GR-81-8

CONCRETE PERFORMANCE IN CRYSTAL DAM, COLORADO: 1-YEAR CORE REPORT

June 1981 Engineering and Research Center

U.S. Department of the Interior Bureau of Reclamation Division of Research Concrete and Structural Branch

1: RECORT NO. 8. GOVERNMENT ACCESSION NO. 6: BEI-B 1: RECORT NO. 6: TITLE AND SUBTITLE 1: SUPPLY Colorado: 1-Year Core Report 7: AUTHOR(S) 1: REFORMING ORGANIZATION CODE 7: AUTHOR(S) 1: PERFORMING ORGANIZATION CODE 7: AUTHOR(S) 1: PERFORMING ORGANIZATION CODE 8: PERFORMING ORGANIZATION NAME AND ADDRESS 10: WORK UNIT NO. Bureau of Reclamation 11: CONTRACT OR GRANIZATION Engineering and Research Center 11: CONTRACT OR GRANIZATION Denver, Colorado 80225 11: TYPE OF REPORT AND PERIOD TIT: SUPPLEMENTARY NOTES 11: SPONSORING AGENCY CODE Microfiche and/or hard copy available at the Engineering and Research Editor - JMT 1: ASPONSORING AGENCY CODE 11: SPONSORING AGENCY CODE 1: SUPPLEMENTARY NOTES 1: SPONSORING AGENCY CODE Microfiche and/or hard copy available at the Engineering and Research Editor - JMT 1: ASPONSORING AGENCY CODE 1: SUPPLEMENTARY NOTES Same 1: SPONSORING AGENCY CODE 1: SUPPLEMENTARY NOTES 1: SPONSORING AGENCY CODE 1: SUPPLEMENTARY NOTES 1: SPONSORING AGENCY CODE 1: SUPPLEMENTARY NOTES 1: TYPE OF REPORT AND PERIOD <th>MS-230 (3-78) Water and Power</th> <th>TECHN</th> <th></th>	MS-230 (3-78) Water and Power	TECHN	
A. TYLE AND SUBTILE 1. REPORT DATE Concrete Performance in Crystal Dam, Colorado: 1-Year Core Report June 1981 Colorado: 1-Year Core Report 5. PERFORMING ORGANIZATION CODE 7. AUTHORIS: 6. PERFORMING ORGANIZATION NAME AND ADDRESS Bureau of Reclamation 11. CONTRACT OR GRANIZATION Engineering and Research Center 11. CONTRACT OR GRANIZATION NAME AND ADDRESS Bureau of Reclamation 11. CONTRACT OR GRANIZATION Egineering and Research Center 11. CONTRACT OR GRANIZATION Denver, Colorado 80225 13. TYPE OF REPORT AND PERIOD 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD Same 14. SPONSORING AGENCY CODE 13. SUPPLEMENTARY MOTES 13. TYPE OF REPORT AND PERIOD Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. Editor - JMT 14. SPONSORING AGENCY CODE 13. TYPE OF REPORT AND PERIOD 15. SUPPLEMENTARY MOTES 11. SPONSORING AGENCY CODE 15. SUPPLEMENTARY MOTES 11. GONTRACT OR GRANIZATION		2. GOVERNMENT ACCESSION NO.	
CONCRETE Performance in Crystal Dam, Colorado: 1-Year Core Report	GR-81-8		
Colorado: 1-Year Core Report Colorado: 2-Core Core Core Core Core Core Core Core			
7. AUTHORIS) 4. PERFORMING ORGANIZATION Thomas A. Gaeto GR-B1-8 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Bureau of Reclamation 11. CONTRACT OR GRANT NO. Engineering and Research Center 11. CONTRACT OR GRANT NO. Denver, Colorado 80225 13. TYPE OF REPORT AND PERIOD T2. SPONSORING AGENCY NAME AND ADDRESS 14. SPONSORING AGENCY CODE Same 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES 14. SPONSORING AGENCY CODE 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. Kev wones AND DO			
Thomas A. Gaeto PERFORMING ORGANIZATION NAME AND ADDRESS Bureau of Reclamation Engineering and Research Center Denver, Colorado 80225 L: SPONSORING AGENCY NAME AND ADDRESS Same L: SPONSORING AGENCY NAME AND ADDRESS Same L: SPONSORING AGENCY NAME AND ADDRESS Same L: SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. L: SPONSORING AGENCY CODE L: SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. L: SPONSORING AGENCY CODE L: SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. L: Supplementary notes Amount of the static of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through Lyear's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed L'spear tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. L's KEY WORDS AND DOCUMENT AMALYSIS DESTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test COSAT/ Field/Gow 138,13M COWRAI303.1 SRIM 508,50C L. DESTIFIERS Crystal Dam/ Colorado River Stor	Colorado: 1-Year	Core Report	6. PERFORMING ORGANIZATION CODE
 PERFORMING ORGANIZATION NAME AND ADDRESS BUREAU OF RECLAMATION NAME AND ADDRESS BUREAU OF RECLAMATION RAME AND ADDRESS BUREAU OF REPORT AND PERIOD COVERED STATE OF REPORT AND PERIOD COVERED STATE OF REPORT AND PERIOD COVERED SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. BURSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strengths increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10⁶ to 4.60 x 10⁶ lb/in²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tesnile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Fiel/Group 138,13M COWRR:1303.1 SRIM 508,50C IDENTIFIENTON STATEMENT DISTRIBUTION STATEMENT 	7. AUTHOR(S)		
Bureau of Reclamation Engineering and Research Center Denver, Colorado 80225 12: SPONSORING AGENCY NAME AND ADDRESS Same 14: SPONSORING AGENCY NAME AND ADDRESS Same 14: SPONSORING AGENCY CODE 15: SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 14: ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed 1-year tensile strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSE a. DESCRIPTORS./MODULUS of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B, 13M COWRR:1303.1 SRIM 508, 50C 14. DESTRIBUTION STATEMENT 15. DESTRIBUTION STATEMENT 16. DESTRIBUTION STATEMENT 17. DESTRIBUTION STATEMENT	Thomas A. Gaeto		
Engineering and Research Center Denver, Colorado 80225 12. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORSModulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. JDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. cosari/feld/Goup 138,13M cowrRe:1303.1 SRIM 508,50C 19. DISTRIBUTION STATEMENT 10. DISTRIBUTION STATEMENT 11. DISTRIBUTION STATEMENT 11. DISTRIBUTION STATEMENT 12. DISTRIBUTION STATEMENT 13. DISTRIBUTION STATEMENT 13. DISTRIBUTION STATEMENT 14.	9. PERFORMING ORGAN	IZATION NAME AND ADDRESS	10. WORK UNIT NO.
Denver, Colorado 80225 13. TYPE OF REPORT AND PERIOD COVERED 14. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS (Modulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B, 13M COWRR:1303.1 SRIM 50B, 50C 14. DISTRIBUTION STATEMENT 15. DESCRIPTORS. CLASSIFIED 16. DISTRIBUTION STATEMENT 17. DESTIFIENTIAL CASSIFIED 18. DISTRIBUTION STATEMENT 18. DISTRIBUTION STATEMENT		-	11. CONTRACT OR GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 19. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 19. are 's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths, for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. Key WORDS AND DOCUMENT ANALYSIS			
12. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT AMALYSIS			
14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS . DESCRIPTORSModulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength mass concrete/ concrete dams/ concret etsts/ cores/ physical properties/ concrete properties/ construction joints 17. NEY WORDS AND DOCUMENT ANALYSIS . DESCRIPTORSModulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ colorado River Storage Project/ Colo./ UC Region/ Iong-time test . COSATI Field/Group I3B,13M COWRR:1303.1 SRIM 508,50C 18. DIS	12. SPONSORING AGENC	Y NAME AND ADDRESS	COVERED
 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo.	Same		
Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. Editor - JMT 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS/Modulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B,13M COWRR:1303.1 SRIM 50B,50C 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [22. PRICE UNCLASSIFIED 20. SECURITY CLASS [21. PRICE UNCLASSIFIED 20. SECURITY CLASS [22. PRICE			14. SPONSORING AGENCY CODE
Microfiche and/or hard copy available at the Engineering and Research Center, Denver, Colo. Editor - JMT 16. ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS/Modulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B,13M COWRR:1303.1 SRIM 50B,50C 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [21. No. OF PAGES 20. SECURITY CLASS [22. PRICE UNCLASSIFIED 20. SECURITY CLASS [21. PRICE UNCLASSIFIED 20. SECURITY CLASS [22. PRICE	15. SUPPLEMENTARY NO)TES	
Center, Denver, Colo. Editor - JMT The ABSTRACT Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS. /Modulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UNCLASSIFIED 18. DISTRIBUTION STATEMENT 19. SECUNITY CLASS [21. NO. OF PAGES 20. SECUNITY CLASS [21. PRICE UNCLASSIFIED			e Engineering and Research
Results of physical properties tests conducted on cores extracted from mass concrete in Crystal Dam for testing at 70 days', 6 months', and 1 year's age indicate good quality, uniform, well-consolidated concrete. This report contains test data through 1 year's age and is a part of a series of reports on long-time evaluations of strength and elastic properties of concrete in major Bureau of Reclamation dams. The average compressive strengths at 6 months and 1 year were 33.7 and 35.0 MPa (4890 and 5080 lb/in ²), respectively, which represent an average strength gain of 3.9 percent. Paralleling the strength increase, the moduli of elasticity also increased slightly from 31.4 to 31.7 GPa (4.55 x 10 ⁶ to 4.60 x 10 ⁶ lb/in ²). Tensile strengths for jointed and nonjointed cores were comparable at 6 months, but the nonjointed 1-year tensile strengths averaged 40 percent higher. Ratios of tensile to compressive strengths were high, indicating good paste-aggregate bond. Discussions of test results, variations, construction joint bond, and Poisson's ratio are also included in the report. 17. KEY WORDS AND DOCUMENT ANALYSIS a. <u>DESCRIPTORS.</u> /Modulus of elasticity/ tensile strength/ Poisson's ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B,13M COWAR:1303.1 SRIM 50B,50C 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS [21. NO. OF PAGES 20. SECURITY CLASSIFIED 20. SECURITY CLASS [21. NO. OF PAGES 21. NO. OF PAGES 22. PRICE UNCLASSIFIED 23. PRICE UNCLASSIFIED			
ratio/ bonding strength/ compressive strength/ mass concrete/ concrete dams/ concrete tests/ cores/ physical properties/ concrete properties/ construction joints b. IDENTIFIERS Crystal Dam/ Colorado River Storage Project/ Colo./ UC Region/ long-time test c. COSATI Field/Group 13B,13M COWRR:1303.1 SRIM 50B,50C 18. DISTRIBUTION STATEMENT 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) 30 20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED	Results of physic mass concrete in 1 year's age ind This report conta series of reports properties of con compressive stren (4890 and 5080 H strength gain of the moduli of ela (4.55 x 10 ⁶ to 4 and nonjointed co 1-year tensile st to compressive st bond. Discussion and Poisson's rat	Crystal Dam for testing at icate good quality, uniform ains test data through 1 yes on long-time evaluations acrete in major Bureau of F ogths at 6 months and 1 yes b/in^2), respectively, which 3.9 percent. Paralleling asticity also increased sli 60 x 10 ⁶ lb/in ²). Tensile ores were comparable at 6 m crengths averaged 40 percer rengths were high, indicat is of test results, variation to are also included in th	70 days', 6 months', and h, well-consolidated concrete. ear's age and is a part of a of strength and elastic Reclamation dams. The average ar were 33.7 and 35.0 MPa h represent an average the strength increase, ightly from 31.4 to 31.7 GPa e strengths for jointed months, but the nonjointed ht higher. Ratios of tensile ting good paste-aggregate ions, construction joint bond, he report.
c. COSATIField/Group 13B, 13M COWRR: 1303.1 SRIM 50B, 50C 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) UNCLASSIFIED 20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED 22. PRICE	ratio/ bonding si dams/ concrete to construction join	crength/ compressive streng ests/ cores/ physical prope nts	gth/ mass concrete/ concrete erties/ concrete properties/
18. DISTRIBUTION STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) UNCLASSIFIED 20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED	UC Region/ long-	ime test	
UNCLASSIFIED 30 20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED			19. SECURITY CLASS 21. NO. OF PAGES
20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED			
UNCLASSIFIED			20. SECURITY CLASS 22. PRICE
	L		UNCLASSIFIED

GR-81-8

CONCRETE PERFORMANCE IN CRYSTAL DAM, COLORADO: 1-YEAR CORE REPORT

by Thomas A. Gaeto

JULIE

Concrete and Structural Branch Division of Research Engineering and Research Center Denver, Colorado June 1981

UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration.

In May of 1981, the Secretary of the Interior approved changing the Water and Power Resources Service back to its former name, the Bureau of Reclamation.

The original work was accomplished using inchpound units and converted to SI metric units.

Frontispiece. - Crystal Dam and Powerplant, Curecanti Unit, Colo. Photo P622C-427-15592 A.

CONTENTS

Page

	ii
ntroduction	1
Conclusions	2
Core extraction and drilling program	3
hipping and receiving	4
hand be the second se	7
Core testing program	4
General	4
Core preparation	5
Density	5
Elastic properties	5
	6
Compressive strength	Ŷ
Tensile strength	6
Core test results	7
Density	7
	7
Elastic properties	_
Compressive strength	7
Tensile strength	8
Bibliography	9

TABLES

Table

300 J 14

1	Summary of results obtained from tests performed on	
	250-mm (10-in) diameter concrete cores - Crystal	
	Dam [SI METRIC UNITS]	11
1A	Summary of results obtained from tests performed on	
	250-mm (10-in) diameter concrete cores - Crystal	
	Dam [INCH-POUND UNITS]	15
2	Summary of test data - Crystal Dam concrete cores	
3	Summary of test data - Crystal Dam concrete cores	
	with and without construction joints	19

FIGURES

Figure

1	Hole locations for 250-mm (10-in) diameter cores -	
	Crystal Dam	21
2	Typical "as-received" condition of 250-mm (10-in)	
	diameter cores - Crystal Dam	23
3	Typical 250-mm (10-in) diameter cores showing a	
	construction joint - Crystal Dam	24
4	Typical 250-mm (10-in) diameter core after tensile	
	strength test - Crystal Dam	25
5	Average moduli of elasticity of mass concrete in	
	Crystal Dam	26
6	Average compressive strength of mass concrete in	
	Crystal Dam	27

CONTENTS - Continued

Figure		Page
7	Ratio of core to companion 28-day cylinder strengths in Crystal Dam	28
8	Average tensile strength of mass concrete in	20
0	Crystal Dam	29
9	Ratio of tensile strengths to companion compressive strengths in Crystal Dam	

2 ° 78

CONTENTS

2

Frontispiece		•			•	•	•	•		•		•					iii
Introduction																	1
Conclusions																	2
Core extraction and drilling program	m.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Shipping and receiving			•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
Core testing program																	4
General																	4
Core preparation		• •	•	•	•	•	•		•	•	•	•	•	•	•	•	5
Density	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Elastic properties																	5
Compressive strength			•		•	•	•	•	•	•	•	•	•	•	•	•	6
Tensile strength		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
Core test results			•	•	•	•	•	•	•		•	•	•	•	•	•	7
Density			•	•	•	•	•	•	•		•	•	•	•	•	•	7
Elastic properties			•	•	•	•	•	•	•	•	•	•		•	•	•	7
Compressive strength																	7
Tensile strength				•	•	•	•	•	•	•	•	•	•	•	•	•	8
Bibliography																	9

TABLES

<u>Table</u>

Figure

98.....

1	Summary of results obtained from tests performed on	
	250-mm (10-in) diameter concrete cores - Crystal	
	Dam [SI METRIC UNITS]	11
1A	Summary of results obtained from tests performed on	
	250-mm (10-in) diameter concrete cores - Crystal	
	Dam [INCH-POUND UNITS]	15
2	Summary of test data - Crystal Dam concrete cores	19
3	Summary of test data - Crystal Dam concrete cores	
	with and without construction joints	19

FIGURES

1	Hole locations for 250-mm (10-in) diameter cores -	
	Crystal Dam	21
2	Typical "as-received" condition of 250-mm (10-in)	
	diameter cores - Crystal Dam	23
3	Typical 250-mm (10-in) diameter cores showing a	
	construction joint - Crystal Dam	24
4	Typical 250-mm (10-in) diameter core after tensile	
	strength test - Crystal Dam	25
5	Average moduli of elasticity of mass concrete in	
	Crystal Dam	26
6	Average compressive strength of mass concrete in	
	Crystal Dam	27

CONTENTS - Continued

Figure		<u>Page</u>
7	Ratio of core to companion 28-day cylinder strengths in Crystal Dam	28
8	Average tensile strength of mass concrete in Crystal Dam	29
9	Ratio of tensile strengths to companion compressive strengths in Crystal Dam	

INTRODUCTION

Crystal Dam is located in the Black Canyon of the Gunnison River, about 40 km (25 mi) west of the city of Gunnison in Montrose County, Colorado. The principal construction features include the mass concrete dam with an overflow spillway, intake and outlet structures, and a powerplant. The double-curvature, thin-arch concrete dam has a structural height of 98 m (323 ft) and a crest length of 194 m (635 ft). The dam contains 112 390 m³ (147 000 yd³) of mass concrete.

As part of the Bureau of Reclamation's ongoing program to monitor and evaluate the strength and elastic properties of mass concrete in major dams, cores were extracted from Crystal Dam for testing at three different ages: approximately 70 days, 6 months, and 1 year. This report presents the results of laboratory tests on these cores. For further monitoring and evaluation of the properties of the concrete, additional cores will probably be extracted from the dam through 20 years' age.

Construction of the dam started in January 1974, and it was topped out in August 1976. The concrete in the dam is divided into blocks by means of vertical contraction joints. Galleries and shafts provide access to the interior of the dam, where most of the cores were extracted. Concrete in the dam contains type II low-alkali cement, natural river sand and coarse aggregate supplemented by crushed material, and air-entraining and water-reducing admixtures. Average cement content used in the dam concrete was 234 kg/m^3 (395 lb/yd³) with a 0.47 water/cement ratio. The design of the dam was based on a minimum concrete compressive strength of 27.6 MPa (4000 lb/in²) at 1 year's age.

CONCLUSIONS

Based on results obtained from testing the 250-mm (10-in) diameter cores at 70 days', 6 months', and 1 year's age, the following conclusions are made:

1. The overall condition of the concrete in Crystal Dam after 1 year is very good, which indicates that the concrete was properly proportioned, mixed, placed, consolidated, and cured.

2. The maximum compressive strength of the 1-year-old concrete in the dam was 46 percent greater than the design value.

3. The concrete in the dam became elastically stiffer between 6 months and 1 year, as indicated by slightly higher moduli of elasticity values.

4. The average ratio of tensile to compressive strength was 4.8 percent, which is considered normal for mass concrete $[1, 2, 3]^*$.

5. The tensile bond strength at the horizontal construction joints is approximately equal to or slightly less than the tensile strength of the concrete itself. The tensile bond strength at the horizontal construction joints for the 1-year-old concrete averaged about 10 percent lower than the tensile strength of the surrounding concrete.

6. Although a petrographic examination was not conducted, no visible evidence of chemical attack on the concrete was apparent.

* Numbers in brackets refer to entries in the Bibliography.

CORE EXTRACTION AND DRILLING PROGRAM

The construction specifications (No. DC-7000) for Crystal Dam required extraction of 250-mm (10-in) diameter cores at locations stipulated by Bureau of Reclamation. Nineteen cores were taken: three at approximately 70 days', eight at 6 months', and eight at 1 year's age. All except the three 70-day cores were taken from foundation and utility gallery floors. The three early cores were extracted from the downstream face of the dam. Core locations are shown on figure 1.

The concrete was cored with diamond-edged core barrels to a depth sufficient to permit extraction of two segments which could be effectively cut into at least 500-mm (20-in) lengths. None of the core holes was to be more than 4.6 m (15 ft) deep.

The extraction of the 250-mm-diameter cores began on October 14, 1974, and was completed by April 29, 1976. All cores were drilled vertically except core 10-47-1 which was drilled 12° from vertical and core 10-48-2 which was drilled $9-1/2^{\circ}$ from vertical. These were two of the three cores removed from the downstream face of the dam.

ASTM Designation: C 42-77, "Obtaining and Testing Drilled Cores and Sawed Beams of Concrete," specifies that the diameter of concrete cores tested for compressive strength should be at least three times, and must be at least twice, the maximum nominal aggregate size. Since the maximum nominal size aggregate used in Crystal Dam was 75 mm (3 in), the diameter of cores should be at least 225 mm (9 in) and must be at least 150 mm (6 in). The actual

diameters of the cores exceeded these criteria and ranged from 243 to 251 mm (9.6 to 9.9 in).

SHIPPING AND RECEIVING

After the cores were extracted, they were labeled with the project name, block number, hole number, core segment number, elevation, and date drilled. They were then wrapped in plastic, packed in sturdy wooden boxes with damp sawdust, and shipped to the Bureau's Division of Research in Denver for examination and testing.

When the cores arrived in Denver, they were unpacked and inspected (fig. 2). All cores were damp, and no shipping damage was evident. Only one construction joint was disbonded when received. Cores were then logged to provide a record of specimen lengths and any unusual characteristics, such as embedded reinforcing steel, rock pockets, construction joints, etc. Each core was marked for the type of test to be conducted. Photographs of the cores were taken to record details (fig. 3).

CORE TESTING PROGRAM

General

Cores were extracted so that studies could be made of the concrete at 70 days, 6 months, and 1 year. The studies included tests to determine compressive strengths, elastic properties, densities, and tensile strengths.

The early tests were conducted to evaluate the mix proportions and construction procedures and to permit any needed adjustments before too much concrete was placed.

Core Preparation

JH . . .

The cores tested for elastic properties and compressive strengths were sawed to 500-mm (20-in) lengths to conform to the standard length-diameter ratio of 2:1. After sawing, the cores were ground flat and smooth on a lapping machine. Cores tested in tension were sawed to 750-mm (30-in) lengths, the existing laboratory standard. Cores used in evaluating construction joints had at least 150 mm of core on each side of the joint. After grinding and before testing, all specimens were stored in a 100 percent relative humidity, 23 °C (73 °F), controlled atmosphere until testing was completed.

Density

The apparent density of each specimen to be tested in compression was determined prior to strength and elastic properties testing. Chapter 3, paragraphs 3.17 through 3.22 of the <u>Material Laboratories Procedures</u> <u>Manual</u> [4], were used for determining densities, except that the specimens were not ovendried because of concern that the required 107 °C (225 °F) drying temperature could have some effect on the physical behavior of the concrete during the subsequent testing process.

Elastic Properties

Elastic property tests were run on the same core specimens selected for the compressive strength tests. Modulus of elasticity and Poisson's ratio were

determined using an extensometer-compressometer frame, with dial gages mounted so that longitudinal and lateral deformations were monitored as the actual load was applied. All specimens underwent preloading to reduce testing error. Each specimen was preloaded to an axial compressive stress of approximately 6.9 MPa (1000 lb/in²).

Compressive Strength

Compressive strength tests were conducted on selected core segments to obtain apparent in-place strengths which could be compared to the 150- by 300-mm (6- by 12-in) control cylinder strengths and to determine the strength development of the concrete in the dam over a period of 1 year. In general, the cores selected for compression testing did not contain construction joints.

Compressive strength was determined by axially loading the specimens at a rate of 14 MPa (2000 lb/in^2) per minute until failure. Several of the specimens were ruptured completely to permit visual observation of the fractures. No evidence of chemical attack of the concrete was observed.

Tensile Strength

Thirty-eight cores were used for tension tests. Twenty-three of these cores intersected horizontal construction joints. Steel plates, 50 mm (2 in) thick, were cemented with epoxy to the ends of each test specimen. Following a 24-hour cure of the epoxy at room temperature, the cores were placed in the testing machine with the end plates connected to the upper and lower platens through chain linkages. All specimens were loaded axially at a rate of 1.4 MPa (200 lb/in²) per minute until failure occurred (fig. 4).

Density

The computed densities are shown in tables 1 and 1A. The density averaged 2458 kg/m³ (153.4 lb/ft^3) for all tests.

Elastic Properties

Results of elastic properties tests are summarized in tables 1, 1A, and 2. The moduli of elasticity averaged 31.7 GPa (4.60 x 10^6 lb/in²) at 1 year's age. As expected, there was some increase in the moduli from 70 days to 1 year (fig. 5).

Poisson's ratio averaged 0.20 for all the tests with no significant differences between 70 days and 1 year.

Compressive Strength

The results of the individual tests are shown in tables 1 and 1A. Summaries of results are shown in table 2 and figures 6 and 7. The average compressive strength for the concrete was 33.7 MPa (4890 $1b/in^2$) at 6 months' age and 35.0 MPa (5080 $1b/in^2$) at 1 year's age. This shows a 3.9-percent increase in strenth from 6 months' age to 1 year's age, which is slightly below average for typical strength development in mass concrete.

The compressive strengths of the cores ranged from 29.2 MPa (4230 lb/in^2) to 39.0 MPa (5660 lb/in^2) at 6 months' age and from 29.7 MPa (4300 lb/in^2) to 40.4 MPa (5860 lb/in^2) at 1 year's age. The corresponding coefficients

of variation at 6 months and 1 year were 8.6 and 8.9 percent, respectively, which are excellent for general construction field quality control.

Tensile Strength

The bond strength of the horizontal construction joints appears to be slightly less than the tensile strength of the adjoining concrete (table 3 and figs. 8 and 9). The tensile strength of specimens with construction joints was about 94 percent of the tensile strength of specimens without construction joints. Of 23 specimens which contained construction joints, 14 failed in the joint during testing. The apparent and slight reduction in the tensile strength of jointed specimens from 6 to 12 months' age is not considered significant and likely results from variability of test specimens.

BIBLIOGRAPHY

- [1] Riffle, H. C., and Smith, F. L., "Strength and Elastic Properties of Concrete in Flaming Gorge Dam, 10-Year Core Report," Bureau of Reclamation, Report No. GR-13-76, February 1976.
- [2] Riffle, H. C., and Smith, F. L., "Concrete Performance in Glen Canyon Dam, 10-Year Core Report," Bureau of Reclamation, Report No. GR-22-76, November 1976.
- [3] Werner, O. R., "Concrete Performance in Yellowtail Dam, Montana, 10-Year Core Report," Report No. GR-9-75, July 1975.
- [4] Materials Laboratory Procedures Manual, Bureau of Reclamation, Commissioner's Office, Denver, Colorado, March 20, 1957.

	Elevatio	n	Dates					Proper	ties of I	fresh c	oncrete			rol cylin	Pr	operties of	hardened co	oncrete Concrete c	0.00				Strength	
Core No. <u>1</u> /	above sea level (m)	Concrete placed	Specimen drilled	Specimen tested	Station (m)	Age tested	W/C by mass	Cement content	Water content (kg/m ³)			Air content (%)	7-day	ompressiv strength (MPa) 28-day	90-day	Compressive strength (MPa)	Elastic ; F x 10-6 (GPa)	r	Density (kg/m ³)	Tensile strength (MPa)	Joint 2/	Break <u>3</u> /	ratio core 28-d cy1 (%)	Remarks
10-47-1A 10-47-18 10-47-1C 10-47-1D 10-47-1E 10-46-1E	1972 1972 1972	8-13-74 8-13-74 8-13-74 8-13-74 8-13-74 8-13-74 7-31-74	10-14-74 10-14-74 10-14-74 10-14-74 10-15-74 10-15-74	10-22-74 10-22-74 10-22-74 No test 10-22-74 10-22-74	1+52.6 1+52.6 1+52.6 1+52.6 1+52.6 1+52.6 1+52.5	70 days 70 days 70 days No test 70 days 87 days	0.56 0.56 0.56 0.56 0.56 0.50	254 254 254 254 254 254 235	143 143 143 143 143 143 143 117	23 23 23 23 23 23 23 27	2398 2398 2398 2398 2398 2398 2398 2430	4 4 4 4 4 4	21.4 21.4 21.4 21.4 21.4 21.4 23.4	34.0 34.0 34.0 34.0 34.0 34.0 34.1		25.4 19.4 31.2	27.3 28.6 24.8	0.24 0.19 0.19	2410 2420 2430	1.31	Yes	No	75 57 92	Core 10-47-1 drilled in D/S face 0.21 rad (1?*) off vertical. Broke below the joint at elevation 2119.
10-48-2A 10-48-2B 10-48-2C 10-48-2D 10-47-2D	1975 1972 1972	8-23-74 8-23-74 8-23-74 8-23-74 8-13-74	10-17-74 10-17-74 10-18-74 10-18-74 10-18-74	No test 10-31-74 10-31-74 10-31-74 10-31-74	1+49.4 1+49.4 1+49.4 1+49.4 1+49.4	No test 69 days 69 days 69 days 79 days	0.47 0.47 0.47 0.47 *0.51	252 252 252 252 *275	119 119 119 119 *139	22 22 22 22 *26	2418 2418 2418 2418 2384	4 4 4 3	20.9 20.9 20.9 20.9	31.6 31.6 31.6 31.6	37.6	25.5	26.3	0,14	2440	1.14 1.61	\ No Yes	No	81	Core 10-48-2 drilled in D/S face 0.17 rad (9.5°) off vertical. Broke above the Joint at elevation 2123.
8-48-3A 8-48-38 8-48-30 8-48-30 8-47-30	1974 1972 1972	8-19-74 8-19-74 8-19-74 8-19-74 8-19-74 8-10-74	10-21-74 10-22-74 10-22-74 10-22-74 10-22-74	No test 10-31-74 10-31-74 10-31-74 10-31-74	1+27.0 1+27.0 1+27.0 1+27.0 1+27.0	No test 73 days 73 days 73 days 82 days	0.50 0.50 0.50 0.50 0.56	275 275 275 275 233	136 136 136 136 136 130	23 23 23 23 25	2434 2434 2434 2434 2377	4 4 4 5	28.8 28.8 28.8 28.8 15.7	36.5 36.5 36.5 36.5 25.5	40.6	32.1 34.3	30.1 28.5	0.21 0.21	2440 2420	0,57	Yes	Yes	88 94	Core 8-48-3 drilled vertically D/S face. Curing compound found on joint at elevation 2123.
Aver	age															28.0	27.6	0.20	2420	1.16				
8-49-4A 8-49-4B 8-49-4C 8-49-4D 8-48-4D	1978 1975 1975	8-29-74 8-29-74 8-29-74 8-29-74 8-29-74 8-19-74	1-29-75 1-29-75 1-29-75 1-30-75 1-30-75	3- 7-75 3- 7-75 3- 7-75 3- 7-75 3- 7-75 3- 7-75	1+28.2 1+28.2 1+28.2 1+28.2 1+28.2 1+28.2	6 months 6 months 6 months 6 months 6 months	0.43 0.43 0.43 0.43 0.50	274 274 274 274 274 276	118 118 118 118 136	26 26 26 26 23	2350 2350 2350 2350 2350 2420	5 5 5 2	23.7 23.7 23.7 23.7 23.7 28.8	34.4 34.4 34.4 34.4 36.5	42.5 42.5 42.5 42.5 40.6	30.9 35.1	32,2 34,3	0.19	2470 2470	0.92	No Yes	No	90 102	Concrete drilled vertically from foundation gallery floor. Broke 50 mm above joint at elevation 2126.
12-49-5A 12-49-5B 12-49-5C 12-49-5D 12-49-5D 12-48-5D	1978 1975 1975	8-31-74 8-31-74 8-31-74 8-31-74 8-21-74	1-31-75 2- 3-75 2- 3-75 2- 3-75 2- 3-75 2- 3-75	3- 8-75 3- 8-75 3- 8-75 3- 8-75 3- 8-75 3- 8-75	1+76.6 1+76.6 1+76.6 1+76.6 1+76.6	6 months 6 months 6 months 6 months 6 months	0.50 0.50 0.50 0.50 0.46	258 258 258 258 258 275	129 129 129 129 127	26 26 26 26 22	2370 2370 2370 2370 2370 2400	4 4 4 3	17.3 17.3 17.3 17.3 21.2	26.1 26.1 26.1 26.1 32.1	32.2 32.2 32.2 32.2 41.6	32.6 36.3	29.2 33.0	0.23 0.24	2480 2450	1.59 1.63	No Yes	No	125 139	Concrete drilled vertically from foundation gallery floor. Broke 50 mm above joint at elevation 2126.
10-49-6A 10-49-60 10-49-60 10-49-60 10-48-60	1978 1975 1975	9- 4-75 9- 4-75 9- 4-75 9- 4-75 8-23-74	2- 4-75 2- 4-75 2- 4-75 2- 4-75 2- 4-75 2- 4-75	3-10-75 3-10-75 3-10-75 3-10-75 3-10-75 3-10-75	1+49.2 1+49.2 1+49.2 1+49.2 1+49.2	6 months 6 months 6 months 6 months 6 months	0.49 0.49 0.49 0.49 0.49 0.47	270 270 270 270 252	132 132 132 132 132 119	24 24 24 24 22	2390 2390 2390 2390 2390 2400	3 3 3 3 3	17.9 17.9 17.9 17.9 20.9	27.6 27.6 27.6 27.6 31.6	30.4 30.4 30.4 30.4 37.6	29.2 39.0	32.4 31.8	0.24 0.18	2490 2440	1,77 1,26	No Yes	Yes	105 141	Concrete drilled vertically from foundation gallery floor. Joint at elevation 2126.
9-49-7A 9-49-7B 9-49-7C 9-49-7D 9-48-7D	1978 1975 1975	9-26-74 9-26-74 9-26-74 9-26-64 9-13-74	2- 6-75 2- 6-75 2- 6-75 2- 6-75 2- 6-75 2- 6-75	3-27-75 3-27-75 3-27-75 3-27-75 3-27-75 3-27-75	1+40.4 1+40.4 1+40.4 1+40.4 1+40.4	6 months 6 months 6 months 6 months 6 months	0.51 0.51 0.51 0.51 0.54	241 241 241 241 235	125 125 125 125 125	22 22 22 22 22 21	2420 2420 2420 2420 2420 2400	3 3 3 3 3	18.7 18.7 18.7 18.7 12.4	27.4 27.4 27.4 27.4 24.6	31.8	33.2 29,7	31.4 26.7	0.18 0.20	2550 2450	1.13	No Yes	Yes	121 109	Concrete drilled vertically from foundation gallery floor. Joint at elevation 2126. Joint had structural 38-mm MSA concrete on joint.
Aver	ige															33.3	31.4	0.21	2470	1.32				
8-49-8A 8-49-8B 8-49-8C 8-49-8D 8-49-8D	1978 1975 1975	8-29-74 8-29-74 8-29-74 8-29-74 8-29-74 8-19-74	8- 4-75 8- 5-75 8- 5-75 8- 5-75 8- 5-75	9- 4-75 9- 4-75 9- 4-75 9- 4-75 9- 4-75	1+26.6 1+26.6 1+26.6 1+26.6 1+26.6	l year l year l year l year l year	0.43 0.43 0.43 0.43 0.50	274 274 274 274 274 275	118 118 118 118 136	26 26 26 26 23	2350 2350 2350 2350 2350 2420	5 5 5 1	23.7 23.7 23.7 23.7 28.8	34.4 34.4 34.4 34.4 36.5	42.5 42.5 42.5 42.5 40.6	31.7 31.4	27.0 27.6	0.20 0.20	2430 2410	2.01 0.68	No Yes	Yes	92 91	Concrete drilled vertically from the foundation gallery floor. Construction joint at elevation 2126.
12-49-9A 12-49-9B 12-49-9C 12-49-9D 12-48-9D	1978 1975 1975	8-31-74 8-31-74 8-31-74 8-31-74 8-31-74 8-21-75	8~ 6-75 8- 7-75 8- 7-75 8- 7-75 8- 7-75 8- 7-75	No test No test No test No test No test	1+78.2 1+78.2 1+78.2 1+78.2 1+78.2	No test 1 year 1 year 1 year 1 year	0.50 0.50 0.50 0.50 0.46	258 258 258 258 258 275	129 129 129 129 129	26 26 26 26 26 22	2370 2370 2370 2370 2400	4 4 4 3	17.3 17.3 17.3 17.3 21.2	26.1 26.1 26.1 26.1 32.1	32.2 32.2 32.2 32.2 32.2 41.6	33.4	28.0	0.18	2440	2.24 1.25	No Yes	Yes	128	Concrete drilled vertically from the foundation gallery floor. Construction joint at elevation 2126.
10-49-10A 10-49-10B 10-49-10C 10-49-100 10-48-100	1978 1975 1975	9- 4-74 9- 4-74 9- 4-74 9- 4-74 8-23-74	8- 8-75 8- 8-75 8- 8-75 8-11-75 8-11-75	No test No test No test No test No test	1+51.1 1+51.1 1+51.1 1+51.1 1+51.1	No test 1 year 1 year 1 year 1 year	0.49 0.49 0.49 0.49 0.49	270 270 270 270 252	132 132 132 132 132 132	24 24 24 24 24 22	2390 2390 2390 2390 2390 2400	3 3 3 3 3	17.9 17.9 17.9 17.9 20.9	27.6 27.6 27.6 27.6 31.6	30.4 30.4 30.4 30.4 30.4 37.6	37.1	31.8	0.22	2470	1.97 1.65	No Yes	No	118	Concrete drilled vertically from the foundation gallery floor. Construction joint at elevation 2126.
9-49-11A 9-49-11B 9-49-11C 9-49-11D 9-48-11D	1978 1975 1975	9-26-74 9-26-74 9-26-74 9-26-64 9-13-74	8-12-75 8-12-75 8-12-75 8-12-75 8-12-75 8-12-75	9-26-75 9-26-75 9-26-75 9-26-75 9-26-75 9-26-75	1+38.5 1+38.5 1+38.5 1+38.5 1+38.5 1+38.5	l year 1 year 1 year 1 year 1 year	0.51 0.51 0.51 0.51 0.54	241 241 241 241 235	125 125 125 125 125 126	22 22 22 22 22 21	2420 2420 2420 2420 2420 2400	2 2 2 3	18.7 18.7 18.7 18.7 18.7	27.4 27.4 27.4 27.4 27.4 24.6	31.8	32.5 29.6	30.0 28.3	0.16 0.15	2470 2460	2.13	No Yes	Yes	119 108	Concrete drilled vertically from the foundation gallery. Thirty-eight-mm MSA structural concrete used on joint at elevation 2126. Specimen 11D broke along cooling pipe on the joint.
Avera	ge															31.9	28.9	0.19	2450	1.59				11

Table 1. - Summary of results obtained from tests performed on 250-mm (10-in) diameter concrete cores - Crystal Dam [SI METRIC UNITS]

Core No. 1/	Elevation above sea level	n Concrete placed	Dates Specimen drilled	Specimen tested	Station (m)	Age tested	W/C by mass	Cement content	ties of Water content (kg/m ³)	Sand	Oncrete Density (kg/m ³)	Air content (%)		trol cylir Compressiv strength (MPa)	nders	roperties of Compressive strength (MPa)	Elastic E x 10 ⁻⁶	oncrete Concrete properties	Density (kg/m ³)	Tensile strength (MPa)	Joint 2/	Break <u>3</u> /	Strength ratio <u>core</u> 28-d cyl	Remark s
1/	(m)							(Kg/III-)	(kg/m-/	(*)	(xg/m-)	(*)	7-day	28-day	90-day	(/// 4)	(GPa)		((9))) /	(1			(%)	
8-57A-12A 8-56-12A 8-56-12B 8-56-12C 8-56-12D 8-56-12D 8-55-12D	2000 1999 1996 1996	5- 7-75 4-29-75 4-29-75 4-29-75 4-29-75 4-29-75 10-25-75	10- 7-75 10- 7-75 10- 7-75 10- 7-75 10- 7-75 10- 8-75 10- 8-75	10-29-75 10-29-75 10-29-75 10-29-75 10-29-75 10-29-75	1+23.5 1+23.5 1+23.5 1+23.5 1+23.5 1+23.5 1+23.5	6 months 6 months 6 months 6 months 6 months 6 months	0.50 0.50 0.50 0.50 0.50 0.50 0.53	237 218 218 218 218 218 239	119 110 110 110 110 128	24 25 25 25 25 25 23	2420 2430 2430 2430 2430 2430 2390	3 3 3 3 4	20.0 16.1 16.1 16.1 16.1 15.0	30.2 32.9 32.9 32.9 32.9 32.9 29.0	36.5 42.7 42.7 42.7 42.7	32.2	33.0	0.22	2470	0.62 1.17 1.47	Yes No Yes	Yes Yes	98	Concrete drilled vertically from utility gallery floor. Construction joints at elevations 2152 and 2149.
12-57A-13 12-56-13A 12-56-13B 12-56-13C 12-56-13D 12-55-13D	1999 1996	5-27-75 5-19-75 5-19-75 5-19-75 5-19-75 5- 9-75	10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75	11-21-75 11-21-75 11-21-75 11-21-75 11-21-75 11-21-75 11-21-75	1+77.2 1+77.2 1+77.2 1+77.2 1+77.2 1+77.2 1+77.2	6 months 6 months 6 months 6 months 6 months 6 months	0.46 0.43 0.43 0.43 0.43 0.43	235 231 231 231 231 231 228	107 99 99 99 99 111	24 23 23 23 23 23 23	2450 2420 2420 2420 2420 2420 2420 2400	3 5 5 5 5 4	19.7 19.7 19.7 19.7 19.7 23.0	30.9 30.9 30.9 30.9 30.9 30.9 32.1	- - 39.8	38,1	31.4	0.20	2500	1.45 1.15 1.34	Yes No Yes	Yes Yes	123	Concrete drilled vertically from utility gallery floor. Construction joints at elevations 2152 and 2149. A 5-mm by 30-mm by 65-mm vold space on joint at elevation 2149.
11-57A-14 11-56-14A 11-56-14B 11-56-14C 11-56-14C 11-56-140 11-55-140	1999	6-24-75 6-21-75 6-21-75 6-21-75 6-21-75 6-21-75 6-10-75	11-18-75 11-18-75 11-18-75 11-19-75 11-19-75 11-19-75 11-19-75	12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75	1+59.7 1+59.7 1+59.7 1+59.7 1+59.7 1+59.7 1+59.7	6 months 6 months 6 months 6 months 6 months 6 months	0.42 0.43 0.43 0.43 0.43 0.43 0.43	234 232 232 232 232 232 234	98 100 100 100 100 100	23 23 23 23 23 23 23	2420 2430 2430 2430 2430 2430 2420	4 4 4 4 4	21.9 25.1 25.1 25.1 25.1	29.9 32.1 32.1 32.1 32.1 32.1 34.3	35.3 36.4 36.4 36.4 36.4	31.5 35.4	30.5 33.8	0.20 0.20	2440 2480	1.70 1.95	Yes Yes	No No	98 110	Concrete drilled vertically from utility gallery floor. Construction joints at elevations 2152 and 2149.
13-57A-15. 13-56-15A 13-56-15B 13-56-15C 13-56-15D 13-55-15D	4 2000 1999 1996	6-28-75 6-24-75 6-24-75 6-24-75 6-24-75 6-10-75	11-19-75 11-19-75 11-19-75 11-20-75 11-20-75 11-20-75 11-20-75	12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75	1+90.4 1+90.4 1+90.4 1+90.4 1+90.4 1+90.4	6 months 6 months 6 months 6 months 6 months 6 months 6 months	*0.50 0.48 0.48 0.48 0.48 0.48 0.49	*229 237 237 237 237 237 226	*115 113 113 113 113 113 110	*23 23 23 23 23 23 23	2430 2400 2400 2400 2400 2400 2390	-4 4 4 4 5	23.4 23.4 23.4 23.4	30,7 30,7 30,7 30,7 25,9		34.2	30.1	0.20	2550 2450	0.90	No Yes	Yes	100 111	Concrete drilled vertically from utility gallery floor. Construction joints at elevations 2152 and 2149. Joints at elevation 2152 disbonded when received in the laboratory.
Aver	age															34.3	31.4	0.21	2470	1,30				
8-57A-16A 8-56-16A 8-56-16B 8-56-16C 8-56-16D 8-55-16D 8-55-16D	2000 1999 1996 1996	5- 7-75 4-29-75 4-29-75 4-29-75 4-29-75 10-25-74	3-18-76 3-18-76 3-18-76 3-18-76 3-18-76 3-18-76 3-18-76	5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76	1+24.7 1+24.7 1+24.7 1+24.7 1+24.7 1+24.7	l year l year l year l year l year l year	0.50 0.50 0.50 0.50 0.50 0.53	237 218 218 218 218 218 239	119 110 110 110 110 128	23 25 25 25 25 23	2420 2420 2420 2420 2420 2420 2390	3 3 3 3 4	20.0 16.1 16.1 16.1 16.1 15.0	30.2 32.9 32.9 32.9 32.9 32.9	36.5 42.7 42.7 42.7 42.7	37.8	34.6	0.22	2510	1.65 1.34 0.76	No No Yes	Yes	125	Concrete drilled vertically from utility gallery flour. Juint a levation 2152 disponded when received in the laboratory. Joints at elevations 2152 and 2149.
12-57A-17 12-56-17A 12-56-178 12-56-17C 12-56-17C 12-55-17D	1999	5-27-75 5-19-75 5-19-75 5-19-75 5-19-75 5-19-75 5- 9-75	3-19-76 3-19-76 2-19-76 3-22-76 3-22-76 3-22-76 3-22-76	5-18-76 5-18-76 5-18-76 5-18-76 No test No test	1+78.8 1+78.8 1+78.8 1+78.8 1+78.8 1+78.8 1+78.8	l year l year l year l year No test No test	0.46 0.43 0.43 0.43 0.43 0.43 0.48	235 231 231 231 231 231 231 228	107 99 - 99 99 99 111	24 22 22 22 22 22 22	2450 2420 2420 2420 2420 2420 2400	3 5 5 5 5 4	19.7 19.7 19.7 19.7 19.7 23.0	30.9 30.9 30.9 30.9 30.9 30.9	39.8	39.4 38.1	31.0 46.4	0,18 0.25	2450 2480	1.27	Yes	Yes	127 123	Concrete drilled vertically from utility gallery floor. Joints at elevations 2152 and 2149. Joint at elevation 2152 disbonded when received in the laboratory.
11-57A-18) 11-56-18A 11-56-18B 11-56-18C 11-56-18D 11-55-18D	1996 1996 1996	6-24-75 6-21-75 6-21-75 6-21-75 6-21-75 6-21-75 6-10-75	4-20-76 4-20-76 4-20-76 4-20-76 4-21-76 4-21-76	6-21-76 6-21-76 6-21-76 6-21-76 6-21-76 6-21-76 6-21-76	1+61.4 1+61.4 1+61.4 1+61.4 1+61.4 1+61.4	l year l year l year l year l year l year	0,42 0.43 0.43 0.43 0.43 0.43 0.45	234 232 232 232 232 232 232 234	98 100 100 100 100 106	22 23 23 23 23 23 23 23	2420 2430 2430 2430 2430 2420	4 4 4 4 4	21.9 25.1 25.1 25.1 25.1	29.9 32.1 32.1 32.1 32.1 34.3	35.3 36.4 36.4 36.4 36.4	40,4 37.8 37.5	33.6 32.0 33.5	0.17 0.21 0.22	2530 2510 2480	1.74	Yes	Yes	135 118 117	Concrete drilled vertically from utility gallery floor, Joints at elevations 2152 and 2189, Joint 2152 broke during handling in the laboratory.
13-57A-19) 13-56-198 13-56-198 13-56-198 13-56-190 13-56-190 13-55-190	1999 -1	6-28-75 6-24-75 6-24-75 6-24-75 6-24-75 6-24-75 6-24-75 6-10-76	4-29-76 4-29-76 4-29-76 4-29-76 4-29-76 4-29-76 4-29-76 4-29-76	6-24-76 6-24-76 6-24-76 6-24-76 6-24-76 6-24-76 6-24-76 6-24-76	1+93.7 1+93.7 1+93.7 1+93.7 1+93.7 1+93.7 1+93.7 1+93.7	l year l year l year l year l year l year l year	*0.50 0.48 0.48 0.48 0.48 0.48 0.48 0.48	*229 237 237 237 237 237 237 237 226	*115 113 113 113 113 113 113 110	*23 23 23 23 23 23 23 23 23 23	2340 2400 2400 2400 2400 2400 2400 2390	4 4 4 4 5	23.4 23.4 23.4 23.4 23.4 23.4	30.7 30.7 30.7 30.7 30.7 30.7 25.9	-	36.9 30,6	30.5 28.4	0.17 0.20	2430 2430	1.15	Yes No Yes	No No	120 100	Concrete drilled vertically from utility gallery floor. Joints at elevations 2152 and 2169. Specimen 19A broke near a piece of angle iron running completely through the core.
Aver	ige															37.3	33.8	0.20	2480	1.46				

Table 1. - Summary of results obtained from tests performed on 250-mm (10-in) diameter concrete cores - Crystal Vam [SI METRIC UNITS] - Continued

* Design values rather than actual yield values. 1/ First number, block number; second, lift number; third, core specimen number. $\overline{2}/$ Did specimen contain a construction joint? $\overline{3}/$ Did joint break during construction?

	Elevatio		Dates					Prop	erties of f	resh co	ocrete		- (0)	trol cyl	inders	Properties of	nardened co	oncrete Concrete d	ores				Strength	
No. 1/	above sea level (ft)	ea placed rel	Specimen drilled		Station (ft)	Age tested	W/C by wt	Cement content (lb/yd ³)	Water content (16/yd ³)	Sand	Density (lb/ft ³)	Air content (%)		Compress strengtl (lb/in ²)	ompressive Compressive Elastic properties strength strength F 10-6 Density	Tensile strength (lb/in ²)	Joint <u>2</u> /	Break <u>3</u> /	ratio core 28-d cyl	Remarks				
0-47-1A U-47-1B 0-47-1C 0-47-1D 0-47-1E	6460	8-13-74 8-13-74 8-13-74 8-13-74 8-13-74	10-14-74 10-14-74 10-15-74 10-15-74 10-15-74	10-22-74 10-22-74 10-22-74 No test 10-22-74	5+00.7 5+00.7 5+00.7	70 days 70 days 70 days 70 days No test 70 days	0.56 0.56 0.56 0.56 0.56	429 429 429 429 429 429	241 241 241 241 241 241	23 23 23 23 23 23 23	149 149 149 149 149	3 3 3 3	3110 3110 3110 3110 3110 3110	4930 4930 4930 4930 4930 4930		3690 2820 4520	3.97 4.15 3.60	0.24 0.19 0.19	150.5 151.1 151.7				(%) 75 57 92	Core 10-47-1 drilled in D/S face 12° off vertical, Broke below the joint. Joint at elevation 6460.
)-46-18)-48-28)-48-28)-48-20)-48-20)-48-20	6460 6479 6470 6470	7-31-74 8-23-74 8-23-74 8-23-74 8-23-74 8-23-74 8-13-74	10-15-74 10-17-74 10-17-74 10-18-74 10-18-74 10-18-74	No test 10-31-74 10-31-74 10-31-74 10-31-74	5+00.7 4+90.1 4+90.1 4+90.1 4+90.1 4+90.1	87 days No test 69 days 69 days 69 days	0.50 0.47 0.47 0.47 0.47 0.47	396 425 425 425 425 425	197 201 201 201 201 201	27 22 22 22 22	151 150 150 150 150	3 4 4 4 4	3390 3030 3030 3030 3030	4950 4580 4580 4580 4580	5460	3700	3.82	0.14	152.3	190 170 230	Yes No Yes	No	81	Core 10-48-2 drilled in D/S face 9-1/2° off vertical. Broke above the joint. Joint at elevation 6470.
48-3A 48-3B 48-3C 48-3D 48-3D 47-3D	6470 6477 6470 6470	8-19-74 8-19-74 8-19-74 8-19-74 8-19-74 8-10-74	10-21-74 10-22-74 10-22-74 10-22-74	No test 10-31-74 10-31-74 10-31-74 10-31-74	4+16.6 4+16.6 4+16.6	79 days No test 73 days 73 days 73 days 82 days	*0.51 0,50 0.50 0.50 0.50 0.56	*461 463 463 463 463 393	*235 229 229 229 229 229 219	*26 23 23 23 23 23 23 25	148 152 152 152 152 152 148	3 4 4 4 5	4180 4180 4180 4180 2280	- 5290 5290 5290 5290 3700	5890	4650 4980	4.37 4.14	0.21 0,21	152.3 151.1	80	Yes	Yes	88 94	Core 8-48-3 drilled vertically. Curing compo found on joint at elevation 6470.
Aver 49-4A 49-4B 49-4C 49-4D 48-4D	age 6490 6480 6480	8-29-74 8-29-74 8-29-74 8-29-74 8-29-74 8-19-74	1-29-75 1-29-75 1-29-75 1-30-75 1-30-75	3- 7-75 3- 7-75 3- 7-75 3- 7-75 3- 7-75 3- 7-75	4+20.6 4+20.6 4+20.6 4+20.6 4+20.6	6 months 6 months 6 months 6 months 6 months	0.43 0.43 0.43 0.43 0.43 0.50	462 452 462 462 463	199 199 199 199 229	26 26 26 26 23	147 147 147 147 147 151	5 5 5 1	3440 3440 3440 3440 4180	4990 4990 4990 4990 5290	6160 6160 6160 6160 5890	4060 4480 5090	4.01 4.67 4.97	0.20 0.19	151.5 154.2 154.2	170 130 160	No Yes	No	90 102	Concrete drilled vertically from foundation gallery floor. Broke 2 inches above joint. Joint at elevation 6480.
49 - 58 49 - 58 49 - 50 49 - 50 49 - 50 48 - 50	6490 6480 6480	8-31-74 8-31-74 8-31-74 8-31-74 8-21-74	1-31-75 2- 3-75 2- 3-75 2- 3-75 2- 3-75	3- 8-75 3- 8-75 3- 8-75 3- 8-75 3- 8-75 3- 8-75	5+79.4 5+79.4 5+79.4 5+79.4 5+79.4 5+79.4	6 months 6 months 6 months 6 months 6 months	0.50 0.50 0.50 0.50 0.46	435 435 435 435 435 464	217 217 217 217 217 214	26 26 26 26 26 22	148 148 148 148 150	4 4 4 3	2510 2510 2510 2510 3070	3790 3790 3790 3790 3790 4650	4670 4670 4670 4670 6030	4730 5270	4.24 4.78	0.23 0.24	154.8 153.0	230 240	No Yes	No	125 139	Concrete drilled vertically from foundation gallery floor. Broke 2 inches above joint at elevation 6480.
49-6A 49-68 49-60 49-60 49-60 48-60	6490 6480 6480	9- 4-74 9- 4-74 9- 4-74 9- 4-74 8-23-74	2- 4-75 2- 4-75 2- 4-75 2- 4-75 2- 4-75 2- 4-75	3-10-75 3-10-75 3-10-75 3-10-75 3-10-75	4+89.5 4+89.5 4+89.5 4+89.5 4+89.5	6 months 6 months 6 months 6 months 6 months	0.49 0.49 0.49 0.49 0.49	455 455 455 455 425	223 223 223 223 201	24 24 24 24 22	149 149 149 149 150	3 3 3 3 3	2590 2590 2590 2590 3030	4010 4010 4010 4010 4580	4410 4410 4410 4410 5460	4230 5660	4.70 4.61	0.24 0.18	155.5 152.3	260 180	No Yes	Yes	105 141	Concrete drilled vertically from foundation gallery floor. Joint at elevation 6480.
9-7A 9 -78 9-7C 9-7D 8-7D	6490 6480 6480	9-26-74 9-26-74 9-26-74 9-26-74 9-13-74	2- 6-75 2- 6-75 2- 6-75 2- 6-75 2- 6-75 2- 6-75	3-27-75	4+60.5 4-60.5 4+60.5 4+60.5 4+60.5	6 months 6 months 6 months 6 months 6 months 6 months	0.51 0.51 0.51 0.51 0.54	- 407 407 407 407 397	210 210 210 210 210 213	22 22 22 22 22 21	151 151 151 151 150	2 2 2 3	2720 2720 2720 2720 1800	3970 3970 3970 3970 3970 3570	4610	4810 4310	4.55 3.87	0.18 0.20	156.1 153.0	160 160	No Yes	Yes	121 109	Concrete drilled vertically from foundation gallery floor. Joint at elevation 6480. Joint had structural 1-1/2-inch MSA concrete on joint.
Avera	-															4820	4,55	0.21	154.1	190				
19-8A 19-8B 19-8C 9-8D 8-8D	6490 6480 6480	8-29-74 8-29-74 8-29-74 8-29-74 8-19-74	8- 4-75 8- 5-75 8- 5-75 8- 5-75 8- 5-75	9- 4-75 9- 4-75 9- 4-75	4+15.4 4+15.4 4+15.4 4+15.4 4+15.4	l year l year l year l year l year	0.43 0.43 0.43 0.43 0.50	452 452 462 462 463	199 199 199 199 229	26 26 26 25 23	147 147 147 147 151	5 5 5 1	3440 3440 3440 3440 4180	4990 4990 4990 4990 5290	6160 6160 6160 6160 5890	4600 4550	4.05 4.01	0.20 0.20	151.7 150.5	290 100	No Yes	Yes	92 91	Concrete drilled vertically from the foundation gallery floor. Construction joint at elevation 6480.
49-98 49-90 49-90	6490 6480 6480	8-31-74 8-31-74 8-31-74 8-31-74 8-21-75	8- 6-75 8- 7-75 8- 7-75 8- 7-75 8- 7-75	No test No test No test No test No test	5+84.6 5+84.6 5+84.6 5+84.6 5+84.6	No test 1 year 1 year 1 year 3 year	0.50 0.50 0.50 0.50 0.46	435 435 435 435 464	217 217 217 217 217 217 214	26 26 26 26 26 22	148 148 148 148 150	4 4 4 3	2510 2510 2510 2510 3070	3790 3790 3790 3790 4650	4670 4670 4670 4670 5030	4850	4.05	0.18	152.3	330 180	No Yes	Yes	128	Concrete drilled vertically from the foundatic gallery floor. Construction joint at elevation 6480.
49-104 49-108 49-100 49-100 48-100	6480	9- 4-74 9- 4-74 9- 4-74 9- 4-74 8-23-74	8- 8-75 8- 8-75 8- 8-75 8-11-75 8-11-75	No test No test No test	4+95.6 4+95.6 4+95.6 4+95.6 4+95.6	No test 1 year 1 year 1 year 1 year	0.49 0.49 0.49 0.49 0.49	455 455 455 455 425	223 223 223 223 223 201	24 24 24 24 22	149 149 149 149 150	3 3 3 3 3	2590 2590 2590 2590 3030	4010 4010 4010 4010 4580	4410 4410 4410 4410 5460	4740	4.61	0.22	154.2	290 240	No Yes	No	118	Concrete drilled vertically from the foundati gallery floor. Construction joint at elevation 6480.
9-118 9-11C 9-11D	6490 6480 6480	9-26-74 9-26-74 9-26-74 9-26-64 9-13-74	8-12-75 8-12-75 8-12-75 8-12-75 8-12-75 8-12-75	9-26-75 9-26-75 9-26-75	4+54.4 4+54.4 4+54.4 4+54.4 4+54.4	l year l year l year l year l year l year	0.51 0.51 0.51 0.51 0.54	407 407 407 407 397	210 210 210 210 210 213	22 22 22 22 22 22 21	151 151 151 151 151 150	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2720 2720 2720 2720 1800	3970 3970 3970 3970 3970 3570	4610	4710 4300	4.35 4.10	0.16 0.15	154.2 153.6	310 120	No Yes	Yes	119 108	Concrete drilled vertically from the foundati gallery. One and one-half-inch MSA structura concrete used on joint at elevation 6480; specimen 11D broke along cooling pipe on the joint.

Table 1A. - Summary of results obtained from tests performed on 250-mm (10-in) diameter concrete cores - Crystal Dam [INCH-POUND UNITS]

	Elevation		Dates					D								Properties of	hardened c								
Core No,	above	Concrete placed	Specimen drilled	Specimen tested	Station (ft)	Age tested	W/C	Cement	Water Content	Sand	Density	Air		trol cyli Compress strength	ve	Compressive strength		Concrete of properties		Tensile	Joint	Break	Strength ratio	Remarks	
1/	level (ft)	praceo	di Trico	003020	(10)	nye testeu	by wt	(1b/yd ³)	(15/yd ³)	(%)	(lb/ft ³)	(%)	7-day	(1b/in ²) 28-day		(1b/in ²)	E x 10-6 (1b/in ²)	r	Density (Ib/ft ³)	strength (lb/ft ³)	2/	3/	core 28-d cyl (%)	Remarks	
8-57A-12A 8-56-12A 8-56-12B 8-56-12C 8-56-12C 8-56-12D 8-55-12D	6562 6560 6550 6550	5- 7-75 4-29-75 4-29-75 4-29-75 4-29-75 4-29-75 10-25-74	10- 7-75 10- 7-75 10- 7-75 10- 7-75 10- 8-75 10- 8-75	10-29-75 10-29-75 10-29-75 10-29-75 10-29-75 10-29-75 10-29-75	4+05.2 4+05.2 4+05.2 4+05.2 4+05.2 4+05.2 4+05.2	6 months 6 months 6 months 6 months 6 months 6 months	0.50 0.50 0.50 0.50 0.50 0.50 0.53	400 368 368 368 368 368 403	201 185 185 185 185 185 215	24 25 25 25 25 25 23	151 152 152 152 152 152 149	3 3 3 3 3 4	2900 2330 2330 2330 2330 2330 2180	4380 4770 4770 4770 4770 4770 4200	5300 6200 6200 6200 6200	4670	4.79	0.22	154,2	90 170 210	Yes No Yes	Yes Yes	98	Concrete drilled vertically from utility gallery floor. Construction joints at elevation 5560 and 6550.	
12-57A-13 12-56-13A 12-56-13B 12-56-13C 12-56-13D 12-55-13D	6560 6550	5-27-75 5-19-75 5-19-75 5-19-75 5-19-75 5-19-75 5- 9-75	10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75 10- 9-75	11-21-75 11-21-75 11-21-75 11-21-75 11-21-75 11-21-75	5+81.3 5+81.3 5+81.3 5+81.3 5+81.3 5+81.3 5+81.3	6 months 6 months 6 months 6 months 6 months 6 months	0.46 0.43 0.43 0.43 0.43 0.43 0.43	396 389 389 389 389 389 389	181 167 167 167 167 187	24 23 23 23 23 23	153 151 151 151 151 151	3 5 5 5 5 5 5 5	2860 2860 2860 2860 2860 2860 3340	4480 4480 4480 4480 4480 4660	5770	5530	4.56	0.20	156.1	210 170 200	Yes No Yes	Yes Yes	123	Concrete drilled vertically from utility gallery floor. Construction joints at elevation 6560 and 6550. A 1/4- by l-1/4- by 2-1/2-inch void space on joint at elevation 6550.	
11-57A-14 11-56-14A 11-56-14B 11-56-14C 11-56-14D 11-55-14D	6560 6550	6-24-75 6-21-75 6-21-75 6-21-75 6-21-75 6-21-75 6-10-75	11-18-75 11-18-75 11-18-75 11-19-75 11-19-75 11-19-75	12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75	5+23.9 5+23.9 5+23.9 5+23.9 5+23.9 5+23.9 5+23.9	6 months 6 months 6 months 6 months 6 months 6 months	0.42 0.43 0.43 0.43 0.43 0.43 0.45	394 391 391 391 391 391 395	165 168 168 168 168 168 179	23 23 23 23 23 23 23 23	151 152 152 152 152 152	4 4 4 4 4	3170 3640 3640 3640 3640	4330 4660 4660 4660 4660 4970	5120 5280 5280 5280 5280	4570 5130	4.42 4.90	0.20 0.20	152,3 154,8	250 280	Yes Yes	No No	98 110	Concrete drilled vertically from utility gallery floor. Construction joint at elevations 6560 and 6550.	
13-57A-15 13-56-15A 13-56-15B 13-56-15C 13-56-15D 13-55-15D	6560	6-28-75 6-24-75 6-24-75 6-24-75 6-24-75 6-24-75 6-10-75	11-19-75 11-19-75 11-19-75 11-20-75 11-20-75 11-20-75 11-20-75	12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75 12-18-75	6+24.6 6+24.6 6+24.6 6+24.6 6+24.6 6+24.6	6 months 6 months 6 months 6 months 6 months 6 months	*0,50 0,48 0,48 0,48 0,48 0,49	*386 400 400 400 400 381	*193 190 190 190 190 186	*23 23 23 23 23 23 23	146 150 150 150 150 150 149	4 4 4 5	3400 3400 3400 3400	4460 4460 4460 4460 3750	-	4960 4940	4,37	0.20	156.1 153.0	130 190	No Yes	Yes	100 111	Concrete drilled vertically from utility gallery floor. Construction joints at elevations 6560 and 6550. Joint at elevation 5560 disbonded when received in the laboratory.	
Aver	ige															4970	4.55	0,21	154.4	190					
8-57A-16A 8-56-16A 8-56-16B 8-56-16C 8-56-16D 8-55-16D	6562 6560 6550 6550	5- 7-75 4-29-75 4-29-75 4-29-75 4-29-75 4-29-75 10-25-74	3-18-76 3-18-76 3-18-76 3-18-76 3-18-76 3-18-76 3-18-76	5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76 5- 5-76	4+09.2 4+09.2 4+09.2 4+09.2 4+09.2 4+09.2	l year l year l year l year l year l year	0.50 0.50 0.50 0.50 0.50 0.53	400 368 368 368 368 368 403	201 185 185 185 185 215	24 25 25 25 25 23	151 151 151 151 151 149	3 3 3 3 4	2900 2330 2330 2330 2330 2330 2180	4380 4770 4770 4770 4770 4770 4200	5300 6200 6200 6200 6200	5490	5,02	0.22	156.7	240 190 110	No No Yes	Yes	125	Concrete drilled vertically from utility gallery floor. Joint at elevation 6560 disbonded when received in the laboratory. Joints at elevations 6560 and 6550.	
12-57A-177 12-56-17A 12-56-17B 12-56-17C 12-56-17D 12-55-17D	6562 6560 6550 6550	5-27-75 5-19-75 5-19-75 5-19-75 5-19-75 5-19-75 5- 9-75	3-19-76 3-19-76 3-22-76 3-22-76 3-22-76 3-22-76	5-18-76 5-18-76 5-18-76 5-18-76 No test	5+86.6 5+85.6 5+86.6 5+86.6 5+86.6 5+86.6 5+86.6	l year 1 year 1 year 1 year No test No test	0.46 0.43 0.43 0.43 0.43 0.43 0.43	396 389 389 389 389 389 385	181 167 167 167 167 187	24 23 23 23 23 23 23	153 151 151 151 151 151 150	3 5 5 5 4	2860 2860 2860 2860 2860 3340	4480 4480 4480 4480 4480 4660	5770	5710 5520	4.50 6.73	0.18 0.25	153.0 154.8	180	Yes	Yes	127 123	Concrete drilled vertically from utility gallery floor. Joints at elevations 6560 and 6550. Joint at elevation 6560 disbonded when received in laboratory.	
11-57A-18A 11-56-18A 11-56-18B 11-56-18C 11-56-18D 11-55-18D	6562 6560 6550 6550	6-24-75 6-21-75 6-21-75 6-21-75 6-21-75 6-21-75 6-10-75	4-20-76 4-20-76 4-20-76 4-20-76 4-21-76 4-21-76	6-21-76 6-21-76 6-21-76 6-21-76 6-21-76 6-21-76	5+29.5 5+29.5 5+29.5 5+29.5 5+29.5 5+29.5 5+29.5	l year 1 year 1 year 1 year 1 year 1 year	0.42 0.43 0.43 0.43 0.43 0.43 0.43	394 391 391 391 391 395	165 168 168 168 168 179	23 23 23 23 23 23 23 23	151 152 152 152 152 151	4 4 4 4 4	3170 3640 3640 3640 3640	4330 4660 4660 4660 4660 4970	5120 5280 5280 5280 5280	5860 5490 5440	4.87 4.64 4.86	0,17 0.21 0,22	157.9 156.7 154.8	250	Yes	Yes	135 118 117	Concrete drilled vertically from utility gallery floor. Joints at elevations 6560 and 6550. Joint 6560 broke during handling in the laboratory.	
13-57A-19A 13-56-19A 13-56-19B- 13-56-19B- 13-56-19C 13-56-19D 13-56-19D 13-55-19D	6560 1	6-28-75 6-24-75 6-24-75 6-24-75 6-24-75 6-24-75 6-24-75 6-10-75	4-29-76 4-29-76 4-29-76 4-29-76 4-29-76 4-29-76 4-29-76	6-24-76 6-24-76 6-24-76 6-24-76 6-24-76 6-24-76 5-24-76	6+35.6 6+35.6 6+35.6 6+35.6 6+35.6 6+35.6 6+35.6 6+35.6	l year l year l year l year l year l year l year l year	*0.50 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.4	*386 400 400 400 400 381	*193 190 190 190 190 190 186	*23 23 23 23 23 23 23 23 23 23	146 150 150 150 150 150 149	4 4 4 4 5	3400 3400 3400 3400 3400	4460 4460 4460 4460 4460 3750	-	5350 4440	4.43 4.12	0.17 0.20	151.7 151.7	170 210 350	Yes No Yes	No No	120 100	Concrete drilled vertically from utility gailery floor. Joints at elevations 6550 and 6550. Specimen 134 broke near a piece of angle iron running completely through the core.	
Avera	ge															5410	4.90	0.20	154,4	210					

Table 1A. - Summary of results obtained from tests performed on 250-mm (10-in) diameter concrete cores - Crystal Dam [INCH-POUND UNITS] - Continued

•

* Design values rather than actual yield values. 1/ First number, block number; second, lift number; third, core specimen number. 2/ Did specimen contain a construction joint? <u>3</u>/ Did jo int break during construction?

Average age	Number of	comp	erage ressive ength	Coefficient of variation	Strength ratio *		dulus of asticity	Poisson's ratio
	specimens	MPa	lb/in ²	(%)	(%)	GP a	1b/in ²	(average)
70 days	6	28.0	4060	19.7	81	27.6	4.00 x 106	0.20
6 months	14	33.7	4890	8.6	112	31.4	4. 55 x 10 ⁶	0.21
1 year	14	35.0	5080	8.9	116	31.7	4.60 x 106	0.20

Table 2. - Summary of test data - Crystal Dam concrete cores

* Strength ratio = $\frac{\text{core strength}}{28-\text{day cylinder strength}}$

Table 3	Summary	of te	est data -	Crystal	Dam	concrete	cores	with a	and	without
			con	struction	n jo	ints				

Type of specimen	Average age	Number of specimens tested		e tensile ength lb/in ²	Average strength ratio tensile/ compressive (%)	Number of failures at joints
Jointed	76 days	3	1.17	170	4	1
Nonjointed	69 days	1	1.17	170	4	
Jointed	6 months	11	1.38	200	4	7
Nonjointed	6 months	7	1.24	180	4	
Jointed	l year	9	1.31	190	4	6
Nonjointed	1 year	7	1.79	260	5	-

s – cryscar bair.

Figure 2. - Typical "as-received" condition of 250-mm (10-in) diameter cores - Crystal Dam. Photo P622C-427-7363.

Figure 3. - Typical 250-mm (10-in) diameter cores showing a construction joint - Crystal Dam. Photo C-8426-2.

Figure 4. - Typical 250-mm (10-in) diameter core after tensile strength test - Crystal Dam. Photo C-8448-1.

Figure 5. - Average moduli of elasticity of mass concrete in Crystal Dam.

Figure 6. - Average compressive strength of mass concrete in Crystal Dam.

Figure 7. - Ratio of core to companion 28-day cylinder strengths in Crystal Dam.

Figure 8. - Average tensile strength of mass concrete in Crystal Dam.

Figure 9. - Ratio of tensile strengths to companion compressive strengths in Crystal Dam.

ЗΟ

A free pamphlet is available from the Bureau entitled, "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request to the Bureau of Reclamation, Engineering and Research Center, PO Box 25007, Denver Federal Center, Bldg. 67, Denver, CO 80225, Attn D-922.