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INTRODUCTION

The phenomenon of soil settlement has concerned civil engineers for many years. The Leaning
Tower of Pisa is a classic example of what can happen when soil settlement characteristics are
not determined correctly. Only parts of the settlement process were understood until 1925, when
Karl Terzaghi [1]* proposed a theory in Erdbaumechanik, which related pressure, volume change,
and time. This theory described the process associated with compression of a mass of discrete,
irregular particles into a denser material. This process became known as consolidation. To study
consolidation characteristics, Terzaghi also developed a test that consisted of placing a cylindrical,
saturated specimen in a ring (to prevent lateral displacements), loading the specimen, and letting
the pore water drain through porous stones placed on the top and/or bottom. Terzaghi and others
developed various analytical techniques whereby deformations of the sample were plotted against
various time and load functions. With these data engineers are able to determine the settlement
characteristics of a soil stratum and, hopefully, avoid a modern-day equivalent of the Leaning
Tower of Pisa.

In the 1960's, with the advent of computer technology, more comprehensive and thorough con-
solidation analysis became possible. Since the early 1980°s, advances in microcomputer tech-
nology have allowed specialized interactive systems to be developed with these computers.
Tailoring automated microcomputer systems to specific data-acquisition requirements is now rel-
atively easy, practical, and economical. Using these computers for various analytical techniques
on an interactive basis is relatively simple and fast. Results from these analyses can be obtained
almost immediately after the user initiates them, instead of the normal 1-day turnaround time
associated with some larger computer systems.

This report discusses the program development, equipment interface, and use of a microcomputer
for consolidation testing and analysis at the Bureau of Reclamation, Engineering and Research
Center, Geotechnical Branch Laboratory.

CONCLUSIONS
The principles of this data-acquisition and computer-analysis system can be applied to several
materials tests and data analyses. The USBR (Bureau of Reclamation) has recently used this con-
figuration in automating the triaxial and direct shear testing. The flexibility of the interactive program
allows the user to obtain design and analysis information during and immediately after testing.

* Numbers in brackets refer to entries in the bibliography.



The use of a microcomputer for data acquisition, and analysis of consolidation-test data has been
reliable in providing excellent report-quality products with virtually no downtime.

CONCEPT

In recent years, some of the most rapid advances in geotechnical laboratories have been in au-
tomatic data acquisition and analysis. The most common application is a single computer attached
to one or two test units. Although this type of application has merit, significant increases in
efficiency and productivity occur when several test units are monitored, the data are immediately
analyzed, and test results are presented in the form of report-quality plots and data tables.

The concept of a single computer attached to several test units was used to develop consolidation-
data acquisition and analysis programs. The USBR has 18 pneumatic consolidometers, each of
which is in use approximately 60 percent of the time. The consolidating normal loads are applied
manually. The data recording, storage, processing, and presentation are completely automated,
~using a combination of load cells and LVDT's (linear variable differential transformers), a data
acquisition complex, microcomputer, thermal printer, and multipen plotter.

HARDWARE

The core of the system is a microcomputer with 1 megabyte of RAM (random access memory),
two built-in disk drives containing 256 kilobytes per disk, a 1-megabyte Winchester hard disk,
and a 16-bit microprocessor. This computer stores all equipment-calibration curves, specimen
data, and test data for each of the 18 systems, both in RAM and on disk. The result is extremely
fast access for data calculations and graphs. The computer also has an internal clock and |IEEE
(Institute of Electrical and Electronic Engineers) paralle!, interface bus. The data-acquisition com-
plex, thermal printer, and a two-pen, 8-1/2- by 11-inch flat bed plotter all connect to the IEEE
interface on the computer.

The computer is programmed in extended BASIC. Automatic LVDT height readings are recorded
at programmed time intervals for each load of each consolidation test. Random height readings
also can be taken and, if desired, stored as part of the test data. Each data record includes the
system number of the test, LVDT height reading, normal load on the specimen, elapsed time in
seconds from the moment the load was applied, number of readings from the beginning of the
test, and date and time the reading was taken. The computer uses the stored specimen and test



data to calculate a number of test values and to generate various plots, which can be displayed
on the CRT (cathode ray tube) or dumped to the printer or plotter. A schematic of the hardware
configuration is shown on figure 1.

Before a material is tested, calibrated load cells are used to generate a calibration equation for
each pressure gauge on a pneumatic consolidometer. Because the load cells require a 10-volt
d-c power source, the computer is programed to switch the power source and the digital voltmeter
to d.c. when a load-cell calibration is requested from the terminal. The computer is programed to
switch back to a.c. at the end of the calibration. Pressure on the load cell alters the d-c signal
sent from the load cell through the multiplexer to the digital voltmeter. The voltmeter interprets
the changed signal as volts and sends the voltage reading to the computer.

The load cell is first subjected to known pressures. These pressures are entered in the computer
from the terminal, and a pressure-voltage equation is generated and stored in the computer. The
load cell is then placed in the consolidometer, and a number of gauge pressures are applied. Each
gauge reading is entered into the computer from the terminal. The computer compares the voltage
reading from the load cell with the stored pressure-voltage equation, derives the load on the load
‘cell, and generates a gauge reading-load equation for that pressure gauge.

During a consolidation test, the required load is entered into the computer from the terminal. The
computer calculates the necessary gauge reading-load equation and displays the appropriate gauge
setting on the CRT. The computer then uses the manually entered load as the consolidation load
for each LVDT reading taken during that load. Load cells are not used during a test because of
the cost and because of signal amplification problems inherent in using a single, dual-range load
cell for each consolidometer.

The consolidation test apparatus, shown in figure 2, is equipped with 2 LVDT’s of 1 inch (25 mm)
of travel to measure the height of the specimen to 0.0001 inch (0.0025 mm). Each consolidometer
has an LVDT connected to a specific system channel in the data-acquisition unit. Because a large
number of LVDT's are monitored at one time, the signal produced by the 2.5-kHz sine wave
generator is boosted by an amplifier to ensure that 2.5 kHz goes to each of the 18 LVDT's. The
LVDT barrel acts as an electromagnet, and the position of the core in the barrel alters the a-c
signal. The altered signal is transmitted through the multiplex to the digital voltmeter, where the
signal is interpreted as a voltage reading and monitored by the computer. The LVDT is calibrated,
and the calibration equation is stored both in RAM and on disk.
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Figure 1. — Consolidation-test hardware configuration.
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Figure 2. — Consolidation-test apparatus.

When the test is initiated, an LVDT reading is taken on a gauge block of known height. This reading
is stored in the computer as part of the specimen data. The computer compares the first recorded
LVDT specimen reading with the LVDT gauge-block reading and the given height of the gauge
block. During the test, the amount an LVDT core moves is calculated by interpolating the voltage
reading of the LVDT into the.stored LVDT reference line. Then the computer calculates the height
of the LVDT core within the barrel to the nearest 0.0001 inch. The computer stores as specimen
data the height of the gauge block in inches, the LVDT reading on the gauge block, and the initial
LVDT reading on the specimen. Each system is programed to record LVDT readings at set time
intervals from the application of a load until a stop order is given through the terminal. The computer
is programed so that the recording of LVDT readings takes priority over any other computer use.

SOFTWARE

The program, “‘EngCon, Desk-Top Computer Analysis of Consolidation Data,”’ calculates various
phase-relationship conditions and time-dependent and time-independent parameters of a soil spec-
imen tested according to the Incremental Stress, One-Dimensional Consolidation Soil Theory.



However, the methods and controlling theories concerning consolidation testing and data analysis
were developed for certain specific conditions and simplifying assumptions: 1. The coefficient of
compressibility is constant; 2. The coefficient of permeability is constant; 3. The specimen is
saturated with an incompressible fluid; 4. The mineral grains are incompressible; and 5. The
specimen is homogeneous throughout.

When these conditions are not met, sound engineering judgment is needed to use the computer-
generated results correctly.

In 1936, Casagrande [2] developed an empirical, graphical technique to determine the precon-
solidation pressure, P,, from the semilogarithmic representation of specimen deformation versus
effective stress. This method is known as the Casagrande Construction and is described below.
Figure 3 illustrates the essential features of this construction.

1. Determine the point of maximum curvature (minimum radius), R, visually, graphically, or
analytically (point 1 on fig. 3).

To determine this point graphically, extend the approximately straight portion of the top of
the curve until it intersects the laboratory virgin compression line, described in step 5. Then
disect this angle. Point 1 represents the intersection of the curve and the angle bisect line.
To determine the point analytically, the equation describing the curve must be known. R can

()T

o
dx?

be found using the relationship:

R=1+

Draw a horizontal line from point 1.
Draw a line tangent to the curve at point 1.

Bisect the angle made in steps 2 and 3.

o s N

Extend the straight portion of the laboratory virgin compression curve (called the laboratory
virgin compression line) to meet the bisector line obtained in step 4. The point of intersection
is the most probable preconsolidation stress (point 2 on fig. 3).

The maximum possible preconsolidation stress is at point 3, where the laboratory virgin compres-
sion line leaves the curve. The minimum possible preconsolidation stress is at point 4, the inter-
section of the laboratory virgin compression line with a horizontal line drawn from g,, the initial
void ratio.
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Figure 3. — The Casagrande Construction.

The Casagrande Construction allows one to determine important soil deformation parameters, but
fails to consider the effects of sample disturbance or to determine the slope of the field virgin
compression line. In 1955, Schmertmann [3] developed a graphical method to analyze time-
independent settlement data that accounts for the effect of sample disturbance and estimates the
slope of the field virgin compression line. Figure 4 depicts the important elements of the Schmert-
mann Procedure and is used as follows:

Note: Figure 4 depicts an unload-reload segment in the compression curve, which is used to
determine the recompression index, C,. However, since USBR laboratories usually unload the

specimen only once, the slope of the best-fit line of the unload data is used to approxi-
mate C..

1. Perform the Casagrande Construction and determine the preconsolidation stress.

2. Calculate the initial void ratio, e,. Draw a horizontal line from g, to the overburden stress;
this defines point 1 on figure 4.

s e

3. From point 1, draw a line parallel to the best-fit line of the unload-reload curt§j;6th@‘{
preconsolidation stress; this establishes point 2 on figure 4. x
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Figure 4. — The Schmertmann Procedure.

Note: If a soil is normally consolidated, the overburden stress equals the preconsolidation
stress and points 1 and 2 will coincide.

4. From a point on the void ratio axis equal to 0.42 ¢,, draw a horizontal line. Where this
line meets the extension of the laboratory virgin compression curve, another point (point 3)
is established.

5. Connect points 2 and 3 with a straight line. The slope of this line defines the field virgin
compression index C,.

From the graphical representations created using the one-dimensional consolidation-test data, the
program determines the laboratory virgin compression line, field virgin compression line, over-
consolidation ratio, laboratory virgin compression index, field virgin compression line, preconsol-

idation stresses, the corresponding void ratios, compression ratio, and recompression index.
Time-Dependent Analysis

This part of the program is based on Terzaghi’'s one-dimensional consolidation theory developed
in 1925 [1] and is discussed in most soil mechanics texts. The program determines the coefficient
of consolidation, the coefficient of permeability, and axial strain values at various average degrees
of consolidation (percent consolidation) using two different curve-fitting techniques. These em-
pirical procedures were developed to approximately fit the observed laboratory test data to the
curves generated using Terzaghi’s theory of consolidation. This is valid because actual curves

8



often have shapes similar to the theoretical percent consolidation U versus time factor T curves.

Figure b shows the theoretical curves for two different functions of T.

Casagrande’s Logarithm of Time-Fitting Method

Casagrande [4] developed a logarithm of time-fitting method, called the graphic method on the
computer-generated plots, in which deformation values (dial readings, axial strain, or void ratio)
are plotted versus the logarithm of time (fig. 6). For this technique, R, (time at 50 percent con-
solidation) and t,, (time at 50 percent consolidation) are determined from R, and R,o,, which are

obtained using empirically derived methods.

An R, is determined using the fact that T is proportional to U? (time factor is proportional to the
percent consolidation squared) up to about 60 percent consolidation on the theoretical
U - log T plot (fig. 5). Using this relationship, any two values for time in the ratio of 4 to 1 (i.e.,
t, and t,, where t, = 4t,) are chosen, and their corresponding deformation values (R, and R,) are
determined. Next, the difference between these values is calculated (R, — R;) and subtracted from
the first deformation value to yield R, (R, = R, — (R, — R,)). This procedure is shown on figure 6.

TIME FACTOR
) 0.2 0.4 0.6 0.8 1.0 1.2 1.4

50

100 — 00

TIME FACTOR, LOG SCALE
00! 0.02 0.05 0. 0.2 0.5 1.0 20

\ TIunqen’r

~

PERCENT CONSOLIDATION

50

100 g O

AN

Asymptote

Figure 5. — Theoretical time-consolidation curves.
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Figure 6. — The Casagrande Logarithm of Time-Fitting Method.

The R,y (deformation value at 100 percent consolidation) is defined as the intersection of the
tangent to the straight-line portion of the curve and the tangent to the end of the curve on
figure 6.

Inflection Method

In 1971, Cour [5] developed another technique for finding the coefficient of consolidation. This
technique is called the inflection method on the computer-generated plots. Cour used the inflection
point of the deformation versus logarithm of time curve. He found that the inflection point of the
theoretical U versus logarithm of T occurs at 70 percent consolidation and a time factor of 0.405
(fig. 7). From this, R,,, the coefficient of consolidation, and the coefficient of permeability can be
determined. R, is determined as before. Other deformation values corresponding to different av-
erage degrees of consolidation can be determined from R, and R;, using linear relationships.

Soil Phase-Relationship Conditions

The program “"EngCon’’ computes the percent vertical strain from seating load conditions (initial
conditions) as a function of vertical deformation reading changes monitored by an LVDT. From

10
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Figure 7. — The Cour Inflection Point Method.

these computed values, the soil phase-relationship conditions at the end of each consolidation
load are determined: specimen height, void ratio, dry density (unit weight), moisture content,
degree of saturation, and axial strain.

The program calculates the initial conditions needed for analysis from the initial (seating-load) height
readings, specimen size, specific gravity, and weight. It then calculates the appropriate strain values
and void-ratio values. These values are used where needed by different analysis techniques. Be-
cause the specimen diameter is constant, air, water, and soil volumes are determined in terms of
their height.

Printed Output

First, a formated copy of the data file is printed. This includes general specimen identification and
placement conditions as well as a computer listing of all test measurements. The appendix is a
typical example of this computer-printed data.

Because of the flexibility of this program, several different output options are available, depending
on the analysis procedure used. Point-to-point plots of axial strain versus logarithm of time, axial
strain versus load, and void ratio versus logarithm of load are available. In addition, the void ratio
and axial strain versus square root of time consolidation plot can be obtained for each load. A
table is printed showing the loads and the corresponding values of height, void ratio, dry density

(unit weight), moisture content, degree of saturation, and axial strain. The values used in the table
correspond to the last LVDT reading taken for a specific load. In conjunction with the table de-
scribed, the following is printed also: the values for percent rebound, dry weight determined from
the initial moisture, dry weight determined from the final weights, and moisture content determined

from the final weight and initial moisture. A separate table of values also is printed, showing the

11



dry density (unit weight), the moisture content and degree of saturation corresponding to the initial
load, and the maximum load.

A curve-fitted void ratio versus logarithm of pressure plot can be generated. This plot shows
results of the Casagrande and Schmertmann construction techniques using analytical and graphical
analysis methods or a manual analysis method, depending upon which was chosen. Among the
results shown are the minimum, most probable, and maximum preconsolidation stress; laboratory
virgin compression line; field virgin compression line; point(s) of maximum curvature; rebound line;
and e,. Also available is a table showing the results from the analysis of the time-independent
data. This table has values for the various preconsolidation stresses, void ratios at the different
preconsolidation stresses, overconsolidation ratio, compression index, rebound index, and field

compression index.

Curve-fitted axial strain versus logarithm of time plots for specific loads can also be generated.
The plots show the results of the Casagrande Logarithm of Time-fitting Method (called the graphic
method on the plot) and the Cour Inflection Point Method for determining c, (called the inflection
method on the plot). Shown on the plot are the coefficient of consolidation, coefficient of perme-
ability, and the strain values at O, 50, 70, and 100 percent consolidation.
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APPENDIX

EXAMPLES OF COMPUTER-GENERATED OUTPUT






SAMPLE HUM|[SPEC MO, IFRILL HOLE|DEFTH CLASS SvM |SPEC GRAY |SFEC TWPE
EXAMFLE 51 DH-282 1.5-5.@ CL 2.69 1
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, 2519 6.8 : 4|10 Bl 3 2 13:119:49

2519 6.8 18|10 91 3 2 13:18:46
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2520 12.9 19|18 151 3 2 11:18:27
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L2633 25,8 20848 25| 3 6 @8:05:42

L2637 25.8 4080 |18 S6) 3 6 8g:39:12

2642 25.8 Gooe|1a AF] 3 6 99:46:12

2644 25.0 zZpBEB |18 38| 3 € 13:D6:142

. 2645 25.6 85942118 39| 3 7 av:is:ze

. 2785 50,9 4(18 40| 3 7 BA3:88:2¢

L2718 50.0 16|18 41} 3 7 08:88:34

, 2728 50.8 zé|18@ 421 3 7 03:88:44

. 2737 50.08 48|1@ 43 3 7 B88:09:85

L2746 56.8 36,18 44| 3 7 B5:089:45

. 2758 58.8 200(1a 451 3 7 BB:11:45

L2769 56.8 468|192 46| 3 7 B88:16:48

. 2776 50.6 gno |10 474 3 T B88:23:23

2786 56,0 200 |1e 48| 3 T 88:43:4€

2793 S58.0 4009113 49} 2 F G9:17:12
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ONE - DIMENSIONAL CONSOLIDATION

5 Dec 198‘4”——“|

Sample No. EXAMPLE Spec No. 51 Spec Size 4.25X1.25 ins UNDISTURBED

Class Symbcl CL Hole No. DH-282 Depth 1.5-5.2 ft. Feature

INITIAL MARX LOAD 15:18:36
Void Ratio .456 .301
Dry Unit Wt - 1bf/ft3 115.3 129.08
Moisture Content 13.2% 11.2%
Degree of Saturation ?7.9% 108.0%
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AXIAL STRAIN — PERCENT

TIME CONSOLIDATION CURVES 5 Dec 1984
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Class Symbol CL Hole No. DH-282 Depth 1.5-5.2 ft. Feature
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VOID RATIO

ONE - DIMENSIONAL CONSOLIDATION (E LOG P PLOT)
analytical method graphical method
MINIMUM Pc(A) 35.1(1b/in2} MINIMUM Pc(R)
PROBABLE Pc(B) 41.7(1bf/1n2 PROBABLE Pc(b)
MAXIMUM Pc(C) 113.7(C1bf/1n2 MAXIMUM Pc(C)

35.1(1bsin2)
63.9(C1bf/in2
113.7Clbfsin2

FIELD INDEX(F) .13 FIELD INDEX(f) .142
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Sample No. EXAMPLE Spec No. S1 Spec Size 4.25X1.25 ins UNDISTURBED
Class Symbol CL Hole No. DH~282 Depth 1.5-5.8 ft. Featurs
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MINIMUM RADIUS(analytical)
MINIMUM RADIUS(graphical)
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& Dec 1984 18:81:24

RESULTSCE LOG P2

SAMFLE MWO. EXAMFLE

AHALYTICAL METHOD

MIMIMUM
FRECOMSOLIDATION STRESSCIBE-<ingi 5.1
YOID RATIO AT PRECOMSOLIDATION 458
OVERCOMSOLIDATION RATIO F=1s

LAE COMPRESSIOH IMDEX = 12
COMPRESSION RATIO = . B2E
REEOUND INDE= = 819
FIELD COMPRESSION IMDER = 1328
GRAFPHICAL METHOD

MIMIMUM
FRECOWSOLIDRTION STRESSIIb{<inZh 2501
YOID RATIO AT FRECONSOLIDATION LA5E
OVYERCOMSOLIDATION RATIO .7EH
LAE COMPRESSION INDEX = 128
COMPRESSIONM RATIO = . B2
REEOUHD IHDEX = LB19
FIELD COMPRESSIOH IMDEX = 142
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VOID RATIO

ONE — DIMENSIONAL CONSOLIDRTION (E LOG P PLOT) 6 Dec 1984
visual method 10:22:51
MINIMUM fc(A) 35.1(b’in2)
PROBABLE Pc(B) 48.9(1bf/in2
MAXIMUM fPc(C) 113.7201bf/1n2

FIELD INDEX(F) .134
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PRESSURE. — (lbf/in2)

Sample No. EXAMPLE Spec No. 51 Spec Size 4.25X1.25 ins UNDISTURBED
Class Symbol CL Hole No. DH-282 Depth 1.5-5.8 ft. Feature
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VMISUAL METHOD
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FRECOMSOLIDATION STRESSCIbF - ind) 5.1 458.9 113.7
VOID RATIO AT PRECOHSOLIDARTION 456 - dEE 3R

OVMERCOMSOLIDATION RRTIO =1 1.836 2.9ev7

LAE COMFPRESSION INDEX = 12

COMPRESSION RATIO = . BEE

FEBOUMD IMIDEX = 813

FIELD COMPRESSION IMDER = 134
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AXIAL STRAIN - PERCENT

I . . N — P
Load = 408 1bf/in2 TIME CONSOLIDATION CURVES 12129104
Method Coef of Consol Coef of Perm u% 8% 50% 70% 108%
Graphic . 00050 (cm2/sec) 9.537E-1@(cm/sec) Strain 6.8 7.9 8.3 9.8
Tima(s) 3 846 2781 12233
Infiection .22034(cm2/sec) 6.523E-10(cm/sac) Strain 6.8 7.9 8.3 9.9
Time(s) 3 846 2518 1657@
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AXIAL STRAIN -

TIME CONSOLIDATION CURVE
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Class Symbol CL Hole No. DH-282 Depth 1.5-5.8 ft. feature
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Mission of the Bureau of Reclamation

The Bureau of Reclamation of the U.S. Department of the Interior is
responsible for the development and conservation of the Nation’s
water resources in the Western United States.

The Bureau’s original purpose “‘to proviae for the reclamation of arid
and semiarid lands in the West” today covers a wide range of interre-
lated functions. These include providing municipal and industrial water
supplies; hydroelectric power generation, irrigation water for agricul-
ture; water quality improvement, flood control, river navigation, river
regulation and control; fish and wildlife enhancement; outdoor recrea-
tion, and research on water-related design, construction, materials,
atmospheric management, and wind and solar power.

Bureau programs most frequently are the result of close cooperation
with the U.S. Congress, other Federal agencies, States, local govern-
ments, academic institutions, water-user organizations, and other
concerned groups. -

A free pamphlet is available from the Bureau entitled ‘’Publications
for Sale.” It describes some of the technical publications currently
available, their cost, and how to order them. The pamphlet can be
obtained upon request from the Bureau of Reclamation, Attn D-922,
P O Box 25007, Denver Federal Center, Denver CO 80225-0007.






