	.0342	255	540	.0413
255	344	.0344	255	543	.0414
255	347	. 0345	255	546	0415
255	249	0246	255	540 540	.0415
200	047	.0346	233	347	.0416
200	302	.0347	200	551	.0417
255	355	.0348	255	554	.0419
255	357	.0350	255	557	.0420
255	360	.0351	255	560	0421
255	262	0050	200	500	.0421
200	363	.0352	200	36 2	.0422
255	366	.0353	255	565	.0423
255	368	.0354	255	568	.0425
255	371	.0355	255	571	0426
255	374	0256	255	570	.0420
200	077	.0350	200	Jra	.0426
200	377	.0357	255	576	.0428
255	380	.0358	255	579	.0428
255	382	.0359	255	582	. 0430
255	385	. 0360	255	504	.0400
255	200	0261	200	304	.0430
200	300	.0361	255	587	.0432
200	391	.0362	255	590	.0433
255	393	.0363	255	593	.0434
255	396	.0364	255	595	0424
255	399	0365	200	525	.0434
255	402	0046	200	298	.0436
200	402	.0300	255	601	.0437
200	404	.0367	255	603	.0438
255	407	.0368	255	606	.0439
255	410	.0369	255	600	0440
255	413	. 0370	200	607	.0440
255	415	0071	255	612	.0441
200	410	.0371	255	614	.0443
200	410	.0372	255	617	.0444
255	421	.0372	255	620	0444
255	423	.0373	255	622	0445
255	426	.0375	200	623	.0445
255	429	0276	255	626	.0446
255	422	0077	255	629	.0447
200	4.52	.0377	255	631	. 0448
200	434	.0377	255	624	0440
255	437	.0378	200	634	.0440
255	440	.0379	200	637	.0449
255	443	0380	255	640	.0450
255	446	0391	255	643	.0451
200	440	.0301	255	645	.0452
200	440	.v30∠	255	640	0450
200	451	.0383	200	370	.0403
255	454	.0384	255	651	.0454
255	457	.0385	255	653	.0455
255	459	0386	255	656	.0456
255	460	.0000	255	259	0457
200	402	.0307	200	007	.0407
200	465	.0388	200	661	.0458
255	467	.0389	255	664	.0459
255	470	.0390	255	667	.0459
255	473	. 0392	255	670	.0460
255	476	0202	255	670	0444
200	710	. 8373	200	672	.0461
200	478	.0394	255	675	.0462
255	481	.0395	255	678	.0463
255	484	.0396	255	680	. 0462
255	490	.0397	255	200	0444
255	492	8000	200	003	.0464
200	473	.0377	255	686	.0466
200	496	.0400	255	689	.0467
255	499	.0400	255	692	.0468
255	501	.0401	255	694	0460
255	507	0402	200	207	.0407
	501		200	071	.0470

255	700	.0470	255	205	0540
			200	000	.0342
255	703	.0471	255	888	.0544
255	205	0472	255	001	OFAA
200	100	10412	200	071	.0344
255	708	.0473	255	894	.0545
255	711	0474	OFF	007	0510
200	f i i	.04/4	200	897	.0346
255	714	.0475	255	899	. 0546
DEE	7.6	0470			
200	716	.0475	255	902	.0548
255	719	0478	255	905	0540
			200	200	.0349
255	722	.0479	255	907	.0551
255	724	0400	055	010	0550
200	124	.0400	200	910	.0002
255	727	.0481	255	913	.0553
SEE	700	0.400			
200	730	.0482	200	916	.0554
255	732	. 0483	255	919	0555
			200	~ ~ /	.0000
255	735	.0484	255	921	.0557
255	739	0405	255	004	OFFO
200	100	.0405	200	724	.0008
255	741	.0486	255	927	.0559
255	740	0407	055		
200	743	.0487	200	929	.0561
255	746	.0488	255	932	0563
000	740		200		.0000
200	749	.0489	255	935	.0564
255	752	0491	255	000	0564
	102		200	2.50	.0364
255	754	.0492	255	940	.0565
255	757	0400	OFF	040	05.77
200	(3)	.0473	200	943	.0567
255	760	.0493	255	946	. 0568
000	7.00		200		.0000
200	762	.0494	255	949	.0569
255	765	0495	255	952	0570
	100	10425	200	7.52	.00/0
255	768	.0496	255	954	.0571
255	771	0407	255	057	0570
£JJ		.047/	200	201	.0072
255	773	.0498	255	960	. 0575
DEE	776	0400	055		
200	((6	.0499	200	962	.0576
255	779	. 0500	255	965	0576
0.55					.0010
255	782	.0501	255	968	.0578
255	704	0500	255	971	0570
200	104	.0002	200	211	.03/8
255	787	.0504	255	973	.0580
055	700	OFOF	0EE	070	0500
200	790	.0000	200	7/6	.0582
255	792	0506	255	979	0522
200	176	.0000	200		.0003
255	795	.0507	255	981	.0584
255	700	0500	255	904	OFOF
200	(20	.0300	200	204	.0303
255	801	.0508	255	987	. 0586
000			OFF		
200	804	.0509	200	330	.0587
255	806	0510	255	992	. 0589
255	809	.0511	255	995	.0590
255	010	0510	255	999	0501
200	012	.0012	200	220	.0371
255	815	.0513	255	1007	.0593
ore		0514	255	1010	OF OF
200	817	.0014	200	1012	.0394
255	820	.0515	255	1015	.0602
	020		055	1001	
255	823	.0517	200	1001	.0609
255	072	0510	255	995	.0614
000	020	.0110		~~~	
255	829	.0520	255	986	.0625
255	0.01	0500	255	971	0E2E
200	831	.0022		211	.0033
255	834	.0524	255	958	.0644
755	007	0001	255	949	0257
~JJ	837	.0524	200	240	.0007
255	839	.0525	255	932	.0664
~~~			 755	0.77	0.74
255	842	.0526	200	741	.0671
255	Q45	Q507	255	924	.0677
200	040	.0021	0EE	000	
255	847	.0528	200	920	.0684
255	050	0500	255	917	.0692
e J J	000	.0328	200		
255	853	.0529	255	908	.0701
			255	900	.0712
255	*855	.0530	200	200	• GLT2
255	050	0501	255	860	.0901
		.0031		40F	0000
255	861	.0532	200	473	.0778
700	0.00	0500	255	486	,1023
200	863	.0533	200		
255	866	. 0534	255	481	.1046
			-255	473	. 1069
205	869	.0535	200		
255	872	.0536			
255	874	.0538	65	2	0.0000
255	977	0529	<u> </u>	-	0005
200	orr	.0007	63	6	.0025
255	880	.0540	65	14	.0050
255	000	0544			
2 U U	003	.0341	65	26	.0076

65	39	.0102	255	414	.0458
65	45	.0127	-255	413	.0483
65	66	.0152			
65	91	.0178	380	7	0.0000
65	116	. 0204	380	17	.0025
65	134	. 0229	380	33	.0051
65	139	.0255	380	44	.0076
65	135	.0280	380	63	.0102
65	133	.0305	380	96	.0127
65	133	.0331	380	136	.0152
65	132	.0357	380	184	.0177
65	131	.0384	380	224	.0203
-65	130	.0410	380	275	. 0228
			380	326	.0253
130	4	0.0000	380	379	.0278
130	12	.0025	380	427	.0304
130	24	.0050	380	474	.0329
130	38	.0076	380	515	.0354
130	45	.0101	380	544	.0379
130	68	.0126	380	559	.0404
130	98	.0151	38 <b>0</b>	561	.0429
130	130	.0177	380	558	.0455
130	159	.0202	-380	555	.0480
130	183	.0227			
130	202	.0253	637	10	0.0000
130	215	.0278	637	1 <b>8</b>	.0025
130	228	.0303	637	32	.0050
130	237	.0328	637	47	. <b>ØØ</b> 76
130	241	.0354	637	62	. Ø <b>1</b> 01
130	239	.0379	637	97	• <b>\$12</b> 6
130	237	.0404	63 <b>7</b>	142	<b>.Ø1</b> 51
-130	234	.0430	6 37	194	<b>.ø1</b> 76
			637	235	• <b>92</b> 81
255	5	0.0000	637	295	. #227
255	13	.0025	637	360	. <b>≸</b> 252
255	27	.0051	637	427	.ø277
255	41	.0076	637	<b>49</b> Ø	·#302
255	52	.0102	637	558	·\$327
255	79	.0128	- <del>63</del> 7	618 ·	• <b>⊈</b> 352
255	115	.0153	<b>637</b>		<b>.Ø</b> 377
255	157	.0178	G37	727	. <b>Ø</b> 402
255	196	.0203	637	167	· <b>Ø</b> 427
255	231	.0229	637	793	.0452
255	273	.0254	637	8,67	.0478
255	313	.0280	637	808	.0503
255	349	.0305	637	807	.0528
255	378	.0331	637	8 <b>N</b> 8	.0553
200	399	.0356	637 4 27	807	.0578
200 255	408	.0381	60/ / 27	904 832	.0603
200 255	410	.0406	67/	80 <i>3</i>	.0629
200	412	.0432	63/	1 <b>9</b> 8	.0654

GPO 850-021

## Mission of the Bureau of Reclamation

The Bureau of Reclamation of the U.S. Department of the Interior is responsible for the development and conservation of the Nation's water resources in the Western United States.

The Bureau's original purpose "to provide for the reclamation of arid and semiarid lands in the West" today covers a wide range of interrelated functions. These include providing municipal and industrial water supplies; hydroelectric power generation; irrigation water for agriculture; water quality improvement; flood control; river navigation; river regulation and control; fish and wildlife enhancement; outdoor recreation; and research on water-related design, construction, materials, atmospheric management, and wind and solar power.

Bureau programs most frequently are the result of close cooperation with the U.S. Congress, other Federal agencies, States, local governments, academic institutions, water-user organizations, and other concerned groups.

A free pamphlet is available from the Bureau entitled "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request from the Bureau of Reclamation, Attn D-822A, P O Box 25007, Denver Federal Center, Denver CO 80225-0007.

.