GR-84-15

45.7

.R4

1984

No.GR-84-15

ADJUSTMENT OF AUTOMATIC COMPACTION DEVICES TO ACHIEVE UNIFORM RAMMER COVERAGE

December 1984 Engineering and Research Center

U.S. Department of the Interior

Bureau of Reclamation Division of Research and Laboratory Services Geotechnical Branch

LIBRAR

MAY 1 3 1985		EPORT STANDARD TITLE PAGE
Bureau of Recla	1. REPORT NO. 2. GOVERNMENT ACCESSION NO. TRAINING R-84-15	3. RECIPIENT'S CATALOG NO.
Denver, Color	4. TITLE AND SUBTITLE Adjustment of Automatic Compaction Devices	5. REPORT DATE December 1984
	to Achieve Uniform Rammer Coverage	6. PERFORMING ORGANIZATION CODE D-1541
	7. AUTHOR(S) SVaughan D. Goldsmith DeWayne A. Campbell S	8. PERFORMING ORGANIZATION REPORT NO. GR-84-15
	9. PERFORMING ORGANIZATION NAME AND ADDRESS Bureau of Reclamation	10. WORK UNIT NO.
	Engineering and Research Center Denver, CO 80225	11. CONTRACT OR GRANT NO.
	12. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED
	Bureau of Reclamation Engineering and Research Center	
	Denver, CO 80225	14. SPONSORING AGENCY CODE
	15. SUPPLEMENTARY NOTES	DIBR
	Microfiche and/or hard copy available at the Engineering an Colorado.	nd Research Center, Denver, Editor:REC(c)
	16. ABSTRACT	
	the rotational adjustment. Adjustments that produced from lution yielded acceptable results, with 8.33 blows per reve Adjustment of the equipment to achieve 8.33 blows per simple seven-step procedure.	olution the recommended value.
	17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS soil testing/ Proctor compaction/ *auton *auton	natic compaction device/
	*compaction equipment/ *compaction tests/ compaction	
	b. IDENTIFIERS	
	c. COSATI Field/Group O8M COWRR: 0813	SRIM:
	18. DISTRIBUTION STATEMENT	19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) UNCLASSIFIED 23
		20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED

ADJUSTMENT OF AUTOMATIC COMPACTION DEVICES TO ACHIEVE UNIFORM RAMMER COVERAGE

by

Vaughan D. Goldsmith DeWayne A. Campbell

Geotechnical Branch Division of Research and Laboratory Services Engineering and Research Center Denver, Colorado

December 1984

UNITED STATES DEPARTMENT OF THE INTERIOR

★

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

The information contained in this report was developed for the Bureau of Reclamation; no warranty as to the accuracy, usefulness, or completeness is expressed or implied.

CONTENTS

Page

Introduction	1
Terminology	1
Conclusions	1
Recommendations	2
Equipment	2
Previous recommendations from various sources	2
Testing program	3
Test results	4
Equipment adjustment	5
Bibliography	6
Appendix-Compaction test data sheets	13

TABLES

Table

1	Test soils	3
2	Maximum dry unit weight and optimum moisture content produced by various rammer	
	coverage settings	4

FIGURES

Figure

Compaction curves for CL-ML soil	7
Compaction curves for CL soil	
Compaction curves for CH soil	9
Spacer rod adjustment and detail	11
	Compaction curves for CH soil Matchmark locations

INTRODUCTION

Inquiries were received concerning the adjustment of automatic compaction devices to achieve proper coverage by the rammer in the compaction mold. The devices used at the Engineering and Research Center laboratory, have traditionally been set at 8 blows per revolution, but available information on proper rotational adjustment was inconsistent. A study was made so that USBR (Bureau of Reclamation) automatic compaction devices could be adjusted consistently and correctly.

TERMINOLOGY

The term "automatic compaction device" refers to a mechanical device used to perform the laboratory (Proctor) compaction test by automatically applying blows from a 2.000-in (50.80-mm) diameter, 5.50-lbm (2.49-kg) rammer to the soil in a 4.000-in (101.6-mm) diameter compaction mold. One of two methods is used to obtain uniform coverage of the rammer on the surface of each soil specimen. The first method uses a fixed rammer location with a compaction mold that rotates either automatically or manually. The second method uses a fixed compaction mold with a rammer that rotates automatically. In both methods, the rammer impacts the soil around the periphery of the compaction mold. The automatic compaction device with the rotating rammer is described in this report; nevertheless, the concepts in this report dealing with uniform coverage apply to both types of devices.

In this report the phrase "blows per revolution" is used irrespective of the compaction method. Therefore, an automatic compaction device adjusted to produce 8 blows per revolution delivers 8 equally spaced blows (45 degrees of rotation between adjacent blows) around the periphery of the compaction mold in one 360-degree cycle for both types of device.

CONCLUSIONS

1. Automatic compaction device settings that result in approximately 6 to 10 blows per revolution yield test results within the precision and accuracy limitations prescribed by ASTM (American Society for Testing and Materials) for the laboratory compaction test.

2. A setting that yields 8.33 blows per revolution is relatively simple to obtain and results in an even 25 blows in three revolutions while not impacting the same location twice.

RECOMMENDATION

Automatic compaction devices should be adjusted to obtain 8.33 blows per revolution as described in this report.

EQUIPMENT

The equipment used in this study was the Rainhart Series 662 Automatic Tamper. This device is used in many USBR laboratories. It compacts soil in a 4.000-in (101.6-mm) diameter mold using a 2.000-in (50.80-mm) diameter rammer. The mold has a volume of 1/20 ft³ (1416 cm³), which is larger than the 1/30-ft³ (944-cm³) mold specified by ASTM [1]*. The 5.50-lbm (2.49-kg) rammer is dropped from a height of 18.0 in (457 mm), which is greater than the 12.0 in (305 mm) drop used by ASTM. The combined effect of a larger mold and a greater drop results in soil specimens subjected to the same input of energy as obtained with the ASTM procedure (12,375 ft-lbf/ft³ (5.925 X 10⁵ N·m/m³)).

PREVIOUS RECOMMENDATIONS FROM VARIOUS SOURCES

As a first step in this investigation, a number of sources were consulted to determine existing recommendations regarding the adjustment of automatic compaction devices. We discovered that these recommendations were inconsistent and too general in nature.

ASTM standards [1] state (in both Designation D 698-78 "Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 5.5-lb (2.59-kg) Rammer and 12-in. (305-mm) Drop," and Designation D 1557-78, "Moisture-Density Relations for Soils and Soil-Aggregate Mixtures Using 10-lb (4.54-kg) Rammer and 18-in. (457-mm) Drop)": "The rammer shall operate mechanically in such a manner as to provide uniform and complete coverage of the specimen surface." No mention of the subject is made in ASTM D 2168-80, "Calibration of Mechanical Soil Compactors."

The Corps of Engineers [2] states "A mechanical compactor may be used as an alternative to the hand rammer provided its design permits each drop of the rammer to fall on a different area of the surface of the soil sample and the entire surface area to be uniformly compacted."

^{*} Numbers in brackets refer to entries in the bibliography.

Personnel with the Corps of Engineers' Waterways Experiment Station revealed that they typically set their automatic compaction devices for eight blows per revolution, but had not studied the adjustment of these devices.

The Operating and Service Manual for the Rainhart Series 662 Automatic Compactor [3] states "Generally, if the blows overlap about 20 percent to 25 percent, the resulting densities will approximate those obtained using proper manual compaction." However, contacts with the Rainhart Company indicated that their 20-to 25-percent overlap recommendation was based on a study performed by the Texas Highway Department using a 6-in-diameter mold and a "pie-shaped" rammer. Therefore, their recommendation is not directly applicable to the USBR procedure.

The USBR [4] recommends that "The blows shall be uniformly distributed over the surface of the layer." A check of several automatic compaction devices used in USBR laboratories revealed that the machines had been adjusted to deliver from 7 to 10 blows per revolution. The consensus was that 8 blows per revolution was the most commonly used setting. However, a setting of 8 blows per revolution does not strictly satisfy the requirement of "uniform coverage" because the rammer strikes in the same location on successive revolutions. This leaves areas around the periphery of the mold that are never directly impacted by the rammer.

TESTING PROGRAM

A limited testing program was planned to investigate three different soils and three different compactor settings.

The three soils selected for testing exhibited a fairly wide range of characteristics to represent varied field conditions. The characteristics of these soils are summarized in table 1.

	Table 1. – Test so	bils.		
Sample no.	23J-2	24G-103	55T-90	
Laboratory classification	CL-ML	CL	СН	
Typical name	Silty sand	Sandy clay	Fat clay	
Liquid limit	25	27	68	
Plasticity index	3	15	46	
Percent sand	10	35	5	
Percent fines	90	65	95	
Specific gravity	2.66	2.68	2.70	

The solution expected to achieve the best results was to adjust the automatic compaction devices to deliver 8.33 blows per revolution. This setting has several advantages over other possible

3

settings:

1. Three complete revolutions result in the required 25 blows. This permits simple adjustment of the compaction device. This adjustment is described later in this report.

2. During each revolution, blow locations are offset from the location of the blow in the previous revolution by ¹/₃ diameter of the rammer. This results in the most uniform coverage possible for 25 blows in a three-rotation cycle.

3. A setting of 8.33 blows per revolution is not greatly different from the settings commonly used in most laboratories.

In addition, a 6.25-blows per revolution setting was chosen because its deviation from 8.33 was approximately equal to that of the 6.25 setting.

The compaction apparatus used in this study was visually inspected and found to be in proper working order. The height of drop and weight of rammer were properly calibrated. The compactor was ''warmed up'' for 5 min before each test series. The soils were prepared and tested in accordance with *Earth Manual* Designation E-11 [4].

TEST RESULTS

A series of tests was performed on each soil using each of the rammer coverage settings. The results are shown in table 2 and on figures 1, 2, and 3. The appendix contains the test data sheets.

Sample No.	23.	23J-2		103	55T-90		
Blows per revolution	Maximum dry unit weight lbf/ft ³	Optimum moisture content %	Maximum dry unit weight lbf/ft ³	Optimum moisture content %	Maximum dry unit weight Ibf/ft ³	Optimum moisture content %	
6.25 8.33 10.5	113.9 113.9 113.4	11.6 11.6 11.7	120.1 120.0 118.9	12.1 12.0 12.2	89.9 89.2 89.0	28.6 28.9 29.3	
Maximum range 0.4 of two results, expressed as percent of nean value*		0.9	1.0	1.7	1.0	2.4	

Table 2. - Maximum dry unit weight and optimum moisture content produced by various rammer coverage settings.

* ASTM Designation D 698-78 [1] states that for single operator precision the acceptable range of any two results, expressed as a percentage of the mean value, should not exceed 1.9 and 9.5 for maximum unit weight and optimum moisture content, respectively.

Although the data are limited, the values of maximum dry unit weight and optimum moisture content for each soil are well within the limits of acceptable precision and accuracy described by ASTM D 698-78 [1]. Altering the number of blows per revolution (at least within the range between 6.25 and 10.5) seems to have little affect on the measured compaction characteristics of soil.

Nevertheless, we recommended that automatic compaction devices be adjusted to provide approximately 8.33 blows per revolution because this adjustment is relatively simple to make, is close to the settings already in use, and results in uniform coverage of the compaction specimen.

EQUIPMENT ADJUSTMENT

Adjustment of the Rainhart Series 662 Automatic Tamper to achieve 8.33 blows per revolution is relatively simple. The procedure is described below.

1. Place a rag, soil, or similar soft material in the mold and operate the machine for a few cycles. Always keep the switch in the "OFF" position while the machine is not in operation.

2. Remove the collar assembly.

3. Place a matchmark on the top edge of the mold and on the top of the rammer head (see fig. 4). Make sure these marks can be easily seen when the machine is not in operation. This may be accomplished by inserting enough soil or other soft material into the mold so that while the rammer is resting on the soft material, the top of the rammer will be at approximately the same elevation as the top of the mold.

4. Match the marks on the mold and the rammer head and operate the machine through one 25-blow cycle to check the rotation. At 8.33 blows per revolution and 25 blows per cycle, the rammer head should make three complete revolutions, after which the marks should again match, within a tolerance of ± 1 in (25 mm). See figure 4 for an example of how to measure this tolerance.

5. Reset the marks to match and repeat the test. If the test is within tolerance on three consecutive trials, the machine needs no adjustment. If the tolerance is not met, adjustment of the rotation is required.

6. The amount of overlapping of blows is controlled by the angle of the spacer rod (see fig. 5), which establishes the amount of rotation. Adjustment of the bottom of the spacer rod towards the column will increase the amount of overlap. Conversely, adjustment of the bottom of the spacer rod away from the column will decrease the amount of overlap. Some experimentation may be necessary to arrive at the correct adjustment. Loosen the

5

handnut at the bottom of the spacer rod and slide the rod towards or away from the column as necessary.

7. Tighten the handnut and repeat the test. Repeat this procedure until recommended tolerances are met.

The rotation of the rammer should be checked and reset, if necessary, each time the machine is calibrated.

BIBLIOGRAPHY

- *1984 Annual Book of ASTM Standards*, vol. 04.08, Soil and Rock; Building Stones, Designation D 698-78, "Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using a 5.5-lb (2.59-kg) Rammer and 12-in. (305-mm) Drop", American Society for Testing and Materials, 1984.
- [2] *Engineering Manual EM 1110-2-1906, Laboratory Soils Testing,* Department of the Army, Office of the Chief of Engineers, Washington, D.C., 1970.
- [3] Rainhart, Operating and Service Manual, Automatic Tamper, Series 662, 3rd ed.
- [4] Earth Manual, 2d ed., Bureau of Reclamation, U.S. Government Printing Office, Washington, D.C., 1974.

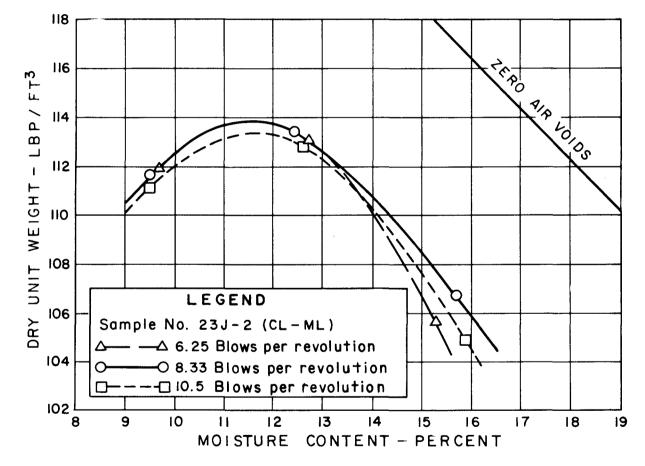


Figure 1. - Compaction curves for CL-ML soil.

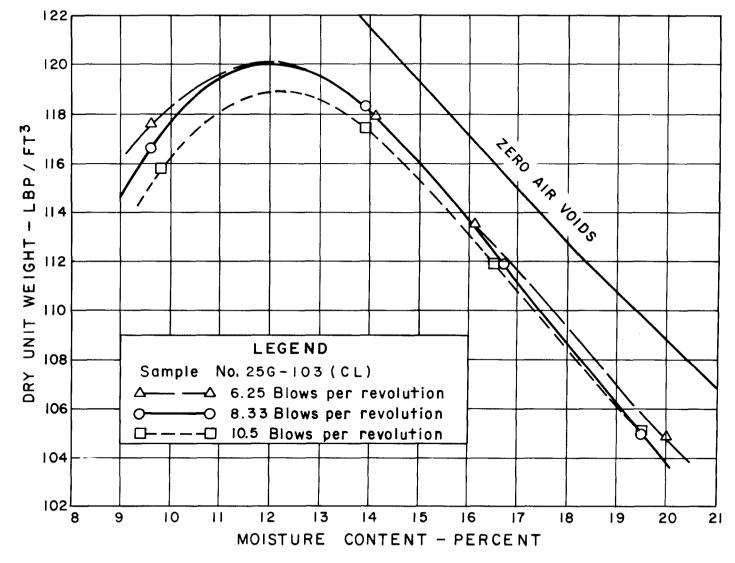
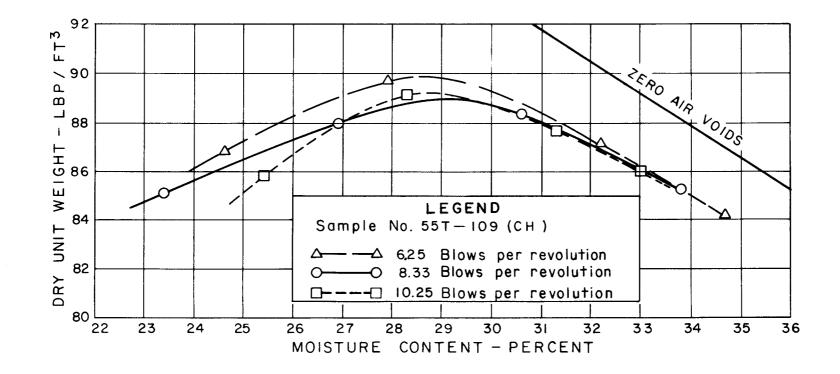



Figure 2. - Compaction curves for CL soil.

ω

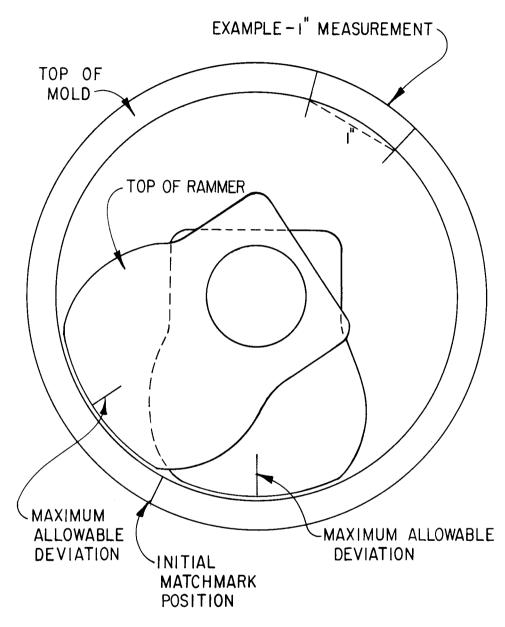


Figure 4. - Matchmark locations.

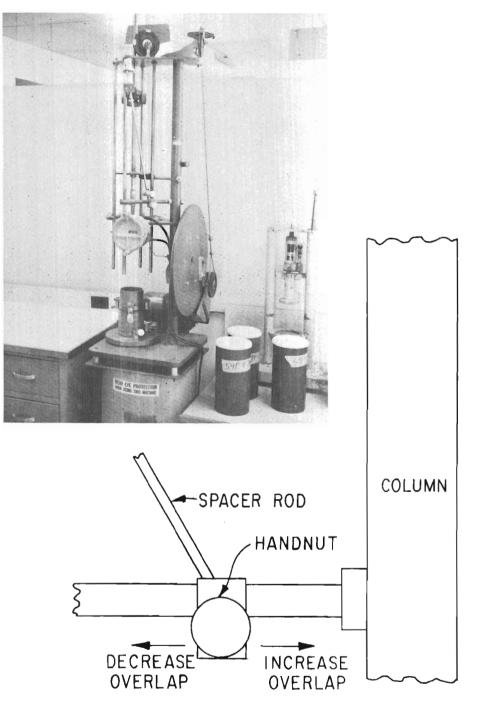


Figure 5. - Spacer rod adjustment and detail.

APPENDIX Compaction Test Data Sheets

PROCTOR COMPACTION TEST

ROJECT		FEATURE	<u> </u>			SAMPLE NO	35-2
ESTED BY V. GOLOSMITH							
EGREE OF COMPACTION, PROCTOR ST	TANDARD 🔀 OR MOD	IFIED	IF MODIFIE	D, SHOW REL	ATED INFOR	MATION AS FOLLOW	s:
LOWS PER LAYER	NO. OF	LAYERS			EIGHT OF D	ROP	in
EIGHT OF TAMPING ROD	1b		vo	LUNE OF CYL	. I NDER	. 04974	cu f
TEST NO.	I 2	3	4	5	6	7	8
	DE	NSITY DETERM	INATIONS		1	···· I	
WATER ADDED (cc)	100	200	300		1		
WT CYL. + WET SOIL (+++) 9		5936			1		
WT OF CYLINDER (1) 9		3059					
WT OF WET SOIL (++) q		2877			1		
WT DENSITY (pcf)		127.5					
	PENETRATIC	ON RESISTANCE	DETERMINATI	ONS	4		
NEEDLE NO.							<u></u>
AREA OF NEEDLE (sq in.)		NA					
AVERAGE READING (16)							
PENETRATION RESIST. (psi)							
	WAT	ER CONTENT D	ETERMINATION	IS	_		
DISH NO.	30	202	96				
WT DISH + WET SOIL	619.0	621.5	539.0				
WT DISH + DRY SOIL		570.5					
WEIGHT OF DISH		169.9	1				
WEIGHT OF WATER	41.3	51.0	50.8				
WEIGHT OF DRY SOIL		T	331.0	2			
WATER CONT. (% DRY WT)			15.3				
DRY DENSITY (pcf)	111.9	113.1	105.7				
çu	ESTIONS TO ANSWER FI	ROM OBSERVAT	ONS BY OPERA	TORS DURIN	G TEST	4 4 4	
I. HOW FAST DOES SAMPLE ABSO	RB WATER? FAST	ſ	MED	IUM		SLOW	<u> </u>
2. IS DIFFICULTY ENCOUNTERED	IN MIXING WATER WIT	TH SOIL?					
3. ARE PENETRATION NEEDLE RE	ADINGS RELIABLE?						
4. AT WHAT TEST NOS. IS SAMP	LE CRUMBLY?		FIRM?			\$0FT?	
5. WAS BLEEDING NOTICED DURI	NG TEST?	I F	SO, WHAT TE	ST NOS.?			
6. AT WHAT TEST NOS. IS SAMP	LE SPONGY?		;				
7. OTHER COMMENTS 6.24	5 BLOWS	PERR	EVOLUT	TION			
· · · · · · · · · · · · · · · · · · ·	_	·					

U. S. GPO: 1976-777-007/1222 Region No. 8

PROCTOR COMPACTION TEST

ESTED BY V. GOLDSMITH	COMPUTED BY V. G	OLDSMIT	TH CHECKED BI	M. K	a pps	DATE 6/	6/23
EGREE OF COMPACTION, PROCTOR STA	NDARD X OR MOD	IFIED	IF MODIFIED,	, SHOW REL	ATED INFORM	ATION AS FOLLO	WS:
LOWS PER LAYER		LAYERS		н	EIGHT OF DR	OP	i
EIGHT OF TAMPING ROD			VOLU	JME OF CYL	INDER	24974	cu 1
TEST NO.	2	3	4	5	6	7	8
· · · ·	DE	NSITY DETERM	INATIONS		1		
WATER ADDED (cc)	100	z∞	300				
WT CYL. + WET SOIL (1+)9	5816	5936	5844				
WT OF CYLINDER (++)-9		3059					
WT OF WET SOIL (+++)-9		2877				-	
WT DENSITY (pcf)		127.5			1	1	···· - · · · · · · · · · · · · · · · ·
			DETERMINATION	NS .	.		
NEEDLE NO.					1		
AREA OF NEEDLE (sq in.)		N/A					
AVERAGE READING (16)							
PENETRATION RESIST. (psi)					1		
	WATE	R CONTENT D	ETERMINATIONS		- h		
DISH NO.	153	181	L14				
WT DISH + WET SOIL	556.8	\$43.0	486.0				
WT DISH + DRY SOIL	522.3	501.2	437.2				
WEIGHT OF DISH	161.0	165.3	126.1				
WEIGHT OF WATER	34.5	41.8	48.8				
WEIGHT OF DRY SOIL	361.3	335.9	311.1				
WATER CONT. (% DRY WT)	9.5	12.4	15.7				
DRY DENSITY (pcf)	111.6	113.4	106.7				
QUES	TIONS TO ANSWER FR	OM OBSERVATI	ONS BY OPERATO	DRS DURING	TEST	· · · · · · · · · · · · · · · · · · ·	
I. HOW FAST DOES SAMPLE APRORR	WATER? FAST		MEDIL	JM		SLOW	
2. IS DIFFICULTY ENJUNTERED I	N MIXING WATER WIT	H SOIL?	·····		<u>-</u> ,		
3. ARE PENETRATION NEEDLE READ	INGS RELIABLE?						
4. AT WHAT TEST NOS. IS SAMPLE	CRUMBLY?		FIRM?			SOFT?	
5, WAS BLEEDING NOTICED DURING	TEST?	IF	SO, WHAT TEST	r nos.?			
6. AT WHAT TEST NOS. IS SAMPLE	SPONGY?					· · · · · · · · · · · · · · · · · · ·	
7. OTHER COMMENTS 8.3	3 BLOW	S PER	e revo	LUTIO	N		

U. S. GPO: 1976-777-007/1222 Region No. 8

PROCTOR COMPACTION TEST

PROJECT		FEATURE				SAMPLE NO.	23J-Z
ESTED BY V. GOLDSMITH	COMPUTED BY V. G	OLDSMI	THI CHECKED E	Y M.L	NIPPS	DATE 6/6	: 183
EGREE OF COMPACTION, PROCTOR STA							
LOWS PER LAYER	NO. OF	LAYERS		н	EIGHT OF DR	OP	ir
EIGHT OF TAMPING ROD						4974	
TEST NO.	2	3	ų	5	6	7	8
	DE	NSITY DETERM	INATIONS		· · · · · · · · · · · · · · · · · · ·		·
WATER ADDED (cc)	100	200	300				
WT CYL. + WET SOIL (++)9		5924					
WT OF CYLINDER (++)- 9		3059					
WT OF WET SOIL (+++)-		2865					
WT DENSITY (pcf)		127.0					
	PENETRATIO	N RESISTANCE	DETERMINATIO	DNS	.		L
NEEDLE NO.							
AREA OF NEEDLE (sq in.)		NIA			1		
AVERAGE READING (16)					+		
PENETRATION RESIST. (psi)							
	WATE	R CONTENT D	ETERMINATIONS	<u></u>	±		L
DISH NO.	59	17	220				
WT DISH + WET SOIL	552.0	596.8	586.0				
WT DISH + DRY SOIL		545.0		-			
WEIGHT OF DISH			158.2				
WEIGHT OF WATER			58.6				
WEIGHT OF DRY SOIL			369.2				
WATER CONT. (% DRY WT)		12.6					
DRY DENSITY (pcf)	111.1	112.8	104.9				
QUES	TIONS TO ANSWER FR	OM OBSERVATI	ONS BY OPERAT	TORS DURING	TEST		
I. HOW FAST DOES SAMPLE ABSORB	WATER? FAST		MED I	UM		SLOW	
2. IS DIFFICULTY ENCOUNTERED I	N MIXING WATER WIT	H SOIL?					
3. ARE PENETRATION NEEDLE READ	INGS RELIABLE?			_			
4. AT WHAT TEST NOS. IS SAMPLE	CRUMBLY?		F1RM?			SOFT?	
5. WAS BLEEDING NOTICED DURING	TEST?	IF	SO, WHAT TES	ST NOS.?			
6. AT WHAT TEST NOS. IS SAMPLE	SPONGY?						
7. OTHER COMMENTS 10.5	BLOWS	PER	DEVOLU	TION			
······································							

U.S. GPO+ 1976-777-007/1222 Region No. 8

PROCTOR COMPACTION TEST

ROJECT ESTED BY V. GOLDSMITH	COMPUTED BY	DOLDSM!	CHECKED	BY M.K.	, ipps	DATE 6/6	183
EGREE OF COMPACTION, PROCTOR STA	NDARD X OR MOD	IFIED	IF MODIFIE	D, SHOW RELA	TED INFORMA	TION AS FOLLOW	\$:
LOWS PER LAYER	NO. OF	LAYERS		HE	GHT OF DRC)P	in
EIGHT OF TAMPING ROD						04974	
TEST NO.	2	3	4	5	6	7	8
	DÉ	NSITY DETERN	INATIONS				
WATER ADDED (cc)	300	400	500	600			
WT CYL. + WET SOIL (10)9		6093					
WT OF CYLINDER (15) 9		3059					
WT OF WET SOIL (1)		3034					
WT DENSITY (pcf)		134.5					
		N RESISTANCE				_11.	
NEEDLE NO.							
AREA OF NEEDLE (sq in.)		N	A				
AVERAGE READING (16)						++-	
PENETRATION RESIST. (psi)							
	WATE	R CONTENT DI	L	s	·	<u></u>	
DISH NO.	50	L14	220	<9			
WT DISH + WET SOIL		588.6				++	
WT DISH + DRY SOIL		531.6					
WEIGHT OF DISH	-	126.1	1				<u> </u>
WEIGHT OF WATER		57.0					
WEIGHT OF DRY SOIL]		++	
WATER CONT. (% DRY WT)		405.5	T		· · · · · · · · · · · · · · · · · · ·	+ +	
		14.1	1			+	
DRY DENSITY (pcf)		117.9	• · · · • • • • • • • • • • • • • • • •				
	TIONS TO ANSWER FR						
I. HOW FAST DOES SAMPLE ABSORB							
2. IS DIFFICULTY ENCOUNTERED I							
3. ARE PENETRATION NEEDLE READ				· · · · · · · · · · · · · · · · · · ·			
4. AT WHAT TEST NOS. IS SAMPLE	CRUMBLY?		FIRM?	·	S	OFT?	
5. WAS BLEEDING NOTICED DURING	TEST?		SO, WHAT TE	ST NOS.7			
6. AT WHAT TEST NOS. IS SAMPLE				<u>-</u>			<u></u>
7. OTHER COMMENTS 6.25	BLOWS P	ER RE	VOLUTIO				

U. S. GPO: 1976-777-007/1222 Region No. 8

PROCTOR COMPACTION TEST

roject ested by <u>V. Golosmith</u>		FEATURE				SAMPLE NO.	246-103
ESTED BY V. GOLOSMITH	COMPUTED BY V. C	<u>so Losmi</u>	1 CHECKED	вү <u>М. К</u>	NIPPS	DATE	6/6/83
EGREE OF COMPACTION, PROCTOR ST	INDARD X OR MOD	IFIED	IF MODIFIE	D, SHOW RELA	TED INFORM	ATION AS FOL	LOWS:
LOWS PER LAYER	NO. OF	LAYERS		HE	IGHT OF DR	OP	in.
EIGHT OF TAMPING ROD	1b		vo	LUME OF CYLI	NDER	04974	cu fi
TEST NO.	1 2	3	4	5	6	7	8
		NSITY DETERN	INATIONS				
WATER ADDED (cc)	300	400	500	600			
WT CYL. + WET SOIL (+++ q			6004				
WT OF CYLINDER (1) 9			3059			_	
WT OF WET SOIL (+++)-9			2945			+	
WT DENSITY (pcf)			130.5			-	
			DETERMINATI			1	I
NEEDLE NO.							
AREA OF NEEDLE (sq in.)		N	A			-+	
AVERAGE READING (15)			<i>c</i>			-+	
PENETRATION RESIST. (psi)						-	
	WATE	R CONTENT D	ETERMINATION	s		_ <u></u>	I
DISH NO.	153	17	153	96			
WT DISH + WET SOIL			601.4				
WT DISH + DRY SOIL			538.4				
WEIGHT OF DISH			160.8			-	_
WEIGHT OF WATER			63.0				
WEIGHT OF DRY SOIL			377.6	_	· · · · · · · · · · · · · ·		
WATER CONT. (% DRY WT)			16.7			-	-
DRY DENSITY (pcf)			111.8			1	
	STIONS TO ANSWER FR			·			
I. HOW FAST DOES SAMPLE ABSORE							
2. IS DIFFICULTY ENCOUNTERED I			1, <u>2</u> 1, 1	,			
3. ARE PENETRATION NEEDLE READ	NGS RELIABLE?						
4. AT WHAT TEST NOS. IS SAMPLE	CRUMBLY?		FIRM?			SOFT?	
5. WAS BLEEDING NOTICED DURING							
6. AT WHAT TEST NOS. IS SAMPLE							
7. OTHER COMMENTS 8.33			OUTIO	N			······································
							····

+ U. S. GPO/ 1976-777-007/1222 Region No. 8

PROCTOR COMPACTION TEST

PROJECT		FEATURE	·······		<u></u>	SAMPLE NO. Z	246-103
project tested by <u>V. Golosmit</u>	H COMPUTED BY V. G	OLDSMIT	CHECKED	BY M. K	in	DATE	6/83
DEGREE OF COMPACTION, PROCTO	r standard 🔀 or mod	IFIED	IF MODIFIE	D, SHOW RELA	TED INFORMA	TION AS FOLL	DWS:
BLOWS PER LAYER	NO. OF	LAYERS		HE	GHT OF DRO	P	in.
WEIGHT OF TAMPING ROD	16		VO	LUME OF CYLII	IDER <u>. C</u>	4974	cu ft
TEST NO.	I 2	3	4	5	6	7	8
	DE	NSITY DETERN	INATIONS				
WATER ADDED (cc)	300	400	ടമ	600			
WT CYL.+ WET SOIL (++)9	5928	6076	6000	5893			
WT OF CYLINDER (+++)9		3059					
WT OF WET SOIL (16) 9		3017					
WT DENSITY (pcf)		133.7					
		N RESISTANCE				· * ····	4
NEEDLE NO.						1	
AREA OF NEEDLE (sq in.)		N	A				
AVERAGE READING (16)					· · · · · · · · · · · · · · · · · · ·	+	
PENETRATION RESIST. (psi)						-	
	WATE	ER CONTENT DE	TERMINATION	IS			±
DISH NO.	30	202	181	31			
WT DISH + WET SOIL	610.2	637.1	641.1	640.3			
WT DISH + DRY SOIL	569.7	580.2	573.7	561.0			
WEIGHT OF DISH	153.7	170.4	165.5	153.8			
WEIGHT OF WATER	40.5	56.9	67.4	79.3			
WEIGHT OF DRY SOIL		409.8	1				
WATER CONT. (% DRY WT)		13.9					
DRY DENSITY (pcf)		117.4					
	QUESTIONS TO ANSWER FR	· · · · · · · ·			TEST	4 ,	
I. HOW FAST DOES SAMPLE	ABSORB WATER? FAST	ſ	MED) i UM		SLOW	
2. IS DIFFICULTY ENCOUNTS	ERED IN MIXING WATER WIT	TH SOIL?					
3. ARE PENETRATION NEEDL	E READINGS RELIABLE?	. <u></u>					
4. AT WHAT TEST NOS. IS	SAMPLE CRUMBLY?		FIRM?_		5	SOFT?	
5. WAS BLEEDING NOTICED	DURING TEST?	IF	SO, WHAT TE	EST NOS.7			
6. AT WHAT TEST NOS. IS	SAMPLE SPONGY?	<u>.,,,</u>					
7. OTHER COMMENTS).5 BLOWS	PER	REVOL	UTION			
	<u> </u>	·					
						۰ <u>۰۰۰</u>	

₩ U.S. GPO- 1976-777-007/1222 Region No. 8

.

PROCTOR COMPACTION TEST

	FEATURE				SAMPLE NO.	55T-90
COMPUTED BY V. C	SOLDSMI	TH CHECKED	вү <u>М. К</u>	<u> </u>	DATE	6/83
IDARD 🔀 OR MOD	IFIED	IF WODIFIE	D, SHOW RELA	TED INFORM	ATION AS FOLL	ows:
NO. OF	LAYERS			GNT OF DR	OP	in
		VO	LUME OF CYLII	IDER C	4974	cu f
2	3	4	5	6	7	8
DE	NSITY DETERM	INATIONS				
600	700	හත	900			
5503	5646	5655	5618			
3059	3059	3059	3059			
108.3	114.7	115.1	113.4			
PENETRATIO	N RESISTANCE	DETERMINATI	ONS			
	N	A				
					-	
WATE	R CONTENT D	ETERMINATION	s		k	<u>ــــــــــــــــــــــــــــــــــــ</u>
203	96	181	50			
469.8	497.8	466.2	481.8			
75.3	95.0	96.8	108.1			
306.1	340.7	300.7	311.3			
86.9	89.7	87.1	84.Z			
TIONS TO ANSWER FR	OW OBSERVATI	ONS BY OPERA	TORS DURING	TEST		.
WATER? FAST		MED	FUM	*	SLOW	
I MIXING WATER WIT	H SOIL?					
NGS RELIABLE?						
CRUMBLY?		FIRM?			SOFT?	
TEST?	IF	SO, WHAT TE	ST NOS.7			······
SPONGY?					·····	
BLOWS	REVOL	UTION				
	COMPUTED BY V. G IDARD OR MOD NO. OF ID ID ID ID ID ID ID ID ID ID	COMPUTED BY V. GOLDSMI NOARD OR MODIFIED NO. OF LAYERS	COMPUTED BY V. GOLDSMITH CHECKED IF MODIFIED IF SO, WHAT TE	COMPUTED BY V. GOLDSMITH CHECKED BY M. C. IF MODIFIED, SHOW RELAT IF MODIFIED, SHOW RELAT IF MODIFIED, SHOW RELAT IF MODIFIED, SHOW RELAT ID VOLUME OF CYLIM 2 <t< td=""><td>COMPUTED BY <u>V. GOLDSMITH</u> CHECKED BY <u>M. K., 1995</u> IDARD OR MODIFIED IF MODIFIED, SHOW RELATED INFORM 10 OF LAYERS</td><td>2 3 4 5 6 7 DEHSITY DETERMINATIONS 600 700 800 900 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</td></t<>	COMPUTED BY <u>V. GOLDSMITH</u> CHECKED BY <u>M. K., 1995</u> IDARD OR MODIFIED IF MODIFIED, SHOW RELATED INFORM 10 OF LAYERS	2 3 4 5 6 7 DEHSITY DETERMINATIONS 600 700 800 900 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

U. S. GPO+ 1976- 777-007/1222 Region No. 8

 $\frac{1}{2}$

Mission of the Bureau of Reclamation

The Bureau of Reclamation of the U.S. Department of the Interior is responsible for the development and conservation of the Nation's water resources in the Western United States.

The Bureau's original purpose "to provide for the reclamation of arid and semiarid lands in the West" today covers a wide range of interrelated functions. These include providing municipal and industrial water supplies; hydroelectric power generation; irrigation water for agriculture; water quality improvement; flood control; river navigation; river regulation and control; fish and wildlife enhancement; outdoor recreation; and research on water-related design, construction, materials, atmospheric management, and wind and solar power.

Bureau programs most frequently are the result of close cooperation with the U.S. Congress, other Federal agencies, States, local governments, academic institutions, water-user organizations, and other concerned groups.

A free pamphlet is available from the Bureau entitled "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request from the Bureau of Reclamation, Attn D-922, P O Box 25007, Denver Federal Center, Denver CO 80225-0007.