CONCRETE PERFORMANCE IN GRAND COULEE FOREBAY DAM, WASHINGTON: 1-YEAR CORE REPORT

Concrete and Structural Branch Division of General Research Engineering and Research Center Bureau of Reclamation

> December 1977 GR-13-77

MS-230 (1-76) Bureau of Reclamation

TECHNICAL	REPORT	STANDARD	TITLE PAGE

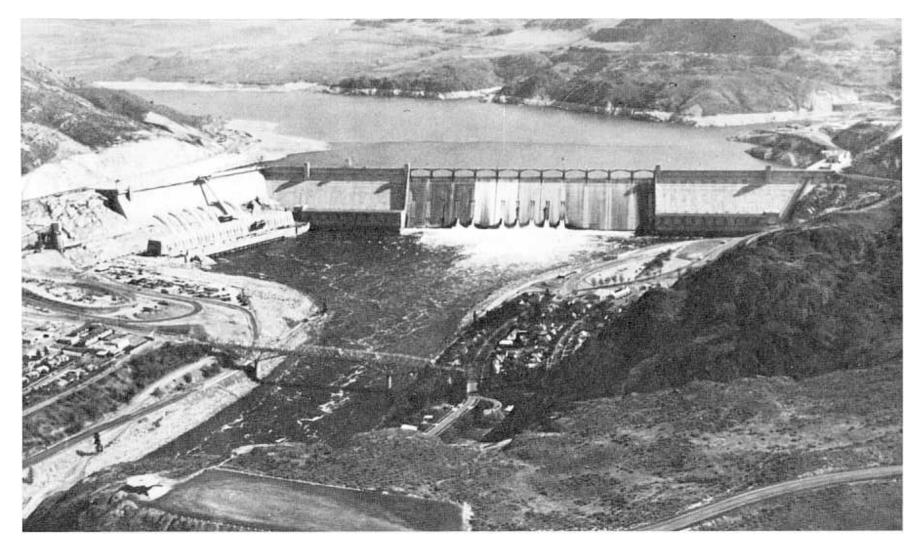
1. REPORT NO. A. ODVERIGENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
GR-13-77	
4. TITLE AND SUBTITLE	5. REPORT DATE
Concrete Performance in Grand Coulee	December 1977
Forebay Dam, Washington: 1-year Core Report	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.
M. D. Newsom and J. D. Richards	GR-13-77
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.
Bureau of Reclamation	
Engineering and Research Center	11. CONTRACT OR GRANT NO.
Denver Federal Center Denver, Colorado 80225	13. TYPE OF REPORT AND PERIOD
12. SPONSORING AGENCY NAME AND ADDRESS	COVERED
	· · · · · ·
Same	
	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES	
16. ABSTRACT	
Results of physical properties tests on 150	
(10-in) diameter cores extracted from interior and exte Grand Coulee Forebay Dam, Washington, at 6 months' and	
a good quality, uniform, well-consolidated concrete exc	eeding established
design criteria. This study is part of a series in the	Bureau's long-term
evaluation of strength and elastic properties of concre Tensile strength tests to study bond strength of the ho	te in various dams.
joints show the bond to be as good as the adjacent conc	rete. Combined results
of 150- and 255-mm cores show: (1) average compressive	strengths of 31.6 MPa
(4590 lb/in ²) at combined results of 150- and 255-mm co and 32.4 MPa (4700 lb/in ²) at 1 year for interior concr	res show: 6 months
(4900 lb/in ²) at 6 months and 37.5 MPa (5440 lb/in ²) at	1 year for exterior
concrete, (2) average strength gain of 8 percent from 6	months to 1 year,
 (3) average tensile strength equal to 3.9 percent of co (4) average modulus of elasticity of 35.5 GPa (5.15 x 1) 	
age Poisson's ratio of 0.18, (6) average density of 248	
(7) shearing strength of jointed cores, at zero normal	stress, equal to 83 per-
cent of nonjointed cores, and (8) overall coefficient of cores of 17.5 percent. Compressive and tensile stre	
diameter cores averaged higher than those of the 255-mm	
whereas the modulus of elasticity and Poisson's ratio a	veraged lower.
17. KEY WORDS AND DOCUMENT ANALYSIS	······
a. DESCRIPTORS / *compressive strength/ Poisson's	ratio/ concrete testing/
modulus of elasticity/ triaxial shear/ *tensile s	trength/ shear strength/
laboratory tests/ concrete technology/ physical p	properties/ bonding strength
mass concrete/ *cores/ concrete properties/ concr	ete dams/
b. IDENTIFIERS / Grand Coulee Dam/ Columbia Basin	Project, Washington
c. COSATI Field/Group 13M COWRR: 1303.1	
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT)
	UNCLASSIFIED 77
	20. SECURITY CLASS 22. PRICE (THIS PAGE) UNCLASSIFIED

GR-13-77

CONCRETE PERFORMANCE IN GRAND COULEE FOREBAY DAM, WASHINGTON: 1-YEAR CORE REPORT

by M. D. Newsom J. D. Richards

Concrete and Structural Branch Division of General Research Engineering and Research Center Denver, Colorado December 1977



UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION

ACKNOWLEDGMENTS

This study was conducted by personnel of the Concrete and Structural Branch, Division of General Research. The assistance of many people in the investigation and report of this study is greatly appreciated, particularly E. R. Dunstan, Jr., and V. R. Guy.

Note: The data reported in this document were measured in U.S. customary units and converted to SI metric units.

Grand Coulee Dam, Left Powerplant, Pumping/Generating Plant, Right Powerplant, and Third Powerplant. Photo P222-117-34733

.

CONTENTS

Page

•

Introduction	•	•	•	•	•	•	1
Core drilling program	•	•	•	•	•	•	2
Extraction of cores	•	•	•	•	•	•	6
Shipping and receiving	•		•	•		•	8
Testing program for 255-mm (10-in) diameter core							12
General							12
Compressive strength	•					•	12
Elastic properties							12
Density			Ì	Ī			13
Density	•	•	•	•	•	•	13
	•	•	•	•	•	•	14
Direct shear							15
	•	•	•	•	•	•	10
Test results of 255-mm (10-in) diameter cores.	•	•	•	•	•	•	16
Compressive strength	•	•	•	•	•	•	16
Elastic properties	•	•		•	•	•	18
Density							18
Tensile strength		•			•	•	19
·							
Testing program for 150-mm (6-in) diameter core							33
General	•	•	•	•		•	33
Triaxial shear	•		•			•	33
Petrographic examination							34
Compressive strength							34
Elastic properties							34
Tensile strength							35
Density				Ī	Ī		35
Direct shear	•	•	•	•	•	•	35
	•	•	•	•	•	•	55
Test results of 150-mm (6-in) diameter cores .							36
Triaxial shear strength	•	•	•	•	•	•	36
Compressive strength	•	•	•	•	•	•	36
Elastic properties							37
Tensile strength							38
Density					÷	÷	38
•							
Conclusions	•	•	•	•	•	•	45
APPENDIXES							

Α.	Triaxial shear memorandum	•••	••	49
B.	Petrographic examination memorandum	••	••	65

i

TABLES

Page

,

1	Compilation of 255-mm (10-in) diameter core data - Interior and exterior concrete at 6 months' age	21
2	Compilation of 255-mm (10-in) diameter core data - Interior and exterior concrete at 1 year's age	25
3	Summary of compressive strength and elastic properties test results on 255-mm (10-in) diameter cores at 6 months' age	29
4	Summary of compressive strength and elastic properties test results on 255-mm (10-in) diameter cores at 1 year's age	30
5	Summary of tensile strength test results on 255-mm (10-in) diameter cores at 6 months' age	31
6	Summary of tensile strength test results on 255-mm (10-in) diameter cores at 1 year's age	32
7	Compilation of 150-mm (6-in) diameter core data - Interior and exterior concrete at 6 months' age	39
8	Summary of compressive strength and elastic properties test results on 150-mm (6-in) diameter cores at 6 months' age	43
9	Summary of tensile strength test results on 150-mm (6-in) diameter cores at 6 months' age	44

- Bi

FIGURES

Page

1	Hole locations for 150- and 255-mm (6- and 10-in) diameter cores	3
2	Typical 255-mm (10-in) diameter cores showing a construction joint	9
3	Typical 255-mm (10-in) diameter core after tensile strength test 1	LŨ
4	Typical 150-mm (6-in) diameter cores showing construction joints 1	1
5	Comparison of compressive strength of concrete cores and control cylinders	17

iii

......

i. It

INTRODUCTION

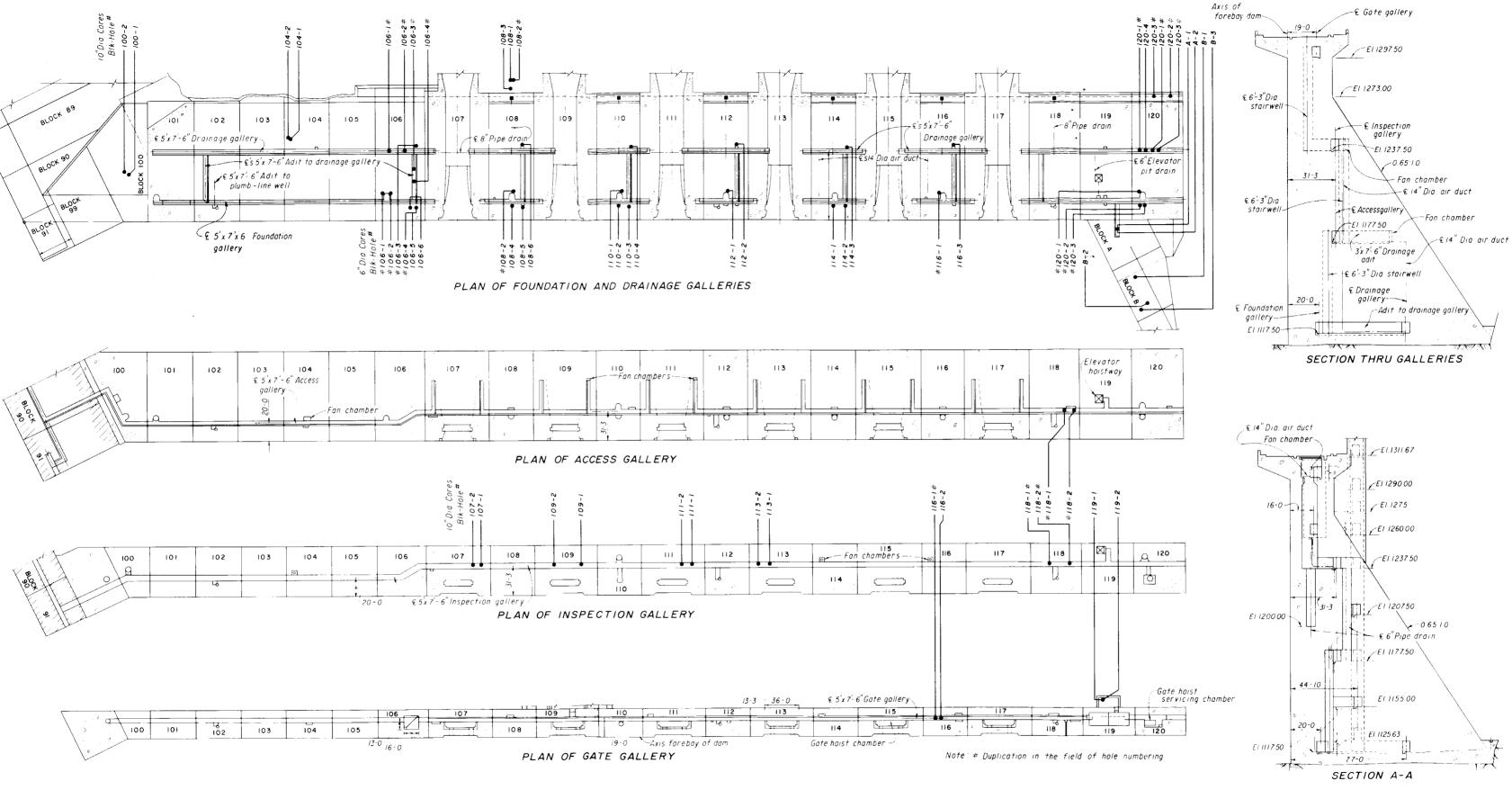
This report covers a concrete core testing program conducted during the construction of Grand Coulee Third Powerplant and Forebay Dam, Columbia Basin Project, Wash., under Specifications No. DC-6790. Construction of the dam was started in March 1970 and completed in August 1973.

The Third Powerplant and Forebay Dam are situated on the right bank of the Columbia River downstream from and adjacent to Grand Coulee Dam, near the town of Grand Coulee, Wash. The principal features are a concrete forebay dam, six 12.2-m (40-ft) diameter concreteencased penstocks, a powerplant with six generators, a visitors facility, service road, and switchyards.

The forebay dam from which the cores for this investigation were taken is a gravity-type structure with a maximum height of approximately 60 m (200 ft) above the foundation and a crest length of approximately 390 m (1275 ft). The dam contains about 463 000 m³ (605 000 yd³) of mass concrete. The concrete in the dam is divided into blocks by vertical transverse contraction joints. Galleries and adits provide access to selected locations in the interior of the dam.

Concrete in the Forebay Dam contains type II, low-alkali cement; Class F pozzolan; natural sand; and 150-mm (6-in) maximum size aggregate. A portion of the coarse aggregate was crushed. An air-entraining admixture and a lignin-type water-reducing, setcontrolling admixture were used in the concrete. Average concrete in the interior sections of the Forebay Dam contains 112 kg/m³ (188 lb/yd³) of cement and 47 kg/m³ (80 lb/yd³) of pozzolan. For exterior concrete, on the exposed surfaces of the dam, typical mass concrete contains 133 kg/m³ (224 lb/yd³) of cement and 57 kg/m³ (96 lb/yd³) of pozzolan.

The specifications provided for a concrete core drilling program to obtain cores for a study of the effects of age and loading on the strengths and elastic properties of the interior and exterior mass concretes. After starting construction, an additional drilling program was instituted to obtain cores for a study of the bond strength at the horizontal construction joints. The concrete was approximately 6 months old and 1 year old when the cores were extracted and tested. This report presents the results of the tests performed on 150- and 255-mm (6- and 10-in) diameter cores. Additional cores probably will be extracted in later years to further evaluate the properties of the concrete in this structure.


CORE DRILLING PROGRAM

The core drilling program, as outlined by the construction specifications, required extraction of 255-mm (10-in) diameter cores from the hardened concrete at locations designated by the Bureau. The cores representing the interior concrete were to be taken from galleries in the dam. Cores representing the exterior concrete were to be taken from the floor of the elevator room at elevation 388.6 m (1275 ft), the floor of the gate hoist chamber at elevation 395.5 m (1297.5 ft), and the top of the fillet downstream from the dam and adjacent to the existing dam at elevation 341.4 m (1120 ft). Locations for all cores are shown on figure 1.

A total of thirty-six 255-mm-diameter cores were to be extracted. Eighteen cores were to be extracted during each of the two major construction seasons. Twelve of the 18 cores were to be extracted from interior concrete and 6 from exterior concrete. Half the cores were to be drilled when the concrete was between 140 to 160 days of age so that the 6-month tests could be made on schedule,

2

: III

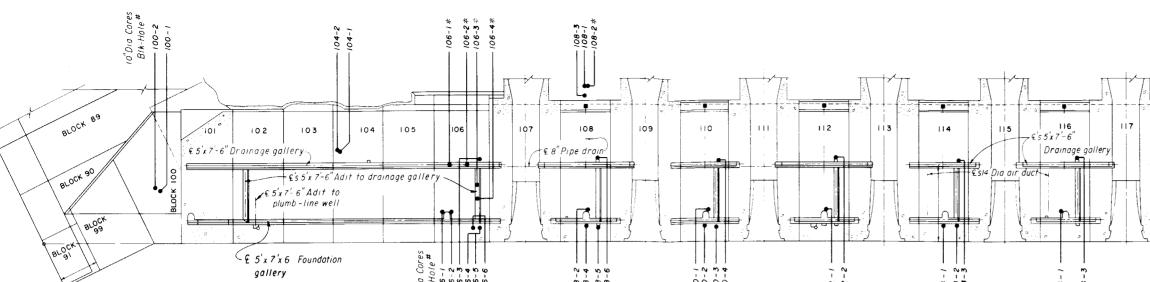


Figure 1. - Hole locations for 150- and 255-mm (6- and 10-in) diameter cores - Grand Coulee Forebay Dam

and the other half were to be drilled at the same locations when the concrete was between 325 and 345 days old so that the 1-year tests could be made. The cores were to be drilled vertically with diamond drills to a depth sufficient to permit extraction of two lengths of core 660 mm (26 in) long, whereupon each could be cut effectively into 510-mm (20-in) lengths. None of the holes was to be drilled more than 4.6 m (15 ft) deep.

The specifications also required the prime contractor to cure three horizontal construction joints in the wing dam above elevation 393.2 m (1290 ft) with a pigmented, resin-base membrane, bonding and curing compound similar to one found suitable in laboratory tests.¹ This was to evaluate the bonding effectiveness of this type of curing compound when it was left in place for the succeeding placement. The bonding and curing compound used was a chlorinated rubber material conforming to Bureau of Reclamation requirements.² As a means of evaluating the effectiveness of the bonding and curing compound, cores were drilled through the joints.

In May 1971, an additional core drilling program was established. The purpose of this program was to enhance the Bureau's knowledge of the bond strength of horizontal construction joints in concrete dams. To accomplish this, 20 cores, which crossed construction joints in the Forebay Dam, were extracted.

¹Graham, James R., "Use of Curing Compounds on Horizontal Construction Joints," Proc. Engineering Foundation Conf., Economical Construction of Concrete Dams, Asilomar, Pacific Grove, Calif., May 1972.

²"Method of Test and Test Requirements for Shear Strength of Bonding Agents for Bonded Concrete Construction Joints," Bureau of Reclamation, Denver, Colo., Sept. 1969.

The cores were approximately 150 mm (6 in) in diameter and a minimum of 355 mm (14 in) long, with the joint near the center of the specimen. The cores were drilled at about a 30° dip from the horizontal construction joints. Cores with large aggregate near the construction joint which might adversely affect the test results were discarded.

EXTRACTION OF CORES

The extraction of the 150-mm-diameter cores was started on July 7. 1971, and was completed by August 24, 1971, except for one hole which was drilled on March 10, 1972. A total of twenty-six 150-mmdiameter holes were drilled; however, the core from hole 3 in block 108 was broken during drilling and discarded. The core from hole 3 in block 106 broke at the construction joint during extraction, but was submitted to the Denver laboratories for visual inspection. The core from hole 2 in block B of the wing dam parted at the construction joint during drilling due to lack of bond at the joint. Twentyfour of the holes were drilled from the foundation and drainage galleries in the Forebay Dam and one was drilled from the top of the wing dam in block B. The cores in the Forebay Dam were drilled in blocks 106, 108, 110, 112, 114, 116, and 120 and were all in interior concrete. The core from the top of the wing dam was in exterior concrete and was drilled to check the construction joint on which the chlorinated rubber-base bonding and curing compound had The holes were drilled approximately 1.8 m (6 ft) been used. deep.

The extraction of the 255-mm-diameter cores was started on July 13, 1971, and was completed January 29, 1974. A total of 37 holes were drilled. The holes were drilled in various galleries and adits, and also in the top of the dam. Cores for interior concrete at 6 months' age were drilled in blocks 104, 106, 107, 109, 111, 113, 118, 120, and block A in the wing dam. Cores for the exterior

6

ľ:

concrete at 6 months of age were drilled in blocks 100, 108, 116, 119, 120, and block B of the wing dam. The two holes in block B of the wing dam were drilled to check the construction joint on which the chlorinated rubber-base bonding and curing compound had been used. Six of the 37 cores broke at the construction joint during drilling, including the 2 holes drilled in block B.

Core holes for the interior and exterior concrete at 1 year's age were drilled at the same location as those drilled for the 6 months' Initially, the 255-mm-diameter holes were drilled age cores. approximately 2.7 m (9 ft) deep. This was changed, however, when it was determined that there was a need for more tensile strength data on mass concrete to correlate structural behavior studies with current design concepts. On March 8, 1972, the project office was directed to increase the hole depth to 3.7 m (12 ft), thereby providing two compression test specimens: one construction joint tensile test specimen, and one nonjointed tensile test specimen. The core for the jointed specimen was to extend about 455 mm (18 in) on either side of the joint. The nonjointed tensile specimen on the lower end of the core was to be about 760 mm (30 in) long. The drilling rate for the 255-mm (10-in) cores ranged from 0.4 to 0.8 m/h (1.3 to 2.6 ft/h) with an average of 0.6 m/h (2.0 ft/h).

In several instances, while drilling cores, cooling pipes which were still in use were inadvertently cut. Whenever this occurred, the core hole was backfilled with fresh concrete to the elevation of the construction joint. A space approximately 75 mm (3 in) high was then formed using metal chairs or spacers with a wood form across the top, and the remainder of the hole was backfilled with concrete. This left a passageway for the water during concrete cooling which was later filled with grout when the cooling pipes were grouted.

The prime contractor used an air-operated drill with 165-mm (6.5-in) diameter and 265-mm (10.5-in) diameter diamond core bits. The core barrels were of sufficient lengths so that 760-mm (30-in) long cores for compressive strength tests and 1015-mm (40-in) long cores for tensile strength tests could be removed intact.

SHIPPING AND RECEIVING

After the cores were extracted, they were labeled with the name of the project, block number, hole number, core number, elevation, and the date drilled. Then they were wrapped in paper, packed in wet sawdust in substantial wooden boxes with one core to a box, and shipped to the Bureau's Division of General Research for testing. The cores were received in Denver in good condition.

In the Denver laboratories, the cores were first logged to provide a record of specimen lengths and unusual characteristics such as embedded reinforcing steel, rock pockets, construction joints, etc. The cores were then marked for the type of test to be conducted. Photographs were taken of the cores in groups and individually as needed to show detail. Figures 2, 3, and 4 are photographs of some typical specimens.

: 37

1.

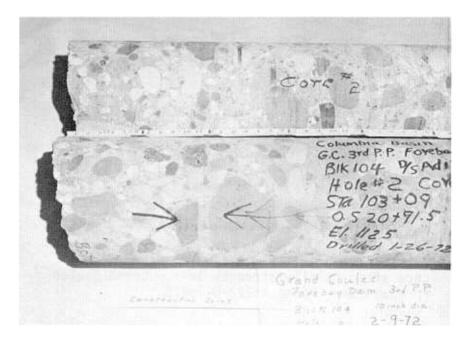
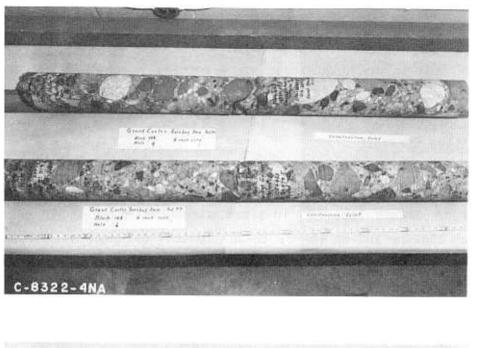



Figure 2. - Typical 255-mm (10-in) diameter cores showing a construction joint - Grand Coulee Forebay Dam. Photos P1222-D-78276 and P1222-D-78277

Figure 3. - Typical 255-mm (10-in) diameter core after tensile strength test - Grand Coulee Forebay Dam. Photo P1222-D-78273

â

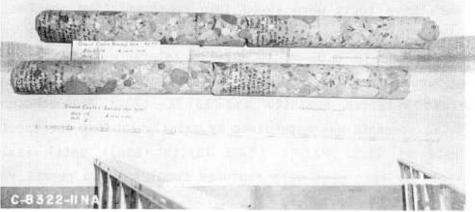


Figure 4. - Typical 150-mm (6-in) diameter cores showing construction joints - Grand Coulee Forebay Dam. Photos P1222-D-78274 and P1222-D-78275 TESTING PROGRAM FOR 255-MILLIMETER (10-INCH) DIAMETER CORES

General

Cores were extracted so that studies could be made of the interior and exterior concretes at 6 months' and 1 year's age. The actual testing program included tests to determine compressive strength, elastic properties, density, tensile strength, and shear strength.

Compressive Strength

Compressive strength tests on the cores were conducted on selected samples to obtain apparent in-place strengths which could be compared to 150- by 300-mm (6- by 12-in) control cylinder strengths and to determine the strength development of the concrete in the dam over a period of 1 year. In general, the cores selected for compression testing did not contain construction joints.

Cores for these tests were sawed into representative specimens of 510-mm (20-in) lengths and then the ends were ground until square and flat to within 0.05-mm (0.002-in) tolerance. Subsequent to grinding and prior to testing, the specimens were stored in a 100-percent relative humidity and 23 °C (73.4 °F) atmosphere. Compressive strength was determined by axially loading the specimens at a rate of 13.8 MPa/min (2000 lb/(in²·min)) until failure. Several of the specimens were ruptured completely to permit visual observation of the fractures.

Elastic Properties

Elastic property tests were made on the same core specimens selected for the compressive strength tests. Data obtained from these tests may be used later in structural behavior studies. The modulus of elasticity and Poisson's ratio were determined on the specimens

> and **Alb**ay. Di Mga

using an extensometer-compressometer frame, with dial gages mounted so that longitudinal and lateral deformations were monitored as the actual load was applied. All specimens underwent preloading and then strain readings were taken at 0, 35.6, and 355.9 kN (0, 8000, and 80 000 lb) total load. Computations for modulus of elasticity and Poisson's ratio were based on the net strain occurring between the 35.6-kN and 355.9-kN loads.

Density

Prior to conducting the compressive strength tests, "as is" densities of the core specimens were determined. Obtaining the density of hardened concrete provided a quick qualitative evaluation of concrete quality.

Tensile Strength

Tensile strength tests were made on cores which intercepted the horizontal construction joints and were in a plane normal to the vertical axis of the core. These tests were performed primarily to determine the bond strength of the construction joint. Some core specimens without construction joints also were tested for tensile strength comparisons.

The cores to be used in evaluation of the construction joints were sawed into approximately 760-mm (30-in) long specimens with 380 mm (15 in) of concrete on each side of the joint. After the ends were cleaned with acetone, a 50-mm (2-in) thick by 255-mm (10-in) square steel plate was cemented to each end of the specimen with an epoxy resin and allowed to cure for 24 hours. The specimens were then subjected to direct tension through a flexible, self-centering, loading apparatus mounted in a 1780-kN (400 000-lb) universal testing machine.

Dynamic Tension

Fourteen core specimens were selected for dynamic tensile strength testing to study the effects of dynamic loadings on the concrete. In the past, static tensile strengths have been used when analyzing the response of Bureau structures to dynamic loading. When designing for nonstatic loading, these strengths may not take into account the changes in properties which occur when a structure is subjected to dynamic loadings such as those caused by earthquake conditions and vibrations from rotating equipment.

For the dynamic tension tests, 255-mm (10-in) diameter by 510-mm (20-in) long specimens were used. These specimens were tested in the Denver laboratories vibration test facility. The cores were first instrumented for length change and then epoxied into a load frame which contained a load-measuring device and a servocontrolled hydraulic actuator. Each core was subjected to sinusoidal loadings which passed from compression through zero into the tension zone. Load and displacement data were recorded and results computed. These tests will be included in a separate report. The core specimens selected for dynamic tension testing are:

Block	Hole	Core	Type of concrete	Type of joint
111	<u> </u>	3	Interior	Jointed
111	1	4	u u	Unjointed
107	1	3	11	Jointed
107	ī	4	н	Unjointed
113	1	2	н	u u
118	1	5	н	в
109	2	3	н	Jointed
118	2	3	н	
118	2	4	н	Unjointed
118	2	1	81	и
118	1	4	н	н
100	2	5	Exterior	u
116	2	4	11	н
B	3	5	н	u

Cores for dynamic tension test

Direct Shear

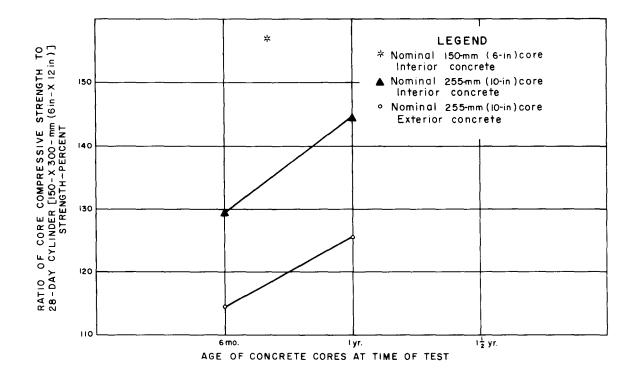
Eight core specimens were selected for shear testing. These specimens were taken from sections of cores without construction joints and were representative of both interior and exterior concretes. The specimens were cut into 150-mm (6-in) lengths and stored for later testing. The shear tests will be made when fabrication of the equipment for handling 255-mm-diameter specimens is completed.

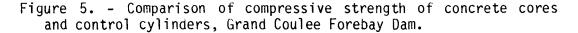
The samples selected for shear tests are:

Cores	for	direct	shear	test
-------	-----	--------	-------	------

Type of concret	Core	Hole	Block
Exterior	4	2	100
11	4	1	116
н	2	2	116
Interior	4	1	118
и	2	1	118
Exterior	1	[`] 1	119
Interior	3	3	120
Exterior	3	3	В

TEST RESULTS OF 255-MILLIMETER (10-INCH) DIAMETER CORES


Compressive Strength


The results of the individual tests are shown in tables 1 and 2. Summaries of results are shown in tables 3 and 4. The average compressive strength for the interior concrete was 30.2 MPa (4380 $1b/in^2$) at 6 months' age and 32.4 MPa (4700 $1b/in^2$) at 1 year's age. The average strength for the exterior concrete was 33.8 MPa (4900 $1b/in^2$) at 6 months' age and 37.5 MPa (5440 $1b/in^2$) at 1 year's age. This shows an increase in strength from 6 months to 1 year of 7 percent for interior concrete and 11 percent for exterior concrete, which is slightly above average for strength development in mass concrete.

The compressive strengths of the cores extracted from interior concrete ranged from 20.5 to 40.3 MPa (2980 to 5850 lb/in^2) at 6 months' age and from 23.1 MPa (3350 lb/in²) to 44.4 MPa (6440 lb/in²) at 1 year's age. The corresponding coefficients of variation were 17.5 and 17.0 percent, respectively. Compressive strengths of the cores extracted from exterior concrete ranged from 22.3 MPa (3240 lb/in²) to 44.5 MPa (6460 lb/in²) at 6 months' age and from 21.2 MPa (3080 lb/in²) to 54.6 MPa (7920 lb/in²) at 1 year's age. The corresponding coefficients of variation were 19.2 and 21.0 percent, respectively. The higher coefficient of variation in exterior concrete at 1 year's age largely is due to one low core strength which resulted from failure along a large aggregate particle. When that low strength is deleted from the data, the coefficient of variation for exterior concrete is 16.9 percent at 1 year's age.

In only one case was the core compressive strength below the design strength of 20.7 MPa (3000 lb/in^2) at 180 days.

In general, compressive strength development of the cores was in direct correlation with that of the 28-day control cylinders, with an overall ratio of core strength to 28-day control cylinder strength of 121 percent at 6 months' age and 135 percent at 1 year's age. The strength ratio was higher for interior concrete than for exterior concrete at both 6 months' and 1 year's age. For several of the core specimens there were no 28-day control cylinder strengths available for comparison. For some reason, 6 of the 13 cores extracted from exterior concrete and tested at 6 months' age had compressive strengths below the control cylinder strengths. However, cores extracted from approximately the same locations and tested at 1 year's age did not reflect this trend. The comparisons between core strengths and the 150- by 300-mm (6- by 12-in) control cylinders are shown graphically on figure 5.

Elastic Properties

Results of elastic property tests are summarized in tables 3 and 4. The results showed very little difference in modulus of elasticity between 6 months' and 1 year's age or between interior and exterior concrete.

The modulus of elasticity ranged from 21.0 GPa (3.05 x 10^6 lb/in²) to 44.3 GPa (6.43 x 10^6 lb/in²) with an overall average of 35.7 GPa (5.18 x 10^6 lb/in²).

Poisson's ratio averaged 0.19 for all the tests with no significant differences between 6 months and 1 year or between exterior and interior concrete.

Density

Density values are shown in tables 1 and 2. For all tests the density averaged 2480 kg/m 3 (155 lb/ft 3), which is within the expected range. There were no significant differences between densities for 6 months and 1 year nor between the interior and exterior concretes.

Tensile Stength

Thirty of the 37 cores extracted from the Forebay Dam intersected horizontal construction joints. All of these construction joints had been cleaned by the wet-sandblast method, except for those in block B of the wing dam which had been treated with a chlorinated rubber-base bonding and curing compound. Six of the 30 cores which intersected construction joints broke at the joint during drilling, including the 2 cores across the construction joints in block B of the wing dam. Excluding the joints where the bonding and curing material was used, the remainder of the cores appeared to have very good construction joints.

Fifteen core specimens from 12 drill holes were selected for tensile strength testing at 6 months' age. Nine of the specimens were from interior concrete and six from exterior concrete. Four specimens from both exterior and interior concretes contained construction joints.

Twenty-two specimens from 17 drill holes were selected for tensile strength testing at 1 year's age. Fifteen of the specimens were taken from interior concrete and seven from exterior concrete. Five of the specimens from exterior concrete and six from interior concrete contained construction joints.

The individual test results are shown in tables 1 and 2 and are summarized in tables 5 and 6. Of the 19 tested specimens which contained construction joints, only 4 broke at the construction joint. All others broke at varying distances from the joint. Of the four specimens which broke at the construction joints, two were in cores tested at 6 months' age and two were in cores tested at 1 year's age. The tensile strength of the specimens which broke at the joint averaged 1.21 MPa (175 $1b/in^2$) at 6 months' age and 1.45 MPa (210 $1b/in^2$) at 1 year's age. The remainder of both the

unjointed and jointed specimens averaged 1.21 MPa (175 lb/in^2) at both 6 months' and 1 year's age. There was little significant difference between interior and exterior concrete tensile strengths at 6 months' age, but at 1 year's age, the exterior concrete developed about 20 percent more tensile strength.

The tensile strength tests were not very indicative of the actual bond strength of the construction joint since most of the tested specimens broke in the concrete away from the joint, rather than at the joint. The areas of disbonding between paste and aggregate were estimated for each test specimen; however, there was poor correlation between the tensile strength and the area of disbonding. The tests did show that the tensile strength of the construction joints was as good or better than that of the adjacent concrete.

The tensile strength for all specimens averaged 3.7 percent of the compressive strength, with little significant differences between interior and exterior concretes or between 6 months' and 1 year's ages. This strength ratio is average for mass concrete.

The construction joint in block B of the wing dam which was painted experimentally with chlorinated rubber-base bonding and curing compound showed little or no bond. Both of the 255-mm-diameter cores which were drilled through the construction joint parted at the joint during drilling.

Table 1. - Compilation of 255-mm (10-in) diameter core data -Interior and exterior concrete at 6 months' age -Grand Coulee Forebay Dam

			Location	of hol	e				Con	e data										Concret	e d a t a	when pl	aced									Test	data o	n concr	rete cores			
ore No. <u>1</u> /	Station No.	Offset from axis	Eleva- tion top of hole, ft	Locat	ion in dam	Lift in block No.	Date drilled	Depth of core, ft	Joint eleva- tion ft		Condition of concrete in core	Date placed	Max size aggr, in	Tempe Conc	rature H2 ⁰ Ma		w	Cement, 1b/yd ³	Pozzo- lan, lb/yd ³	Water, 1b/yd ³	Sand, Z	Unit weight, lb/ft ³	Slump, in	Air content Z	, co	mpress	ive st b/in ²	1 cylin trength,	, <u>4</u> /	Compres- sive strength, lb/in ²	proper		cific	Unit weight 1b/ft ³	Strength, 1b/in ²	dis-	T	k[
4-1-1 -2 -3	103+10 103+10 103+10	20+90 20+90 20+90	1125.0	Downst	ream adit	26 26 26/27	7-13-71	0.0- 2. 2.6- 6. 6.0- 8.	0	Vertical Vertical Vertical	Some small air voids Cut cooling coil @ 8.0', cj @ 8.2' good	2-16-71 2-16-71 2-16-71	6	48	37 4	0 39 6 30	0.51 0.49 0.49	187	80 80 80	137 132 132	25	157.1 155.3 155.3	1.75 2.00 2.00	2.1 3.3 3.3		3,075 2,570 2,570	-		-	4 ,00 0 3,590	5.75 5.53	0.20	2.57 2.50	- 160 156	-			
5-1-1 -2 -3 5-2-1 -2	103+95.5 103+95.5 104+09.5	20+77.5 20+77.5 20+77.5	1117.5	Draina Draina Draina	ige gallery ige gallery ige gallery ige gallery ige gallery	27/27 В 27	9-27-71 9-27-71 9-28-71	0.0- 2.	4 - 8 1112.5 6 -	Vertical Vertical Vertical	Good concrete Good concrete Good concrete Good concrete Good concrete, cut cooling coil @ 5.0'	4-24-71 4-24-71 4-24-71 4-24-71 4-24-71	6 6 6	48 48 48	37 5 37 5 37 5	8 44 8 44 8 44	0.49 0.49 0.49 0.49 0.49	188 188 188	81 81 81 81 81	133 133 133 133 133 133	25 25 25	154.9 154.9 154.9 154.9 154.9	1.50 1.50 1.50 1.50 1.50	3.2 3.2 3.2 3.2 3.2 3.2	-	3,395 3,395 3,395 3,395 3,395 3,395	5,225 5,225 5,225	-		5,850 4,610 - 4,820 4,770	6.18 - 5.02	0.20	2.44 -	152	- 170 -	- 50 -	- 4 - -	
7-1-1 -2 -3 -4	104+99.7 104+99.7 104+99.7 104+99.7	20+32 20+32	1237.5 1237.5	Inspec	ction gallery ction gallery ction gallery ction gallery	11 11-12	4-17-73 4-17-73	0.0- 3. 3.1- 5. 5.8- 8. 8.5-11.	8 - 5 1230.0	Vertical	Good concrete Good concrete, core broke @ 5.8' Good cj @ 7.5'	11-29-72 11-29-72 11-29-72 11-17-72	3	49 49	64 3 64 3	7 32 7 32	0.51 0.51 0.51 0.52	196 196	83 83 83 80	143 143 143 143	25 25	159.0 159.0 159.0 153.8	0.75 0.75 0.75 3.50	1.9 1.9 1.9 3.5	2,845 2,845 2,845 1,805	- - -	-	- - -		4,170 - -	4.54 - -	0.17 - -	2.41 - -	151 - - -	- 220*	- 0 -	- - -	*Nonjointed Saved for dynau tension Saved for dynau tension
-1-1 -2 -3 -4	106+12.2 106+12.2	20+31.3 20+31.3	1237.5 1237.5	Inspec Inspec	tion gallery tion gallery tion gallery tion gallery	11 11-12	2-20-73 2-20-73	0.0- 2. 2.9- 6. 6.0- 8. 8.9-11.	0 - 9 1230.0	Vertical Vertical	Good concrete Good concrete Small void @ 6.6' & @ 7.5 cj Good concrete	8-30-72 8-30-72 8-30-72 8-24-72	6		46 7 46 7	6 62 6 62	0.51 0.51 0.51 0.46	185 185	80 80 80 80	127 127 127 127	25	154.8 154.8 154.8 155.9	2.50 2.50 2.50 2.50	3.8	2,300 2,300 2,300 2,165	- - -	-	6,010 - 5,770	-	4,810 4,560 - -		0.18 0.17 -			- - 130 -	- 20 -	- 14* -	*Broke at cj Saved for dyna tension
-1-1 -2 -3 -4	107+36.6 107+36.6 107+36.6 107+36.6	20+32 20+32	1237.5 1237.5	Inspec	tion gallery tion gallery tion gallery tion gallery	11 11-12	4 -16 -73 4 -16 -73	0.0- 3. 3.0- 6. 6.0- 9. 9.0-11.	0 - 0 1230.0	Vertical Vertical	-	11-22-72 11-22-72 11-22-72 10 19-72	3	48 48 48 48	54 54 54 61 6	 4 39	0.49 0.49 0.49 0.49	188	81 81 81 82	131 131 131 129	25 25	155.4 155.4 155.4 155.4	1.50 1.50 1.50 1.25	2.6 2.6	2,220 2,220 2,220 2,220 2,405	- - -	5,510 5,510 5,510 -	- - 6,685	-	4,160 - - -	4.80 - - -	0.21	2.45 - -	153 - -	- 225*	- 0 -	20	*Nonjointed Saved for dyns tension Saved for dyns tension
-1-1 -2 -3	108+01.5	20+31.7	1237.5	Inspec	tion gallery tion gallery tion gallery	11	7-16-73	0.0- 3. 3.0- 6. 6.0- 9.	0 -	Vertical	Good concrete Broke @ large aggre- gate @ 4.9' Good cj, broke on large aggregate	2- 2-73 2- 2-73 2- 2-73	6	48	129 4	4 30	0.49 0.49 0.49	187	81 81 81	131 131 131	25	156.5 156.5 156.5	1.75 1.75 1.75	3.9 3.9 3.9	1,790 1,790 1,790	3,430	-	- - -	-	5,100 - -	5.01 - -	0.21	2.42	151 - -	- - 140	- - 100	- - 10	Saved for dyna tension
-4	108+01.5	20+31.7	1237.5	Inspec	tion gallery	12	7-17-73	9.0-11.	8 -	Vertical	@ 9.0' Core broke on large aggregate @ 11.8'	1- 24-73	6	45	117 4	4 36	0.52	183	80	136	25	152.2	1.25	3.0	1,935	-	-	5,490	-	-	-	-	-	-	145*	99	17	*Nonjointed
-1-1 <u>3</u> / -2 -3	111+47.5 111+47.5 111+47.5	20+31.2	5 1177.5	Access	gallery	19	11-16-72 11-16-72 11-17-72	2.9- 6.	0 -	Vertical	Good concrete Good concrete Core broke @ cj, poor consolida-	6-10-72 6-10-72 6-10-72	6	46	41 6	5 57	0.51 0.51 0.51	188	80 80 80	137 137 137	24	155.2 155.2 155.2	1.00 1.00 1.00	2.1 2.1 2.1	2,155 2,155 2,155 2,155	3,705	-	- - -	-	4,020 5,760	6.05 - -	0.19	2.55 2.51	- 1	130*	45 -	- 4 -	*Nonjointed
- 4 -5	111+47.5 111+47.5	20+31.2 20+31.2	5 1177.5 5 1177.5	Access			11-17 -72 11-17-72			Vertical Vertical	tion above joint Good concrete	6- 6-72 6- 6-72					0.41 0.41	192 192	80 80	112 112	25 25	155.5 155.5	1.75 1.75	2.7 2.7	2,405 2,405	-	-	7 ,2 75 7,275		-	-	-	-	-	-	-	-	Saved for shear Saved for dyna tension
$\frac{1-1}{-2} \frac{3}{-3}$	111+24.5 111+24.5 111+24.5 111+24.5	20+31 20+31	1237.5 1237.5	Inspec	tion gallery tion gallery tion gallery tion gallery	11 11-12	1- 8-73 1- 8-73	0.0- 3. 3.0- 6. 6.0- 8. 8.6-12.	0 - 6 1230.0	Vertical Vertical	Good concrete Good concrete Good cj Good concrete	7-31-72 7-31-72 7-31-72 7-25-72	6	48 48	37 9 37 9	3 67 3 67	0.48 0.48 0.48 0.48	186 186	81 81 81 82	127 127 127 127 130	25 25	154.8 154.8 154.8 156.0	2.00 2.00	3.2 3.2	2,190 2,190 2,190 2,190 2,475	- - -	-	- - - 6,260	-	5,120 5,310 -		0.20	2.43 2.51 -		- - 220 -	- - 25 -	- - 13* -	Portion saved shear test *Broke at cons joint Saved for dyna tension

 $\frac{1}{2}$ First number is block number in the dam, second is hole number, third is core number $\frac{2}{2}$ Wing dam $\frac{3}{4}$ Duplication in numbering $\frac{4}{4}$ Average of two cylinders

Table 1. - Compilation of 255-mm (10-in) diameter core data -Interior and exterior concrete at 6 months' age -Grand Coulee Forebay Dam - Continued

		Lo	cation o	f hole				Co	ore data									Concret	e data	when pl	aced									Test dat	a on co	oncrete d	ores			
Core No. <u>1</u> /	Station No.	Offset from axis	hole,	Location in dam	Lift in block	Date drilled	Depth of core,	eleva- tion,	Direc- tion drilled	Condition of concrete in core	Date placed	Max size aggr,	Conc H	ratures, 2 ⁰ Max Mi	W		Pozzo- lan lb/yd ³					Air content		compress	sive st lb/in	cylind rength,4 2 180-d	·/	Compres- sive strength, lb/in ²	propert	<u>ies</u> s ci		ight, Stre		is- o	istance f break rom end	Remarks
			ft		No.		ft	ft				in			terior	Concrete	1																, In		in	
120-1-1 -2 -3	112+49.5 112+49.5 112+49.5	20+77.5	1117.5	Drainage gallery Drainage gallery Drainage gallery	27	9-29-71 9-29-71 9-29/30-71	3.0- 6.0	-		Broke in shipment Rock contact @ 8.7	4-28-71	6	46	37 62 4 37 62 4 37 62 4	7¦0.51	189	83 83 83	137		156.4	2.00	2.4 2.4 2.4		3,450	-	-	-	2,980 - 3,840	-	0.20 2 0.20 2	-	-	-	-	- - N	No tests run
120-2-1 -2 -3	112+29 112+29 112+29	20+77.5 20+77.5 20+77.5	1117.5	Drainage gallery Drainage gallery Drainage gallery	27	9-30-71 9-30-71 9-30-71		- 1	Vertical	Good concrete Good concrete Good concrete	4-28-71 4-28-71 4-28-71	6	46	37 62 4 37 62 4 37 62 4	7 0.51	189	83 83 83	137	25	156.4	2.00	2.4 2.4 2.4	1,830	3,450	-	-	-	3,580 3,450 -		0.21 2 0.27 2	.56 1	159	-	- 65	- 2 *	*Nonjointed
Wing Dam A-1-1 -2 -3	112+00.96 112+00.96 112+00.96	19+91	1117.5	Foundation adit Foundation adit Foundation adit	27	9- 7-71 9- 7-71 9- 8-71	2.6- 5.9	-	Vertical	Good concrete Good concrete Good joint, rock contact @7.3'	4-14-71 4-14-71 4-14-7;	6	50	34 63 4 34 63 4 34 63 4	1 0.46	187	80 80 80	123	25 25 25	154.9	0.75	2.3 2.3 2.3	1,840 1,840 1,840	3,110	-	- - -	- - -	3,800 3,580 -	4.99 5.48 -		-	-	-	-	-	
	.										+		•	 <u>Ex</u>	terior	Concrete	+																			
100-1-1 -2 -3 -4 -5	101+12.25 101+12.25 101+12.25	20+25.15 20+25.15 20+25.15 20+25.15 20+25.15 20+25.15	1311.2 1311.2 1311.2	Crest of dam Crest of dam Crest of dam Crest of dam Crest of dam	1 1-2 2 2	7-10-72 7-10-72 7-11-72	1.5- 4.5	- 1305± -	Vertical Vertical Vertical	Rebar @ 0.5' & 1.0' Good core Good core Good core Good core Good core	2-10-72 2-10-72 1-18 72	3	47 1 47 1 54 1	10 29 2 02 29 2 02 29 2 02 29 2 28 28 2 28 28 2	3 0.37 3 0.37 2 0.36	280 280 281	143 120 120 122 122	147 147 145	27 27 28	153.4 153.4 156.3	3.25 3.25 1.00	5.4 3.5 3.5 3.3 3.3	3,12U 3,120 3,270	5,110 5,110 5,180	- 6,570	7,550 - 7,270 7,270	-	- 5,050 - - 3,870	-	0.16 2	-	-	115 225 *		- 20 17	*Nonjointed
108-1-1 -2 -3	105+35	21+12.2 21+12.2 21+12.2 21+12.2	1145.8	Downstream adit Downstream adit Downstream adit	23-24	8-27-71 8-27-71 8-27-71	3.2- 5.8	1140.0	Vertical	Good concrete Broke @ cj Good concrete	3-25-71 3-25-71 3-19-71	6	50 50	38 47 3 38 47 3	3 0.40 3 0.40	223	95 95 No test 1	127		155.1 155.1		3.0 3.0		3,6 30 3,630	-	6,435 6,435	-	5,020 5,350 4,530	5.71 6.43 5.49		.60	158 162 159	-	-	- - -	
116-1-1	110+05.0			Gate gallery	3	7- 19-72				Rebar @ 1.1', 1.2', 1.3'			1		1		97			1		3.0			-	-	-	6,140		0.18 2						
-2 -3 -4 -5	110+05.0 110+05.0 110+05.0 110+05.0	20+18.5 20+18.5	1297.5 1297.5	Gate gallery Gate gallery Gate gallery Cate gallery	3 3-4 4 4	7-19-72 7-19/20-72 7-19/20-72 7-19/20-72	6.0- 8.7 8.7-11.7	1290.0		Horiz crack @ 10.6	3- 4-72	6 6	42 36	73 33 2 73 33 2 40 38 2 40 38 2	2 0.37 8 0.47	230 189	97 97 79 79	121 126	24 25	157.9	1.25	3.0 3.0 3.0 3.0	3,110 2,445	4,850 4,115	-	-	-	- - 4, 87 0 3,770	- 5.40 4.55	- 0.19 2 0.17 2	.53	158	-		16	*Nonjointed Portion saved for shear test
119-1-1	111+94.4			Elevator lobby	8	7-12-72		+		Rebar @ 0.4'	2-26-72	++		90 40 3			99		29					3,800	-	-	-	4,860			.19		-	-	- H	Portion saved for
-2 -3 -4	111+94.4 111+94.4 111+94.4	20+47.1	1260.0	Elevator lobby Elevator lobby Elevator lobby	8 8-9 9	7-12-72 7-12-72 7-12-72		1252.5	Vertical Vertical Vertical		2-26-72	3	51 1	00 42 3 00 42 3 20 32 2	2 0.37	359	120 120 118	176	34	149.7	2.00	4.7 4.7 3.5	3,195		-	-	- 8,290	6,4 60 - 4,940	4.54 5.18	0.16 2	.41	-	150	30	- 3 -	shear test
120-3-1 -2 -3	112+40 112+40 112+40	21+31 21+31 21+31 21+31		Downstream fille Downstream fille Downstream fille	t 26		3.0- 6.0	-		Good concrete Cut ½" steel @ 3.7 Good cj	5- 6-71	6	48	47 68 5 47 68 5 47 68 5	3 0.39	224	96 96 96		24	157.2	1.50	3.3	2,300	3,995	5,265	6,5 00 6,500 6,500	7,30 0	3,240 3,700 -	4.87 5.25		.49 .52	157		75	- - 3	
B-1-1 <u>2</u> / -2	0+77 0+77	parapet		Top of block Top of block	1	3- 9-72 3- 9-72		1	Vertical Vertical					37 54 3 37 54 3			119 119		ł			4.4		1		-	-	5,320 6,3 <i>3</i> 0	ł				Ì	-	-	
-3	0+77	parapet 9' from d/ parapet	s 1311.0	Top of block	1-2	3- 9-72	4.9. 7.5	1305 .0	Vertical	Broke at cj, joint painted with resin base bond- ing compound	10-14-71	1.5	50	37 54 3	9 0.38	361	119	183	34	150.5	3.25	4.4	2,705	4,350	-	-	-	-	-	-	-	-	-	-	-	No tests run

 $\frac{1}{2}$ First number is block in the dam, second is hole number, third is core number $\frac{2}{2}$ Wing dam $\frac{3}{2}$ Duplication in numbering $\frac{4}{2}$ Average of two cylinders

Table 2. _ Compilation of 255-mm (10-in) diameter core data -Interior and exterior concrete at 1 year's age -Grand Coulee Forebay Dam

				Loca	ation o	of hole					Core	data								Concrete	data when	n place	d									Т	est da	ata on	concret	e cores	•		
ore No. <u>1</u> /		ition No.	Offset from axis	t to h	eva- tion p of nole, ft	Location in	1	Lift in block No.	Date drilled	Depth of core, ft		- Direction drilled	Condition of concrete in core	Date placed	size					t, Pozzol 3 1b/yd ³	n,Water, 1b/yd ³		Unit weight,S 1b/ft ³	lump, con			pressi 1b/	vestre	ylinder ngth, <u>2</u> / 180-d 1	st	ompres- sive trength, lb/in ²	Elast propert Ex10 ⁻⁶ 1b/in ²	<u>ies</u>	Spe- ific avity	Unit weight, lb/ft ³	Strength	ensile % area dis- bonded	test Distance of break from end in	Remarks
	103+	-09	20+91.5 20+91.5	5 112	25 I)ownstream adi)ownstream adi	Lt	26 26	1-26-72	0.0- 2.8	9 -	Vertical	voids of 1/2" Voids up to 1/2"	2-16-71 2-16-71	6	48	37 4	0 29 0 6 30 0	or concret .51 190 .49 187	80	137	25	157.1 1 155.3 2	.00	3.3	- 2	,075	-	-, · ·	i	•,6 60 •,550	4.92 p 5.22 p		2.39	149 155	-	-	-	
- 3	103+	-09	20+91.5	5 112	25 1)ownstream adi		26-27	1-26-72	5.9- 9.0) 1117.5	Vertical	Rebar at 6.1' and 6.9'	2-16-71	6	48	37 4	6 30 0	.49 187	80	132	25	155.3 2	.00 1	3.3	- 2	,710	- -	5,020	-	-	-	-	-	-	200	50	9*	*Broke at cj.
- 2	104+	-26.2	20+52 20+52 20+52	111	7.5 1	Foundation adi Foundation adi Foundation adi	lt	27 27 27-278	3-13-72	0.0- 1.9 1.9- 4.9 4.5- 6.0	5 -	Vertical	Good concrete, broke @ cluster of aggregate Good concrete Good cj, cooling coil @ 5.0!	4-24-71 4-24-71 4-24-71	6	48	37 5	8 44 0	.49 188 .49 188 .49 188 .49 188	81 81 81	133 133 133		154.9 1 154.9 1 154.9 1	.50		- 3	,395 ,395 ,395				5,310 -	5.32 0 4.88 0 -		2.48 2.53 -	155 158 -	- - -	-	-	No tests run.
			20+52 20+52			Foundation adi Foundation adi		27В 27В		6.0- 9.0 9.0-11.8		1	Good concrete Good cj, cooling coil @ 9.6'	4-16-71 4-16-71					.45 190 .46 190	80 80	126 126		153.11 153.11				,025 ,025		I	-	-	-	-	-	-	85* 190	70 85	7 2	*Nonjointed.
- 2	104+	27.5	20+42 20+42 20+42	111	7.5	Foundation acc adit Foundation acc adit Foundation acc	ess		3-15 -72	0.0- 2.0) 1112.5	Vertical	Good concrete Broke at cj, appeared well bonded Good concrete	4-24-71 4-24-71 4-16-71	6	48	37 5	8 44 0	.49 188 .49 188 .46 190	81 81 80	133 133 126	25	154.91 154.91 153.11	.50	3.2	- 3	,395 ,395 ,025	-	-	- 5	- - - 340	4.44 0 - 4.84 0	-	2.41	150 - 157	- 13 0*	- 50 -	- 17	*Nonjointed.
1			20+42			adit Foundation acco adit							Good cj @ 9.5',cracked in shipment			47			.46 190	80	126		153.1 1				,025	1		-	-	-	-	-	-	-	-	-	No tests run.
						Inspection gal				0.0- 3.0 3.0- 5.8			Good concrete Fair concrete	11-30-72 11-30-72		i	1		.51 196	83 83	143 143		159.0 0 159.0 0		1.9 2 1.9 2		-	-		- 5	-	4.87 0	.2 5 -	2.40	150 -	- 95*	- 60	- 18	*Rebar in tes specimen *Failure occu at bond be large aggre
1						nspection gal			1973				Broke at cj, poor consolidation Good concrete	11-30-72 11-17-72		[.51 196 .52 184	83 80	143 136		159.0 0 153.8 3	1	1.9 2 3.5 1		-	-			.840 ,770	5.78 0 5.22 0		2.54	158 155	-	-	-	matrix.
-2 -3	105+ 105+	-78.2 -78.2	20+32.2 20+32.2	123	7.5 1	inspection gal inspection gal inspection gal	lery lery	11 11-12	7-11-73 7-11-73	0.0- 3.0 3.0- 6.0 6.0- 8.8 8.8-12.0	3 1230	Vertical Vertical	Core broke in handling Cood concrete Good cj, broke (* large aggregate @ 8.8' Good concrete	8-30-72	6 6	45 45	46 7 46 7	62 U 6 62 U	.51 185 .51 185 .51 185 .51 185 .46 186	80 80 80 80	127 127 127 127	25 25	154.8 2 154.8 2 154.8 2 155.9 2	.50 3 .50 3	3.8 2	, 300 , 300	-	- 6	5,010 5,010 5,770			5.34 0	-		157	- 205* -	- 95 -	- 13 -	Core broke - No tests. *Nonjointed. Saved for dyna tension.
- 2 - 1 - 2 - 3	107+ 107+ 107+	24.8 24.8 -24.8	20+32 20+32 20+32 20+32 20+32	123 123 123	7.5 1 7.5 1 7.5 1	inspection gal inspection gal inspection gal inspection gal	lery lery lery	11 11 11-12	10-17-73 10-17-73 10-17-73	0.0- 3.0 3.0- 6.0 6.0- 9.0 9.0-12.0) -	Vertical Vertical Vertical	Good concrete Good concrete Broke @ large aggr. Broke (? large aggr.	11-23-72 11-23-72 11-23-72 10-19-72	6 6 6	48 48 48	54 - 54 - 54 -	- 0 - 0 - 0	.49 188	81 81 81 82	131 131 131	25 25 25	155.4 1 155.4 1 155.4 1 155.4 1 158.0 1	.50 2 .50 2 .50 2	2.6 2 2.6 2 2.6 2	,220 ,220 ,220	-	5,510 5,510 5,510	-	- 4	,850 - ,790	5.43 0 - 4.81 0	. 22		153 - - 155	260* 150 -	- 95 99 -	20 14	*Nonjointed.
- 2 - 3	108+ 108+	07.5 07.5	20+31.7 20+31.7	123 123	7.5 I 7.5 I	inspection gal inspection gal inspection gal	lery lery	ł	1-29-74 1-29-74	0.0- 3.0 3.0- 5.9 5.9- 9.1 9.1-12.4	1230		Good construction joint	2- 2-73 2- 2-73 2- 2-73	6 6	48 48	129 44 129 44	4 30 0 4 30 0	.49 187 .49 187 .49 187 .49 187	81 81 81	131 131 131	25 25	156.5 1 156.5 1 156.5 1	.75 3 .75 3		,790 3 ,790 3	,430 ,430	-	-	-	,860	5.86 0	-	2.44	152	- 180* 150	100 85	- 6 12	*Nonjointed.
·2-1 -2 -3	111+ 111+ 111+	-57 -57 -57	20+31.2 20+31.2 20+31.2	25 117 25 117 25 117	7.5 A 7.5 A 7.5 A	inspection gal access gallery access gallery access gallery			5- 8-73 5- 9-73 5- 9-73	0.0- 2.5 2.5- 5.7 5.7- 8.8	3 1170.0	Vertical Vertical	Core broke @ 2.5' Good concrete Good construction joint	1-24-73 6-10-72 6-10-72 6-10-72	6 6 6	46 46 46	41 6 41 6 41 6	5 57 0 5 57 0 5 57 0	.51 188 .51 188 .51 188	80 80 80 80	136 137 137 137	24 24 24 24	152.2 1 155.2 1 155.2 1 155.2 1	.00 2 .00 2 .00 2	2.1 2 2.1 2 2.1 2 2.1 2	,155 3 ,155 3 ,155 3	,705 ,705			- 4	,000 ,910 ,580	4, 75 0 5,37 0 5,94 0	.21	2.50 2.51	155 156 -	-	-		Saved for dyn tension.
			20+31.2 20+31			nspection gal		20		8.8-11.7			Good concrete Several small air	6- 6-72 7-31-72					.41 192 .48 186	80 81	112		155.5 1 154.8 2					- 1		-	-	_	-	-	-	-	-	-	Saved for dyn tension. Saved for dyn
- 3	111+	48.5	20+31 20+31 20+31	123	7.5 I	inspection gal inspection gal	lery		7- 9-73	2.8- 5.7 5.7- 8.5 8.5-11.1	1230	Vertical	voids Good concrete Good construction joint Good concrete	7-31-72 7-31-72 7-25-72	6	48	41 94	590	48 186 48 186 48 191	81 81 82	127 127 130	25	154.8 2 154.8 2 156.0 3	.00 3	3.2 2 3.2 2 3.2 2 3.1 2	,190	-		5,275	-	,740 - -	5.93 0	.11	2.54	158 - -	- 80* 195*	- 98 99	- 2 3	tension. *Broke @ 8" aggregate. *Nonjointed.

 $\frac{1}{2}/$ First number is block in the dam, second is hole number, third is core number $\frac{2}{2}/$ Average of two cylinders $\frac{3}{2}/$ Duplication in field numbering

Table 2. - Compilation of 255-mm (10-in) diameter core data -Interior and exterior concrete at 1 year's age -Grand Coulee Forebay - Continued

		Location	of hole			Core data				Concrete data when placed								Test data on concrete cores																
Core No. Station <u>1</u> / No.	Offset from axis	Eleva- tion top of hole,	Location in dam	Lift in block	Date drilled	Depth of core, ft	tion	- Direc- tion drilled	Condition of concrete in core	Date placed	size	emperatur onc H ₂ 0 F	Air	$\frac{W}{C+P}$		Pozzolan 1b/yd ³	Vater, 1 1b/yd ³		ght, Slump	Air conten				cylinde rength, <u>2</u> 2		Compres- sive strength,	Elas prope Ex10 ⁻⁶	rties		Unit weight,			Distance	
	axis	ft		No.				, dt i i i i i i			in	2011		CII	10/ 90-	10/ ya	10/90-	~ 1ь/	ft		7-d	28-d			l yr	8 1	lb/in ²				lb/in ²			
-2 112+57 -3 112+57	20+77.5 20+77.5	1117.5 1 1117.5 1	Drainage gallery Drainage gallery Drainage gallery Drainage gallery Drainage gallery			2.4- 5. 5.0- 6.) - 5 -	Vertical Vertical	Good concrete Good concrete Core broke ∂ 6,5' Good concrete	4-28-71 4-28-71 4-28-71 4-28-71 4-28-71	6	46 37 46 37 46 37 46 37 46 37	62 47 62 47	0.51 0.51 0.51	or co nci 189 189 189 189	<u>ete</u> 83 83 83 83	137 137			2.4	1,830	3,450 3,450 3,450 3,450 3,450	-	-	- - -	3,510	4,59 - -	0.19	2.51	156	- 150* -	- 80 -	19	*Nonjointed. Saved for shear test. No tests run.
-2 112+39 -3 112+39	20+77.5 20 +77. 5	1117.51 1117.51	Drainage gallery - Drainage gallery Drainage gallery Drainage gallery	27 27	3-20-72 3-20-72 3-20-72 3-21-72	2.4- 5. 5.0- 7.	2 -	Vertical Vertical	Good concrete Broke @ 5.0' Vertical crack 5.6' to 7.2' Crack in core 7.9' to 8.5'		6	46 37 46 37 46 37 46 37	62 47 62 47	0.51	189 189 189 189	83 83 83 83	137 137			2.4	1,830 1,830		-		- - -	3,350 - - -	4.21	0.15	2.49	155	- 155* -	- 80 -	-	*Nonjointed. Core cracked - No tests. Core cracked - No tests.
/ A-2-1 112+01 -2 112+01 -3 112+01	19+89.5	1117.5	Foundation gallery Foundation gallery Foundation gallery	27	3- 7-72 3- 7-72 3- 7-72	3.0- 5.	7 -	Vertical	Broke @ angle iron @ 2.2' Good concrete Bedrock @ 7.6'; good concrete	4-14-71	6	50 34 50 37 50 37	54 39	0.46	187 187 187	80 80 80	123	24 154	.9 0.75 .9 0.75 .9 0.75	2.3	1,840		-	-	-	3,670 4,770	-	0.19 - 0.19	-	145 - 160	- 175* -	- 60 -	- 14 -	*Nonjointed.
										+ 				Fytori	or conci														†					
-2 101+10			Crest of dam Crest of dam	1	1-11-73 1-11-73	1.5- 4.	-		Rebar @ 0.5' and 1.0' Good concrete	2-10-72	3	51 110 47 102	29 23	0.35	431 280	143 120	147	27 153		3.5	3,120	5,110	-	7,550	-	- 6,370	-	- 0.18	- 2.47	- 154	-	-	-	Rebar in core - No tests.
-3 101+10 -4 101+10 -5 101+10	20+24	1311.0	Crest of dam Crest of dam Crest of dam	1-2 2 2	1-11-73 1-11-73 1-11-73	7.4-10.	5 -	Vertical	Good cj ? 6.2' Good concrete Good concrete	1-18-72	3	47 102 54 128 54 128	28 22	0.36		120 122 122	145	28 156	.4 3.25 .3 1.00 .3 1.00	3.3	3,270	5,180	6,570		- 8,260 8,260	- 5,390 -	- 5.19 -	0.22	2.45	153	220 - -		14* - -	*Broke at construction joint. Part saved for shear. Saved for dynamic tension.
-2 105+33	21+12.2	1145.8	Downstream adit Downstream adit	23 23	3- 3-72 3- 3-72	2.9- 4.	-	Vertical	Good concrete Good concrete		6	50 35 50 38	47 33	0.40	223 223	95 95	127	24 155	.1 2.25	3.0	-	3,630	-	6,435 6,435	-	6,120	-		2.53	157	-	-		Short specimen - No tests.
			Downstream adit Downstream adit						Broke @ large aggregate @ 6.8' 3/4" rebar at 0.8' and 2.9'						223 223	95 95			.1 2.25		-	3,630 3,630		6,435 6,435		4,180	- 4.96			157	-	-	4	
6-2-1 110+15	20+18.5	1297.5	Gate gallery	3	2- 7-73	0.0- 3.	2 -	Vertical	Cut rebar @ 1.2'and	3- 4-72	6	42 73	33 22	0.37	230	97	121	24 157	.9 1.25	3.0	3,110	4,8 50	-	-	-	5,340	5.50	0.17	2.53	158	-	-	-	
-2 110+15 -3 110+15 -4 110+15	20+18.5	1297.5	Gate gallery	3-4		6.0- 9.	1290.	Vertical Vertical Vertical	Good cj @ 7.5'	3- 4-72	6	42 73 42 73 36 40	33 22	0.37	230	97 97 79	121	24 157 24 157 25 153	.9 1.25 .9 1.25 .9 1.50	3.0	3,110	4,850 4,850 4,115	-	-	- -	4,860 - -	5.68 - -		2.49	155	295 -	25	23	Part saved for shear. Saved for dynamic tension
-3 111+94.9	20+45.9 20+45.9 20+45.9	1260 1260 1260	Elevator lobby Elevator lobby Elevator lobby Elevator lobby Elevator lobby	8 8-9 9	1-16-73	3.0- 6. 6.0- 7 7.4- 5.) - 4 1252.1	Vertical Vertical Vertical	Good concrete; rebar @ 0.4' Good concrete Broke diagonally @ 7.4' Good concrete	2-26-72 2-26-72 2-16-72	1.5 1.5 6	45 90 51 100 51 100 46 120 46 120	42 32 42 32 32 25	0.37 0.37 0.36	359	99 120 120 118 118	176 176 144	34 149	.7 2.00 .7 2.00 .4 1.50	4.7	-	3,195 5,120	4 ,980 4,980	-	- 8,290 8,290	5,210 - - 5,260	-	-	-	148 - - 155	230	- 10 - -	- 4	No tests run. No tests run. Structural concrete.
-2 112+69.5	21+31.5	1125 1	Downstream fillet Downstream fillet Downstream fillet	26	3-22-72 3-22-72 3-22-72	2.5-3.	5 -	Vertical	Good concrete Good concrete Good concrete	5- 6-71 5- 6-71 5- 6-71	6	48 37 48 37 48 37 48 37	67 53	0.39	224 224 224	36 36 96	126 126		.2 1.50 .2 1.50	3.3 3.3	2,305 2,305		5,270 5,270			5,040 - 3,080*	-	0.22	-	-	-	- - -	-	No tests run. *Failed along large aggregate.
-4 112+69.5 -5 112+69.5	21+31.5 21+31.5	1125 I 1125 I	Downstream fillet Downstream fillet	26-27 27	3-23/28-72 3-28-72	5.5- 8. 8.2-11.	2 1117.		Good construction joint Good concrete	5- 6-71 4-27-71		48 37	67 53	0.39	224	Эè	126 No test	24 157 batch	.2 1.50	3.3	2,305	3,995	5 ,270	6,500	7,300	-	-	-	-	-	95 175*	75 40	б. 23	*Nonjointed.
$\begin{array}{c ccccc} B-3-1 & 1+10 & & \\ -2 & 1+10 & & \\ -3 & 1+10 & & \end{array}$	7.5' rt	1311	Crest of dam Crest of dam Crest of dam	1 1 1-2	9- 5-72 9- 5-72 9- 6-72	2.3-4.	5 -	Vertical	Cood concrete Good concrete Broke at cj, joint painted with resin- base bonding and	10-14-71	1.5	50 37 50 37 50 37 50 37	54 39	0.38	361 361 361	117 119 119			.5 3.25 .5 3.25 .5 3.25	4.4	2,705 2,705 2,705	4,350	-		-	6,720 7,920		0.16 0.17 -	-	-	-	-	-	Saved for two shear tests.
-4 1+10 -5 1+10 -6 1+10	7.5' rt	1311	Crest of dam Crest of dam Crest of dam	2 2 2	9- 6-72	9.8-12.) -	Vertical	curing compound Good concrete Good concrete Good construction joint	10- 2-71	6	52 38 52 38 52 38	66 50	0.35	223 223 223	96 96 96	113	24 155	.3 1.25 .3 1.25 .3 1.25	3.0	2,585	4,245	-		-	5,240 - -	5.54	0.21	2.36	147 - -	-	- 42	- - 20	Saved for dynamic ter

 $\frac{1}{2}$ / First number is block in the dam, second is hole number, third is core number $\frac{2}{3}$ / Average of two cylinders $\frac{3}{2}$ / Duplication in field numbering $\frac{4}{2}$ / Wing dam

Table 3 Summary of compressive strength and elastic properties
test results on 255-mm (10-in) diameter cores at
6 month s' age – Grand Coulee Forebay Dam

,

Core No.	Date tested	Age, days	stre	essive ngth, lb/in ²)	Streng ratio core 28-day perce	≥ cy1.,	elas	lus of ticity, b/in ² x10 ⁶)	Poisson's ratio
			<u>I</u> :	nterior (Concrete				
104-1-2	8-16-71	180	27.6	(4000)	146		39.6	(5.75)	0.20
-3	8-16-71	180	24.8	(3590)	131		38.1	(5.53)	• 20
106-1-1	10-21-71	180	40.3	(5850)	172		38.3	(5.56)	.21
-2	10-29-71	188	31.8	(4610)	136		42.6	(6.18)	.11
106-2-1	10-29-71	188	33.2	(4820)	142		34.6	(5.02)	.20
-2	10-29-71	188	32.9	(4770)	141	<i>,,</i>	41.9	(6.07)	.13
107-1-1	5-23-73	180	28.8	(4170)		<u>4/</u>	31.3	(4.54)	.17
109-1-1	3-15-73	180	33.2	(4810)		4	33.6	(4.87)	.18
-2	3-15-73	180	31.4	(4560)		<u>4</u> /	36.7	(5.32)	.17
111-1-1	5-22-73	180	28.7	(4160)	1/0	<u>4</u> /	33.1	(4.80)	.21
113-1-1	8-09-73	188	35.2	(5100)	149		34.5	(5.01)	.21
118-1-1 <u>1</u> / -3	12-13-72 12-13-72	186 186	27.7 39.7	(4020) (5760)	109 155		41.7	(6.05) -	.19
118-1-1 <u>1</u> /	3-15-73	180	35.3	(5120)	100	1.1	- 34.1	- (4.95)	.20
-2	3-15-73	180	36.6	(5310)		<u>4/</u> 4/	37.2	(4.93) (5.39)	.19
120-1-1	11-02-71	188	20.5	(2980)	86	<u>4</u>)	34.5	(5.00)	.20
-3	11-02-71	188	26.5	(3840)	111		39.3	(5.70)	.20
120-2-1	11-02-71	188	24.7	(3580)	104		37.0	(5.36)	.20
-2	11-02-71	188	23.8	(3450)	100		36.1	(5.24)	.27
A-1-1 <u>2</u> /	10-14-71	180	26.2	(3800)	122		34.4	(4.99)	.23
-2	10-14-71	180	24.7	(3580)	115		37.8	(5.48)	.20
Average			30.2	(4380)	128		36.8	(5.34)	.19
	ent of varia	ation	17.5	(,				(2.00.)	
·			E	xterior (Concrete				
100-1-2	8-08-72	180	34.8	(5050)	99		38.3	(5.55)	.16
-5	7-16-72	180	26.7	(3870)	75		27.8	(4.03)	.19
108-1-1	11-17-71	237	34.6	(5020)	138		39.4	(5.71)	.21
-2	9-24-71	180	36.9	(5350)	147		44.3	(6.43)	.21
-3	9-24-71	180	31.2	(4530)		4/	37.9	(5.49)	.17
116-1-1	8-31-72	180	42.3	(6140)	3/ 127	-	35.1	(5.09)	.18
-4	8-31-72	180	33.6	(4870)	118		37.2	(5.40)	.19
-5	8-15-72	180	26.0	(3770)	92		31.4	(4.55)	.17
119-1-1	8-24-72	180	33.5	(4860)	128		33.9	(4.92)	.18
-2	8-24-72	180	44.5	(6460)	130		31.3	(4.54)	.16
-4	8-14-72	180	34.1	(4940)	96		35.7	(5.18)	.20
120-3-1	11-02-71	180	22.3	(3240)	81		33.6	(4.87)	.19
-2	11-02-71	180	25.5	(3700)	93		36.2	(5.25)	.22
B-1-1 <u>2</u> /	4-14-72	180	36.7	(5320)	122		34.2	(4.96)	.19
-2	4-14-72	180	44.1	(6390)	147		33.1	(4.80)	.18
Average Coefficie	ent of varia	ation	33.8 19.2	(4900)	114		35.3	(5.12)	.19

1/ Duplication in numbering 2/ Wing dam 3/ Test specimen contained rebar 4/ 28-day cylinder strength not available

Core No.	Date tested			essive ngth, 1b/1n ²)	Strength ratio: <u>core</u> 28-day cyl., percent	elas	lus of ticity, b/in ² x10 ⁶)	Poisson's ratio	
			<u>1</u>	nterior	Concrete				
104-2-1	2-16-72	365	32.1	(4660)	152	33.9	(4.92)	0.19	
-2	2-16-72	365	31.4	(4550)	168	36.0	(5.22)	.18	
106-3-1	4-24-72	365	44.4	(6440)	190	36.7	(5.32)	.14	
-2	4-24-72	365	36.6	(5310)	156	33.6	(4.88)	.17	
106-4-1	4-24-72	365	39.0	(5650)	166	30.6	(4.44)	.16	
-3	4-24-72	365	29.9	(4340)	143	33.4	(4.84)	.14	
107-2-1	11-30-73	365	41.2	(5970)	1/2/	33.6	(4.87)	.25	
-3	11-30-73	365	26.5	(3840)	<u>2/</u>	39.9	(5.78)	• 22	
-4	11-30-73	365	32.9	(4770)	<u>2</u> /	36.0	(5.22)	.20	
109-2-4	8-09-73	344	28.5	(4140)	<u>2/</u>	36.8	(5.34)	.23	
111-2-1	11-23-73	365	33.4	(4850)	$\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	37.4	(5.43)	• 22	
-4	11-23-73	365	33.0	(4790)		33.2	(4.81)	.21	
113-2-1	2-25-74	365	40.4	(5860)	171	40.4	(5.86)	•21	
-4	2-25-74	365	27.6	(4000)	<u>2</u> /	32.8	(4.75)	.19	
118-2-1 <u>3</u> /	6-10-73	365	33.9	(4910)	133	37.0	(5.37)	.21	
-2	6-10-73	365	31.6	(4580)	124	41.0	(5.94)	.19	
118-2-2 <u>3</u> /	8-09-73	380	32.7	(4740)	100 <u>2</u> /	40.9	(5.93)	.11	
120-3-1 120-4-1	4-28-72 4-28-72	365 365	24.2 23.1	(3510)	102	31.6	(4.59)	.19	
A-2-1	4-26-72	365	25.1	(3350) (3670)	97 118	29.0 28.8	(4.21)	.15	
-3	4-14-72	365	32.9	(3870)	153	40.7	(4.17) (5.90)	.19 .19	
-3	4-14-72	202	J2.9	(4//0)	100	40.7	(3.90)	•19	
Average			32.4	(4700)	144	35.4	(5.13)	.19	
	nt of varia	tion	17.0	(), ee,	2	5511	(3123)	•1)	
			E	xterior	Concrete				
100-2-2	2-14-73	365	43.9	(6370)	125	37.8	(5.48)	0.18	
-4	2-14-73	365	37.2	(5390)	104	35.8	(5,19)	.22	
108-2-1	3-26-72	365	42.2	(6120)	169	38.5	(5.59)	.15	
108-3-1	3-26-72	365	28.8	(4180)	115	34.2	(4.96)	.17	
116-2-1	3-15-73	365	36.8	(5340)	110	37.9	(5.50)	.17	
-2	3-15-73	365	33.5	(4860)	100	39.2	(5.68)	.19	
119-2-1	2-14-73	365	35.9	(5210)	137	33.6	(4.87)	.20	
-5	2-14-73	365	36.3	(5260)	103	37.4	(5.42)	.17	
120-2-1	4-28-72	365	34.8	(5040)	126	38.7	(5.62)	.22	
-3	4-28-72	365	21.2	(3080)		31.0	(4.49)	.15	
B-3-1	10-13-72	365	46.3	(6720)	154	21.0	(3.05)	.16	
-2	10-13-72	365	54.6	(7920)	182	37.7	(5.47)	.17	
-4	10-02-72	365	36.1	(5240)	123	38.2	(5.54)	.21	
Average			37.5	(5440)	125	35.4	(5.14)	.18	
Coefficien	nt of varia	tion	21.0						

Table 4 Summary of compressive strength and elastic properties
test results on 255-mm (10-in) diameter cores at
1 year's age - Grand Coulee Forebay Dam

<u>1</u>/ Rebar in test specimen
<u>2</u>/ 28-day cylinder strength not available
<u>3</u>/ Duplication in numbering
<u>4</u>/ Broke along large aggregate

Core No.	Length of specimen, mm (in)	tested	Age, days	Tensile strength,	Core trength ratio <u>tensile</u> compressive, percent	Disbonded	Distance of break from end, mm (in)
			Int	erior Concret	<u>e</u>		
		11-03-71 5-22-73 3-15-73 5-22-73 8-09-73 12-13-72 2-14-73 11-03-71 that broke t not inclu		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/ 5.3 / 2.8 / 5.4 / 2.7 / <u>5</u> / / 2.7 / 4.2	50 0 20 0 100 99 45 25 65	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			Ext	erior Concret	e		
100-1-3 -4 116-1-2 -3 119-1-3 120-3-3 Average	760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30)	7-16-72 7-16-72 8-31-72 8-31-72 8-14-72 11-02-71	180 180 180 180 180 180	$\begin{array}{c} 0.79 & (115) & \underline{2} \\ 1.55 & (225) & \underline{3} \\ .90 & (130) & \underline{3} \\ 1.97 & (285) & \underline{2} \\ 1.03 & (150) & \underline{2} \\ .83 & (120) & \underline{2} \\ 1.17 & (170) \end{array}$	/ 2.3 / 5.8 / 2.1 / 4.6 / 2.7	5 15 20 40 30 75	510 (20) 430 (17) 305 (12) 405 (16) 75 (3) 75 (3)

Table 5. - Summary of tensile strength test results on 255-mm (10-in) diameter cores at 6 months' age -Grand Coulee Forebay Dam

1/ Duplication in numbering
2/ Jointed
3/ Nonjointed
4/ Broke at construction joint
5/ No core compressive strength available for correlation

	of tensile strength test results on
255-mm (10-in)	diameter cores at 1 year's age -
G	rand Coulee Forebay Dam

Core No.	Length of specimen, mm (in)	tested	Age, days	st Tensile strength, MPa (lb/in ²)	Core trength ratio: <u>tensile</u> compressive, percent	Disbonded area, percent	Distance of break from end, mm (in)
			Int	erior Concrete	<u>2</u>		
104-2-3 106-3-4 -5 106-4-2 107-2-2 109-2-2 111-2-2 -3 113-2-2 -3 118-2-3 -4 120-3-2 120-4-2 A-2-2 <u>2</u> /	510 (20) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 760 (30) 710 (28) 685 (27) 760 (30) 710 (28)	$\begin{array}{c} 2-16-72\\ 4-24-72\\ 4-24-72\\ 4-24-72\\ 11-21-73\\ 8-09-73\\ 11-21-73\\ 2-25-74\\ 2-25-74\\ 2-25-74\\ 8-09-73\\ 8-09-73\\ 4-28-72\\ 4-28-72\\ 4-14-72\\ \end{array}$	365 365 365 365 365 365 365 365 380 380 365 365 365 365	$\begin{array}{c} 1.38 & (200) \\ .59 & (85) & 1/\\ 1.31 & (190) \\ .90 & (130) & 1/\\ .66 & (95) & 1/\\ 1.41 & (205) & 1/\\ 1.79 & (260) & 1/\\ 1.03 & (150) \\ 1.24 & (180) & 1/\\ 1.03 & (150) \\ .55 & (80) \\ 1.34 & (195) & 1/\\ 1.03 & (150) & 1/\\ 1.07 & (155) & 1/\\ 1.07 & (155) \end{array}$	$ \begin{array}{r} \underline{4} \\ 2.3 \\ 1.9 \\ \underline{4} \\ 5.4 \\ 3.1 \\ 2.6 \\ 1.7 \\ 4.4 \\ 4.3 \\ 4.6 \\ \end{array} $	50 70 85 50 60 95 99 100 85 98 99 80 80 60	$\begin{array}{c} 3/\\ 180 (7)\\ 50 (2)\\ 430 (17)\\ 455 (18) 5/\\ 330 (13)\\ 510 (20)\\ 355 (14)\\ 150 (6)\\ 305 (12)\\ 50 (2) 5/\\ 75 (3)\\ 485 (19)\\ 280 (11)\\ 355 (14)\\ \end{array}$
·····			Ext	erior Concrete	<u>2</u>		
$100-2-3 \\ 108-2-3 \\ 116-2-3 \\ 119-2-2 \\ 120-2-4 \\ -5 \\ B-3-6 $	760 (30) 510 (20) 760 (30) 760 (30) 685 (27) 760 (30) 760 (30)	2-14-73 3-26-72 3-15-73 2-14-73 4-28-72 4-28-72 10-02-72	365 365 365 365 365 365 365 365	1.52 (220) 1.38 (200) 2.03 (295) 1.59 (230) .66 (95) 1.21 (175) <u>1</u> 1.03 (150) 1.31 (190)	3.5 3.9 5.8 4.4 2.3 / 2.9 3.8	30 85 25 10 75 40 42	<u>3/</u> 100 (4) 585 (23) 100 (4) 150 (6) 585 (23) 510 (20)

1/ Nonjointed 2/ Wing dam 3/ Broke at construction joint 4/ No core compressive strength available for correlation 5/ Failure occurred at large aggregate 6/ Specimens that broke at construction joint not included

TESTING PROGRAM FOR 150-MILLIMETER (6-INCH) DIAMETER CORES

General

The testing program for the 150-mm-diameter cores was primarily aimed toward testing the bond strength of the horizontal construction joints in the Forebay Dam. However, other testing was incorporated into the program to determine mode of failure, tensile strength, shear strength, compressive strength, modulus of elasticity, Poisson's ratio, and density of the concrete. All testing was done when the cores reached a minimum 6 months' age. All cores from the main dam were extracted from interior concrete.

Triaxial Shear

The triaxial shear test was used as the main test to determine the bond strength between the lifts. Cores from 19 of the 25 holes drilled were selected for the triaxial shear test. Any cores containing cooling pipe or other metals adjacent to the construction joint were not used. Triaxial shear tests were also conducted on nine concrete cores without joints to provide a comparison of the jointed shearing strength to the nonjointed shearing or bond strength of the concrete. The unjointed core specimens used for this comparison came from the same drill holes as the jointed specimens. The cores were intentionally drilled to obtain an angle of 30° between the construction joint plane and the longitudinal axis of the cores because this was the approximate expected angle of failure in triaxial shear.

A description of the testing procedure and results is contained in appendix A.

33

Petrographic Examination

Following the triaxial shear tests, the test specimens were examined petrographically to describe the mode of failure of the jointed concrete as a result of the triaxial tests.

A discussion of the petrographic examination and test results is contained in appendix B.

Compressive Strength

Compressive strength tests were conducted on three of the jointed core specimens for comparison with triaxial shear tests at zero lateral pressure. Also, tests were conducted on 12 of the unjointed core specimens for comparison with 150- by 300-mm (6- by 12-in) compressive strength control cylinders.

The core specimens for the compressive strength tests were selected at random. However, in most cases the specimens were taken from the top portion of the core. The specimens were prepared and tested the same as the 255-mm specimens.

Elastic Properties

Modulus of elasticity and Poisson's ratio were determined so correlations could be made with similar tests conducted on the 255-mmdiameter cores. These tests were made on the same specimens selected for the compressive strength tests. The method of testing and specimen preparation was the same as described for the 255-mm cores.

Tensile Strength

Tensile strength tests were conducted on 12 specimens to determine the relationship between compressive strength and tensile strength of the concrete.

All test specimens were taken from the top core of the hole and were on the unjointed specimens. The specimens were cut approximately 455 mm (18 in) long to obtain a length-to-diameter ratio of three. The extra length was to minimize the effects of the end plates which were cemented to the samples.

Density

As with the 255-mm-diameter cores, "as is" densities were determined for the same specimens selected for the compressive strength tests.

Direct Shear

Shear tests to determine direct shear strength of the concrete may be made on 14 core specimens when the equipment for testing becomes available. Samples selected and prepared for the shear test are: *Cores for direct shear test*

Block	Hole	Core	Block	Hole	Core	Block	Hole	Core
106 106 108 108 110	2 3 2 5 1	1 2 2 2 2	110 112 112 114 114	3 1 2 2 3	1 2 2 2 2	116 116 120 120	1 3 1 2	2 2 2 2

TEST RESULTS OF 150-MILLIMETER (6-INCH) DIAMETER CORES

Triaxial Shear Strength

The results of the triaxial shear tests and petrographic examination are discussed in appendixes A and B, respectively. The results summarized here were extracted from those appendixes.

The average unconfined compressive strength of cores containing construction joints [28.3 MPa (4110 $1b/in^2$)] was about 85 percent of that for cores without joints [33.2 MPa (4810 $1b/in^2$)]. The cohesive strength (shearing strength at zero normal stress) of jointed cores [5.1 MPa (735 $1b/in^2$)] was 75 percent of that for the unjointed cores [6.8 MPa (980 $1b/in^2$)] using the straight-line solution of Mohr's envelope. The curvilinear solution of Mohr's envelope strength of jointed cores [5.0 MPa (730 $1b/in^2$)] to be about 83 percent of that for the unjointed cores [6.1 MPa (880 $1b/in^2$)]. Measured angles of failure ranged from 20° to 32° from the longitudinal axis of the core.

Petrographic examination (app. B) of the cores, following shear tests, revealed that the jointed cores failed mainly along the joint plane and the breaks occurred predominantly as bond failure between paste and aggregate.

Compressive Strength

The results of the individual compressive strength tests conducted on the 150-mm (6-in) diameter cores are shown in table 7 and are summarized in table 8. The results are representative of the compressive strength of the interior concrete in the Forebay Dam at 6 months' age. The average compressive strength for the 15 cores tested was 33.1 MPa (4800 $1b/in^2$). This is considerably higher than the design strength of 20.7 MPa (3000 $1b/in^2$) at 180 days and is about 9 percent higher than the compressive strength for the 255-mm (10-in) diameter cores taken from the interior concrete tested at 6 months' age.

The compressive strength of the cores averaged 156 percent of the compressive strength of the 150- by 300-mm (6- by 12-in) control cylinders tested at 28 days' age. This compares with 128 percent for 255-mm-diameter cores. The comparison between the control cylinder strengths and the core strengths is shown graphically on figure 2.

The compressive strength of the 3 specimens containing a construction joint averaged 31.5 MPa ($4570 \ 1b/in^2$) as compared to 33.4 MPa ($4850 \ 1b/in^2$) for the 12 unjointed specimens. Since the joint in the specimen was at a 30° angle to the vertical axis of the test specimen, the 31.5 MPa compressive strength should be an indicator of good construction joints. The compressive strength of the three jointed specimens was reasonably close to that obtained in the triaxial strength test with zero lateral stress on the jointed specimens.

Elastic Properties

The individual and average test results are shown in table 8. The modulus of elasticity of the interior concrete at 6 months' age averaged 34.7 GPa (5.03 x 10^6 lb/in²) for the 12 specimens tested. This compares favorably with a modulus of elasticity of 36.8 GPa (5.34 x 10^6 lb/in²) for the 255-mm-diameter cores extracted from interior concrete and tested at 6 months' age.

37

Poisson's ratio averaged 0.17 for the interior concrete as compared to 0.19 for the 255-mm-diameter cores. The individual and average test results are shown in table 8.

Tensile Strength

The results of the 12 tensile strength tests are shown in table 9. All the tensile strength tests were made on nonjointed specimens and averaged 1.52 MPa (220 lb/in^2). The strength ranged from 0.72 to 2.67 MPa (105 to 390 lb/in^2).

Tensile strengths of the nonjointed specimens averaged 4.6 percent of the compressive strength. This is average for mass concrete and corresponds to 4.0 percent for 255-mm-diameter unjointed cores extracted from interior concrete and tested at 6 months' age. When tested in direct tension, the breaks did not occur at the midpoint of the specimens but occurred more predominantly in the lower one-third of the specimens. The total area which showed disbonding between aggregate and paste was estimated for each specimen tested. Between 55 and 80 percent of the break area showed disbonding rather than aggregate failure. The estimated areas of disbonding did not correlate well with the tensile strengths obtained.

Density

The density of the nine core specimens tested ranged from 2480 to 2550 kg/m³ (155 to 159 lb/ft³) with an average of 2500 kg/m³ (156 lb/ft³).

Table 7. - Compilation of 150-mm (6-in) diameter core data -Interior and exterior concrete at 6 months' age -Grand Coulee Forebay Dam

			Locati	on of hole				Co	re data								Concr	ete data	when	placed										Т	est data	on cond	rete cor	es		Other tests
Core No. 1/	Station No.	Offset from	top of	Location in dam	Lift in bloc	drilled		tion,	Direction drilled	Condition of concrete	Date	lsize	i	Aires Air 0 Max 1	rW		Pozzolan 1b/yd ³	Water, 1b/yd ³	Sand	Unit weight	Slump, in	Air content %				l cylind trength, 2		Compres- sive strength,	Elast proper Ex10	ties	Spe- cific gravity	Unit weight,	Strength	sile tes % area dis-	t Distance of break	l. Triaxial 2. Shear 3. Petro- graphic
<u>1</u> /		axis	hole, ft		No.		ft	ft		in core		in				rb/ya	to/ya	ID/yd°		10/10			7-d	28-đ	90-d	180-d	1 yr	$1b/in^2$	lb/in ²	2		10/10	10/10	bonded	from end, in	
																Interior c	oncrete											1								+
106-1-1	103+96	20+28.4	1119.6	Foundation gallery	- 26	8-17-71	0.0-3.		\$86 W-30 dir		5- 1-71	L 6	51	59 68	52 0.	7 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	6,290	5.13	0.18	2.50	155	-	-	-	1
-2	103+96	20+28.4	1119.6	stairwell Foundation gallery stairwell	- 26-2	7 8-17-71	3.0-6.0	1117.5	\$86 W-30 dir	Good joint	5- 1-71	6	51	59 68	52 0.	47 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	4,370	4.48	0.20	-		-	-	-	1
106-2-1	103+99	20+28.4	1119.6	Foundation gallery stairwell	- 26	8-17-71	0.0-3.0	-	N37 W-30 dip		5- 1-71	16	51	59 68	52 0.	47 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	-	-	-	-	-	-	-	-	1,2
-2	103+99	20+28.4	1119.6	1	- 26-2	7 8-17/18-	3.0-6.0	1117.5	N37 W-30 dig	Cut through cooling coil @ 4.3'; good	5- 1-71	6	51	59 68	52 0.	47 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	-	-	-	-	-	-	-	-	
106-3-1 -2	104+28 104+28			Drainage gallery Drainage gallery						construction joint Core broke @ 2.6' Broke @ construction							80 80			153.4 153.4				2,950 2,950		5,030 5,030	-	-	-	-	-	-	265	70 -	8 -	- 2
106-4-1	104+28	20+17.	5 1119.6	Foundation gallery u/s wall	- 26	8-19/20-1	1 0.0-3.0	-	S64 E-30 dig	joint @ 4.4' Core broke @ 0.9' due to drill bit; core broke @	5- 1 - 71	6	51	59 68	52 0.	7 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	-	-	-	-	-	215	65	3	-
-2	104+28	20+17.5	1119.6	Foundation gallery u/s wall	- 26-2	7 8-20-71	3.0-6.0	1117.5	S64 E-30°dip	2.3' Cooling coil @ 3.8'; small rock pocket @ 4.1' to	5- 1-71	6	51	59 68	52 0.4	+7 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	-	-	-	-	-	-	-	-	
106-5-1	104+28	20+17.5	1118.5	Foundation gallery	- 26	8-20-71	0.0-3.0	1117.5	\$64°E-30 dip		5- 1-71	6	51 3	68	52 0.4	7 187	80	126	26	153.4	1.00	2.7	-	2,950	-	5,030	-	4,540	-	-	-	-	-	-	-	1,3
106-6-1	104+27	20+17.5	1118.5	u/s wall Foundation gallery u/s wall	- 26	8-20-71	0.0-3.0	1117.5	S64 E-30 dip	taken Good joint @ 1.1' to 2.2'	5- 1-71	6	51	68	52 0.4	7 187	80	126	26	153.4	1.00	2.7	-	2,9 50	-	5,030	-	-	-	-	-	-	-	-	-	1
108-2-1	105+36	20+29	1119,6	Foundation gallery stairwell	- 26	7- 7-71	0.0-2.1	-	N30 W-30 dip	Concrete broke @ large aggregate	3- 4-71	6	48 4	7 37	23 0.4	.7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	315	50	3	-
- 2	105+36	20+29	1119.6	Foundation gallery	- 26	7- 7-71	2.1-2.8	- 1	N30 W-30 dip	at 2.5'	3- 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	-	-	-	2
- 3	105+36	20+29	1119.6	stairwell Foundation gallery	- 26-2	7 7- 7-71	2.8-5.5	1117.5	N30 W-30 dip	Good construction	3- 4-71	6	48 4	7 47	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	4,150	5.29	0.17	-	-	-	-	-	1,3
108-4-1	105+3 6	20+17.5	1119.6	stairwell Foundation gallery	- 26	7- 7-71	0.0-2.8	-	\$64 W-30 dip	joint	3- 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	155	65	6.5	-
- 2	105+36	20+17.5	1119.6	u/s wall Foundation gallery	- 26-2	7 7- 7-71	2.8-5.5	1117.5	S64 W-30 dip	Good construction	3- 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	-	-	-	1,3
108-5-1	105+44	20+17.5	1119.6	u/s wall Foundation gallery u/s wall	- 26	7- 8-71	0.0-2.6	-	S64 E-30 dip	joint Core broke at large aggregate at start of hole,	3 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	105	80	1.5	-
- 2	105+44	20+17.5	1119.6	Foundation gallery	- 26-2	7 7- 8-71	2.6-5.5	1117.5	S64 E-30 dip	steel rod at 0.1' Good concrete, good construction	3- 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	4,450	-	-	-	-	-	-	-	1,2,3
108-6-1	105+43.8	20+79.5	1119.6	Drainage gallery -	26	7- 8-71	0.0-2.8	-	N64 W-30 dip	joint Good concrete	3- 4-71	6	48 4	7 37	23 0.4	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	4,320	4.63	0.18	2.45	152	-	-	-	-
-2	105+43.8	20+79.5	1119.6	d/s wall Drainage gallery - d/s wall	26-2	7 7- 8-71	2.8-5.8	1117.5	N64 W-30 dip	Good concrete, good construction joint		6	48 4	7 37	23 0.3	7 186	79	125	25	153.9	1.50	3.3	1,875	3,315	5,150	-	-	-	-	-	-	-	310	60	4	1,3
110-1-1	106+55	20+28	1119.6	Foundation gallery	- 26	7- 9-71	0.0-3.0	-	N28 W-30 dip	Good concrete	3-12-71	6	45 3	7 45	36 0.	5 187	- 30	120	25	155.1	1.25	3.0	2,230	3,915	-	-		4,670	5.36	0.15	2.56	159		-	-	1
- 2	106+55	20+28	1119.6	1	- 26-2	7 7- 9-71	3.0-5.8	1117.5	N28 W-30 dip	Good construction	3-12-71	6	45 1	7 45	36 0.4	5 187	30	120	25	155.1	1.25	3.0	2,230	3,915	-	-		-	-	-	~	-	-	-	-	1,2
110-2-1	106+53.4	20+17.5	1119.6	stairwell Foundation gallery	- 26	7- 9-71	0.0-3.0	-	S 60 E-30 dip	joint Good concrete	3-12-71	6	45 3	7 45	36 0.	5 137	30	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	4,800	4.52	0.16	2.52	157	-	-	-	-
- 2	106+53.4	20+17.5	1119.6	u/s wall Foundation gallery	- 26-2	7 7- 9-71	3.0-5.7	1117.5	S60 E-30 dip	Good concrete	3-12-71	6	45 3	7 45	36 0.4	5 187	50	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	-	-	-	~	-	290	5 5	4.5	1
110-3-1	106 + 64	20+17.5	1119.6	u/s wall Foundation gallery	- 26	7-12-71	0.0-3.0	~	S64 E-30 dip	Broke @ 2.6' during	3-12-71	6	45 3	7 45	36 0.3	5 187	30	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	-	-	-	-	-	-	-	-	2
- 2	106+64	20+17.5	1119.6	u/s wall Foundation gallery u/s wall	- 26-2	7 7-12-71	3.0-6.0	1117.5	564 E-30 dip	cemoval Good construction joint - hard to	3-12-71	6	45 3	7 45	36 0.	5 187	- 50	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	-	-	-	-	-	-	-	-	1
110-4-1	106+65.5	20+79.5	1119.6	Drainage gallery -	26	7-12-71	0.0-3.0	-	N64 W-30 dip	find Broke from 2.7' to	3-12-71	6	45 3	7 45	36 0.4	5 187	- 80	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	-	-	-	-	-	200	65	5	-
-2	106+65.5	20+79.5	1119.6	d/s wall Drainage gallery - d/s wall	26-2	7 7-12-71	3.0-5.8	1117.5	N64 W-30 dip	3.0' on recovery Good construction joint	3-12-71	6	45 3	7 45	36 0.	5 187	80	120	25	155.1	1.25	3.0	2,230	3,915	-	-	-	-	-	-	-	-	-	-	-	1,3

1/ First number is block in the dam, second is hole number, third is core number $\overline{2}/$ Wing dam $\overline{3}/$ Average of two cylinders

Table 7. - Compilation of 150-mm (6-in) diameter core data -Interior and exterior concrete at 6 months' age -Grand Coulee Forebay Dam - Continued

			Location	of hole					Core data									Conc	rete dat	a wher	n place	d										Test dat	ta on co	ncrete cor	es		Other tests
Core No. <u>1</u> /	Station No.	Offset from axis	Eleva- tion top of hole,	Location in dam	Lift in block	drilled	Depth of core, ft	eleva-	Direction drilled	Condition of concrete in core	Date placed	Max size aggr in	e r, Conc		Air	W C+P	Cement, 1b/yd	Pozzola 1b/yd ³	n, Water, 1 b/y d	Sand %	Unit weight lb/ft	Slump in	Air conten %	ч ч	ompress	ive str 1b/i	1	1	Compres- sive strength	1 2	ties	Spe- cific gravity	Unit weight 1b/ft ³	Strength	dis-	Distance of break	1. Triaxial 2. Shear 3. Petro- graphic
			ft		No.																			7-d	28-d	90-d	180-d	l yr	lb/in ²	lb/in ²					bonded	from end	
																	Inter	ior conc	rete																		
112-1-1	107+74	20+28	1119.6	Foundation gallery	- 26	7-15-71	0.0-3.1	1117.5	N34 ⁻ W-30 dip	3/4" rebar @ 2.4'	3-27-71	6	-	-	- -	0.45	186	79	119	25	152.6	1.50	2.9	-	2,740	4,410	-	-	-	-	-	-	-	390	65	1	-
-2	107+74	20+28	1119.6	stairwell Foundation gallery stairwell	- 26-27	7-15-71	3,1-5,9	1117.5	N34°W-30°dip	bottom; good con- struction joint	3-27-71	6	-	-	- -	0.45	186	79	119	25	152.6	1.50	2.9	-	2,740	4,410	-	-	4,880	-	-	2.49	155	-	-	-	1,2,3
112-2-1	107+84.5	20+79.5	1119.6	Drainage gallery -	26	7-15-71	0.0-2.9	1117.9	N64 W-30 dip	@ 2.1'	3-27-71	6	-	-	- -	0.45	186	79	119	25	152.6	1.00	2.9	-	2,740	4,410	-	-	4,920	5.75	0.14	2.53	157	-	-	-	1
-2	107+84.5	20+79.5	1119.6	d/s wall Drainage gallery - d/s wall	26-27	7-16-71	2.9-5.8	1117.5	N64 W-30 dip	Good construction joint @ 2.0'	3-27-71	6	-	-	- -	0.45	186	79	119	25	152.6	1.00	2.9	-	2,740	4,410	-	-	-	-	-	-	-	-	-	-	1,2,3
114-1-1	108+91	20+17.5	1119.6	Foundation gallery	- 26	7-20-71	0.0-3.0	1117.5	560°E-30 dip	Break at 2.4'	4- 2-71	L 6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	-	-	5,860	4.62	0.17	-	-	-	-	-	1,3
-2	108+91	20+17.5	1119.6	u/s wall Foundation gallery	- 26-27	7-20-71	3.0-6.0	1117.5	S60 E-30 dip		4- 2-71	6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	-	-	-	-	-	-	-	-	-	-	1,3
114-2-1	109+03	20+17.5	1119.6	u/s wall Foundation gallery	- 26	7-21-71	0.0-3.0	1117.9	S60 E-30 dip	Broke at 2.4"	4- 2-71	6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	-	-	-	-	-	-	-	160	60	10	-
-2	109+03	20+17.5	1119.6	u/s wall Foundation gallery u/s wall	- 26-27	7-21-71	3.0-6.0	1117.5	\$60 E-30 dip	Good concrete	4- 2-71	6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	~	-	4,720	-	-	-	-	-	-	-	1,2
114-3-1	109+03	20+79.5	1119.6	Drainage gallery - d/s wall	26	7-21-71	0.0-3.0	1117.9	N64 W-30 dip		4- 2-71	6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	-	-	-	-	-	-	-	110	65	5	-
-2	109+03	20 +79. 5	1119.6	Drainage gallery - d/s wall	26-27	7-21-71	3.0-6.0	1117.9	N64 W-30°dip	Good concrete - joint hard to find	4- 2-71	6	46	40	56 42	0.51	184	80	135	26	153.9	1.25	2.8	-	3,410	-	-	-	-	-	-	-	-	-	-	-	1,2,3
116-1-1	110+08	20+23	1119.6	Foundation gallery	- 26	7-23-71	0.0-3.0	1117.5	N66 E-30 dip	Core broke @ 2.3'	4- 9-71	L 6	47	40	54 41	0.49	188	81	132	25	154.9) 1.50	3.1	-	3,475	5,895	-	-	-	-	-	-	-	130	65	8	-
- 2	110+08	20+23	1119.6	stairwell Foundation gallery	- 26-27	7-23-71	3.0-6.0	1117.9	N66°E-30 dip	Steel @ 3.5', 4.0', and 4.2'	4- 9-71	6	47	40	54 41	0.49	188	81	132	25	154.9	1.50	3.1	-	3,475	5,895	-	-	-	-	-	-	-	-	-	-	2
116-3-1 -2				stairwell Drainage gallery Drainage gallery					N56°E-30 dip N56°E-30 dip	Core broke @ 2.6'	4- 9-71 4- 9-71	-		40 40		0.49		81 81	132 132	25 25) 1.50 1.50		-		5,895 5,895		-	5,480 -	5.14	0.17	2.50	155	-	-	-	1 1,2,3
120-1-1	112+29	20+28	1119.6	Foundation gallery	- 26	8-23-71	0.0-2.7	1117.9	S84 W-30 dip	Good concrete	5- 6-71	6	50	60	57 53	0.49	186	79	129	25	153.1	2.25	3.6	1,350	2,300	-	-	-	4,000	5.18	0.19	2.50	156	-	-	-	1,3
- 2	112+29	20+28	1119.6	stairwell Foundation gallery	- 26-27	8-23-71	2.7-5.7	1117.5	S84 W-30 dip	Small rock pocket	5- 6-71	6	50	60	57 53	0.49	186	79	129	25	153.1	2.25	3.6	1,350	2,300	-	-	-	4,500	5.22	0.15	2.55	159	-	-	-	1,2,3
120-2-1 -2	112+31 112+31			stairwell Foundation gallery Foundation gallery						Good concrete Good construction joint @ 4.8'; broke below cj -	5- 6-71 5- 6-71					0.49		79 79	129 129	25 25	153.1 153.1						-	-	-	-	-	-	-	-	-	-	- 1, 2 ,3
										6" aggregate at cj			6	6			104	70	120	0.5	152	2.25	1.4	1 360	2 200												
120-3-1	112+32			Foundation gallery u/s wall			Í				5- 6-71					0.49		79	129		153.1	1			2,300		-	-	-	-	-	-	-		-	-	-
-2	112+32	20+17.5	1113.6	Foundation gallery u/s wall	- 20-2/	0-24-71			304 L-30 dip	<pre>cod concrete to cj @ 3.7' to 4.8'; cut form tie @ 3.3', 4.4', 4.9'; lower 1/3 poor concrete</pre>	- 0-/I	- - -	00	00		0.47	100	77	127	2)		2.2)	3.0	1,000	2,500	_	_								-		
																		ior conc									-										
B-2-1 <u>2</u> /	1+08.8	7.9' lt	1311.0	Top of block		3-10-72	2 0.0-1.8	-	Vertical	Broke @ 1.8'	10- 4-/1	1.5	50	37	54 39	0.38	361	119	183	34	150.5	3.25	4.4	2,705	4,350	-	-			-	No	tests					

 $\underline{1}/$ First number is block in the dam, second is hole number, and third is core number $\underline{2}/$ Wing dam $\underline{3}/$ Average of two cylinders

Core No.	Date tested	Age, days	stre	essive ngth, 1b/in ²)	1 28-	core day cyl.,	elast	lus of ticity, d/in ² x10 ⁶)	Poisson's ratio
			<u> </u>	nterior	Conc	rete			
106-1-1	12-20-71	233	43.4	(6290)		213	35.4	(5.13)	0.18
-2	11-10-71	193	30.1	(4370)		148	30.9	(4.48)	.20
106-5-1	11-10-71	193	31.3	(4540)	1/	154	-	-	-
108-2-3	11-10-71	251	28.6	(4150)		125	36.5	(5.29)	.17
-5-2	11-10-71	251	30.7	(4450)	<u>1</u> /	134	-	-	-
-6-1	12-20-71	291	29.8	(4320)		130	31.9	(4.63)	.18
110-1-1	12-20-71	283	32.2	(4670)		119	37.0	(5.36)	.15
-2-1	12-20-71	283	33.1	(4800)		123	31.2	(4.52)	.16
112-1-2	12-20-71	268	33.6	(4880)		178	-	-	-
-2-1	12-20-71	268	33.9	(4920)		180	39.6	(5.75)	.14
114 - 1 - 1	11-10-71	226	40.4	(5860)		172	31.9	(4.62)	.17
-2-2	11-10-71	226	32.5	(4720)	<u>1</u> /	138		-	-
116-3-1	12-20-71	255	37.8	(5480)		158	35.4	(5.14)	.17
120-1-1	12-20-71	238	27.6	(4000)		174	35.7	(5.18)	.19
-2	12-20-71	238	31.0	(4500)		196	36.0	(5.22)	.15
Average Coefficie	ent of varia	ation	33.1 12.7	(4800)		156	34.7	(5.03)	.17

Table 8. - Summary of compressive strength and elastic propertiestest results on 150-mm (6-in) diameter cores at6 months' age - Grand Coulee Forebay Dam

 $\underline{1}/$ Test across construction joint

Core No.	Length of specimen, mm (in)	Date tested	Age, days		ile	Core trength ratio <u>tensile</u> compressive, percent	Disbonded	of	stance break om end, (in)
			Interi	or Conc	rete				
106-3-1-4-1108-2-1-5-1-6-2110-2-2-4-1112-1-1114-2-1-3-1116-1-1	416 (16-3/8) 457 (18) 457 (18) 457 (18) 464 (18-1/4) 464 (18-1/4) 467 (18-3/8) 467 (18-3/8) 467 (18-1/4) 459 (18-1/16) 462 (18-3/16) 435 (17-1/8)	12-22-71 12-22-71 12-13-71 12-22-71 12-22-71 12-22-71 12-13-71 12-13-71 12-13-71 12-13-71 12-13-71	235 235 284 293 293 276 276 261 259 259 248	1.83 1.48 2.17 1.07 .72 2.14 2.00 1.38 2.67 1.10 .76 .90	(265) (215) (315) (155) (105) (310) (200) (200) (200) (390) (160) (110) (130)	5.2 4.2 7.3 3.6 2.4 7.2 6.1 4.2 8.0 3.0 2.1 2.4	80 60 55	165 40 100 115 125 25	$\begin{array}{c} (3) \\ (3) \\ (6-1/2) \\ (1-1/2) \\ (4) \\ (4-1/2) \\ (5) \\ (1) \\ (10) \end{array}$
Averag			210	1.52	(220)	4.6		_ , ,	

Table 9. - Summary of tensile strength test results on 150-mm (6-in) diameter cores at 6 months' age -Grand Coulee Forebay Dam

 $\underline{1}/$ All tests were on nonjointed specimens

CONCLUSIONS

Based on results obtained from testing the 255-mm (10-in) and 150-mm (6-in) diameter cores at 6 months' and 1 year's age, the following conclusions can be made:

1. The interior and exterior concretes in the Forebay Dam are of good quality, uniform, well consolidated, and have strength properties which exceed the design compressive strength of 20.7 MPa (3000 lb/in^2) at 6 months' age.

2. The average compressive strength increase from 6 months to 1 year for both interior and exterior concrete was 9 percent. This increase exceeds the average 2-percent gains obtained for Glen Canyon and Yellowtail Dams.

3. The apparent tensile strength of the concrete averaged about 4 percent of the compressive strength and is considered about average for mass concrete. The ratio of tensile to compressive strength for interior concrete averaged slightly higher than that for exterior concrete and this same ratio of 6 months' age concrete also averaged slightly higher than at 1 year's age.

4. The modulus of elasticity of the concrete represented by these cores averaged 35.5 GPa (5.15 x 10^6 lb/in²). This substantiates the modulus of elasticity used in the design of the dam for the dynamic stress response and for the stated stress analysis. There were no significant differences in moduli of elasticity between 6 months' and 1 year's age, or between the exterior and interior concretes.

45

5. The bond strength of the horizontal construction joints in the 255-mm-diameter cores was at least equal to the tensile strength of the adjoining concrete. This is based on the fact that 15 of the 19 specimens tested failed at points other than the construction joint. The shearing strength at the construction joints of 150-mm-diameter cores, when tested by triaxial shear tests, was within 83 percent of that of unjointed cores, further indicating that good constuction joints were obtained. The cohesive strength of the jointed 150-mm cores was less than that of unjointed cores.

6. There was a complete lack of bond at the construction joint where special chlorinated rubber-base bonding and curing compound was used experimentally.


7. Other properties of the mass concrete such as Poisson's ratio and density were within expected ranges.

Appendix A

.

OPTIONAL FORM NO. 10 MAY 1962 EDITION GSA GEN, REG. NO. 27

UNITED STATES GOVERNMENT

TO : Head, Concrete Section

Denver, Colorado DATE: January 7, 1972

THROUGH: Acting Chief, Concrete and Structural Branch Commit

FROM : Acting Head, Polymer Concrete and Structural Section

SUBJECT: Bond strength between lifts of concrete and shearing strength of concrete in Grand Coulee Forebay Dam

Triaxial strength tests were made on nineteen 6- by 12-inch concrete cores to determine the bond strength between lifts in the Forebay Dam. These cores were drilled to obtain an angle of 30° between the joint plane and the longitudinal axis of the core, this being the approximate expected angle of failure in triaxial shear. Most of the joints were imperceptable to the eye. Triaxial tests were also conducted on nine 6- by 12-inch concrete cores without joints selected from the same drill holes as the jointed specimens. This provided a comparison between the shearing strength of the concrete and the shearing or bond strength of the joints between lifts of concrete. Cores were identified by block number, drill hole number, and the depth in feet to the center of the core from the collar.

All of the cores were tested in the air-dry condition. Tests of jointed cores were made using all suitable specimens. These specimens containing cooling pipe and other pieces of metal in the joint were not used. A minimum number of unjointed cores were tested to determine shearing strength of the concrete. Lateral pressures of 0, 200, 450, 700, and 1,000 psi were used in testing jointed cores. To encompass the same range, the unjointed cores were tested at lateral pressures of 0, 450, and 1,000 psi. The lateral pressure was applied first and held constant while the axial pressure was increased gradually until failure occurred. Results for each type of core are compiled in Tables 1 and 2. Figures 1 and 2 show the principal stress relationships. Mohr's diagrams for straight line solution are shown in Figures 3 and 4. (Values of S₁ were taken from Figures 1 and 2.) The curvilinear solution of Mohr's envelope is shown in Figures 5 and 6 which include tabulated values of normal stress (x), shearing strength (Y), and coefficient of friction (tan ϕ).

The average unconfined compressive strength of cores containing joints (4,110 psi) was about 85 percent of that for cores without joints (4,810 psi). Field control tests of 6-inch maximum-size aggregate concrete showed about 3,000- to 3,500-psi compressive strength at 28 days' age. The cohesive strength (shearing strength at zero normal stress) of jointed cores (735 psi) was about 75 percent of that for the unjointed cores (980 psi) using the straight line solution of Mohr's envelope.

49

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

The curvilinear solution of Mohr's envelope gives a closer value to the true cohesive strength than the straight line solution. Mohr's envelope as a curve shows the cohesive strength of jointed cores (730 psi) to be about 83 percent of that for the unjointed cores (880 psi).

Variation in the test data for both types of cores can partially be attributed to the small size of the core from concrete having 6-inch maximum aggregate. Acceptable maximum-size aggregate in a 6-inchdiameter specimen is 1-1/2 inches; however, 6-inch diameter is the largest size that we are equipped to test under triaxial loading conditions. One jointed core (No. 120-1-4.2) contained a significant amount of air voids in the joint, thereby contributing to the variation. Since the cores did not fail by crushing the aggregate, the average data reported should be fairly representative of the concrete and joint characteristics.

Jointed cores under lateral pressure failed generally along or on the joint plane. One core (No. 108-6-4.3) failed across the joint, as marked by field personnel; however, the strength value obtained was not unusual when compared to other jointed cores tested at the same lateral pressure (450 psi). Measured failure angles varied from 20° to 32° with an average of 26.5° from the longitudional axis of the core. Cores at zero lateral pressure exhibited conical-type failure and almost vertical cracking with the exception of the core with voids in the joint (No. 120-1-4.2) which failed on the joint at a measured 27.5°. Unjointed cores showed generally conical failures and almost vertical cracking. Only two of these cores showed a measurable shear failure at about 25°. Figures 7 through 14 show the concrete cores after failure. The black arrows and lines marked on the cores show the general location of the joint plane. Theoretical angle of failure was about 21° for jointed cores and 22° for unjointed cores using the relationship $\phi = 90 - 2\alpha$ where \emptyset is the angle of inclination of Mohr's envelope and α is the angle of failure (straight line solution). Variations in measured and theoretical angles of failure are also partially attributable to the effect of the very large aggregate particles in the concrete. Additional information concerning mode of failure including photographs of the failure planes will be reported by the Chemistry and Physics Section (Petrographic Laboratory).

James J. Miker

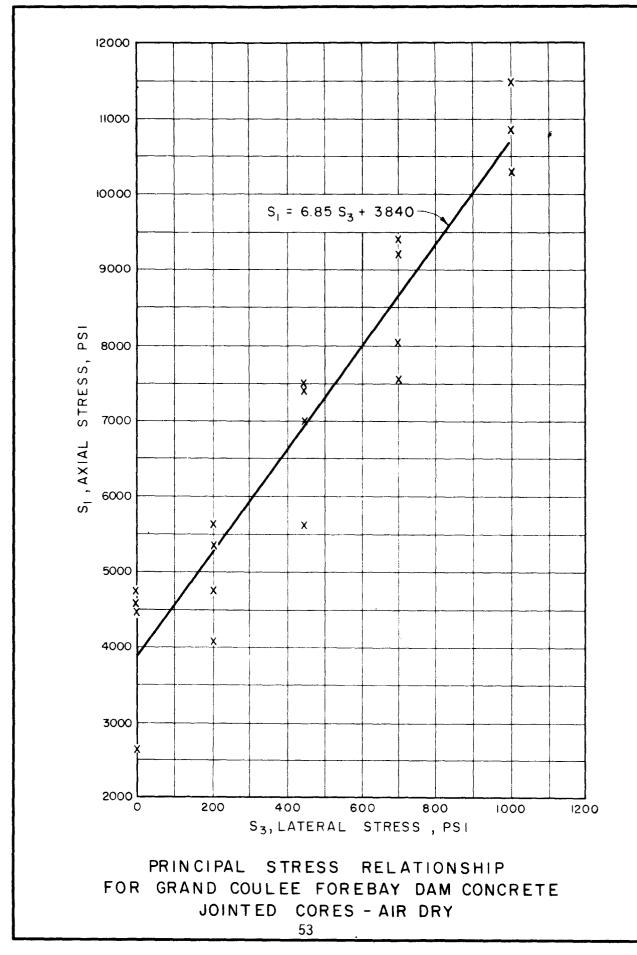
Copy to: 1510 221

Table 1

			A : daar
Core No.*	Lateral stress	Jointed cores – Axial stress	Average axial stress
	S ₃ , psi	S _i , psi	psi
106-5-1.6	0	4,570	
108-5-4.3	0	4,470	4,110
114-2-4.2	0	4,740	
120-1-4.2	0	2,650	
106-1-4.4	200	5,650	
108-2-4.5	200	5,360	4,960
110-3-4.15	200	4,750	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
114-1-4.3	200	4,070	
م معند نی ہے مصرفی ہے جس پندی نہ مالا میں ہ ی			
106-6-1.8	450	6,990	
108-6-4.3	450	7,390	6,870
110-4-4.2	450	7,490	
114-3-4.2	450	5,600	
108-4-4.25	700	7,550	
110-1-4.25	700	9,420	8,550
	700	-	
120-2-4.3	700	9,210	
110-2-4.3	1 000	10 280	
	•	-	10 870
116-3-4.15	1,000	10,860	10,070
112-1-4.2 120-2-4.3 110-2-4.3 112-2-4.25 116-3-4.15	1,000 1,000	8,030 9,210 10,280 11,480 10,860	10,870

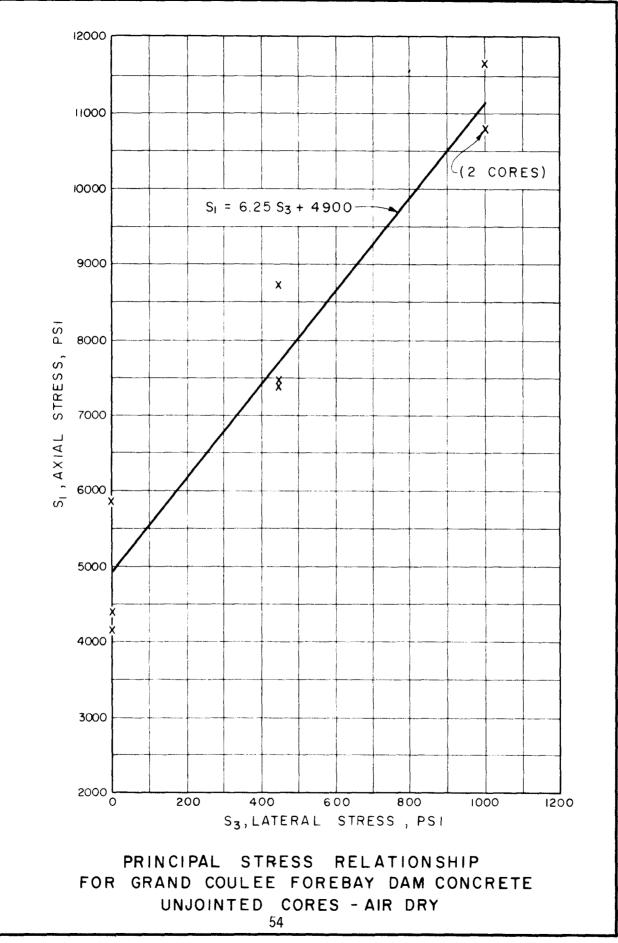
TRIAXIAL COMPRESSIVE STRENGTH TESTS OF 6- BY 12-INCH CONCRETE CORES Grand Coulee Forebay Dam

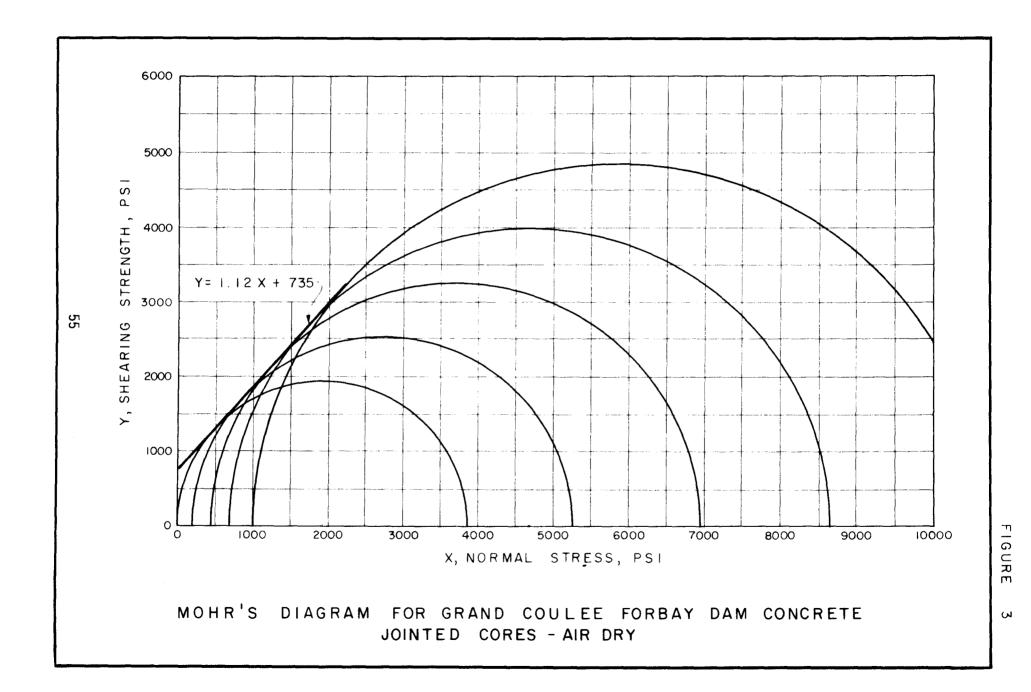
*The first number designates the block number; the second number is the drill hole number; and the third number is the depth in feet to the center of the core from the collar.

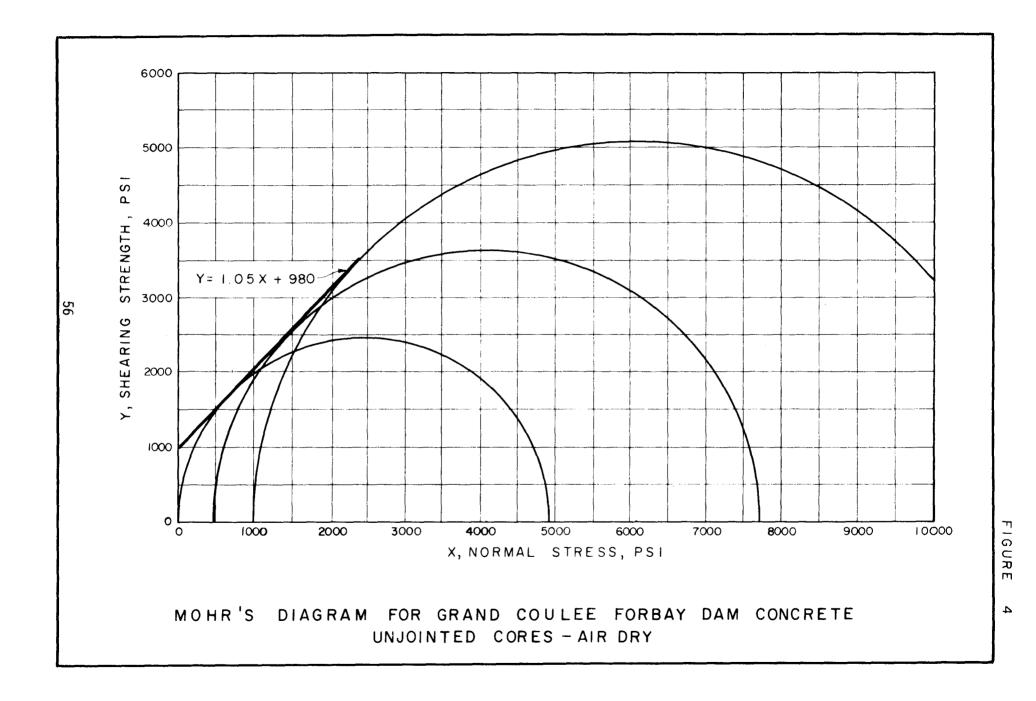

<u>Table 2</u>

	U	Injointed cores -	Air dry
Core No.*	Lateral stress	Axial stress	Average axial stress
	S ₃ , psi	S _i , psi	psi
106-1-2.2	0	4,390	
108-2-3.5	0	4,170	4,810
114-1-1.3	0	5,870	·
106-2-2.2	450	7,480	
108-5-3.25	450	7,390	7,870
116-3-1.8	450	8,740	· · · · · · · · · · · · · · · · · · ·
110-1-2.15	1,000	11,670	
112-2-1.85	1,000	10,780	11,080
120-1-2.0	1,000	10,780	11,000

TRIAXIAL COMPRESSIVE STRENGTH TESTS OF 6- BY 12-INCH CONCRETE CORES Grand Coulee Forebay Dam


*The first number designates the block number; the second number is the drill hole number; and the third number is the depth in feet to the center of the core from the collar.


FIGURE



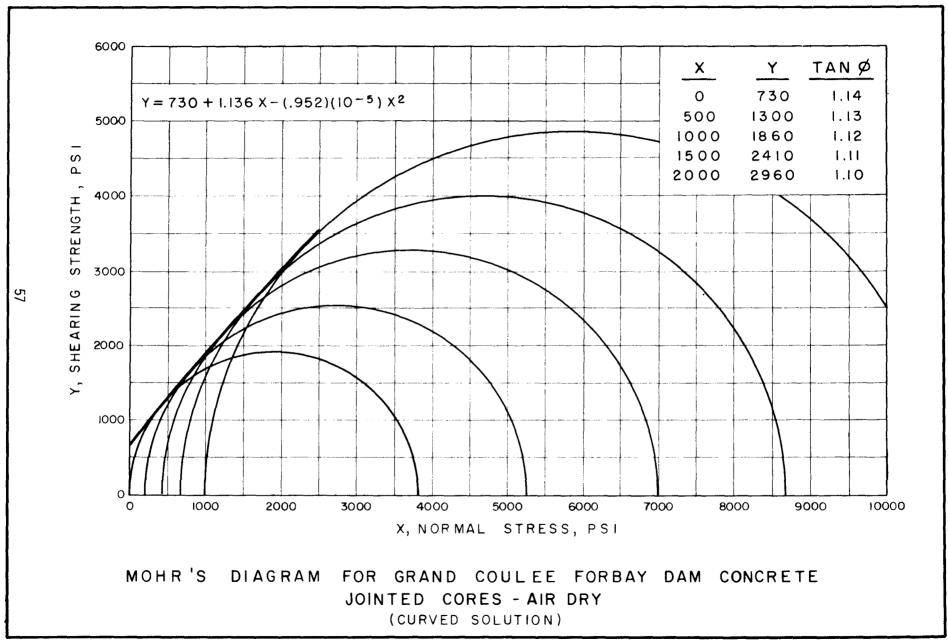
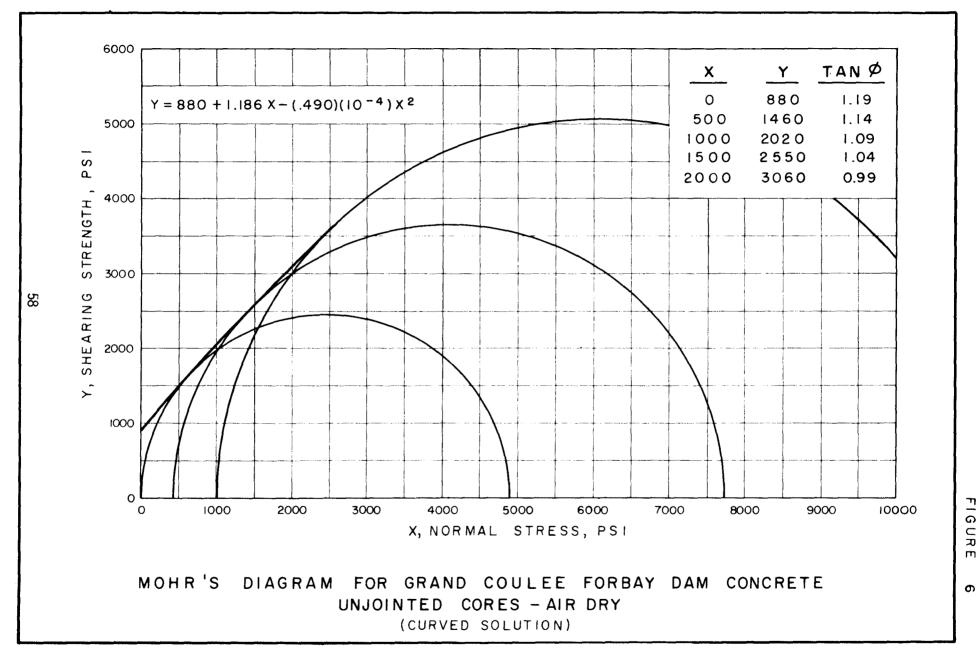
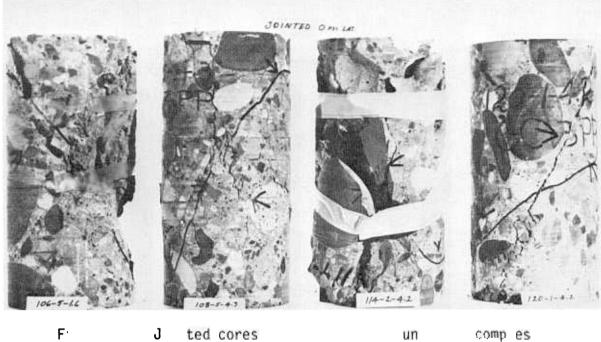

1

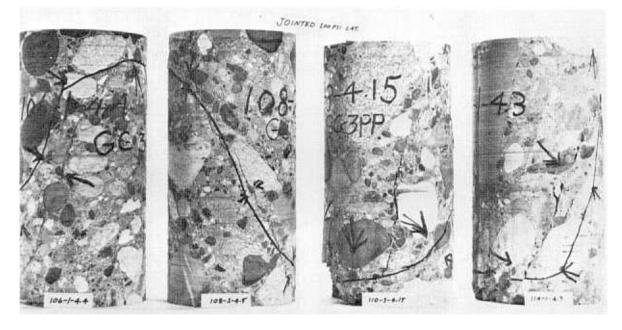
FIGURE 2



- -


J

m


FIGUR

FIGURE

J th te ted cores

F re 8 J nte core f fi ri te re 200- b/ tera

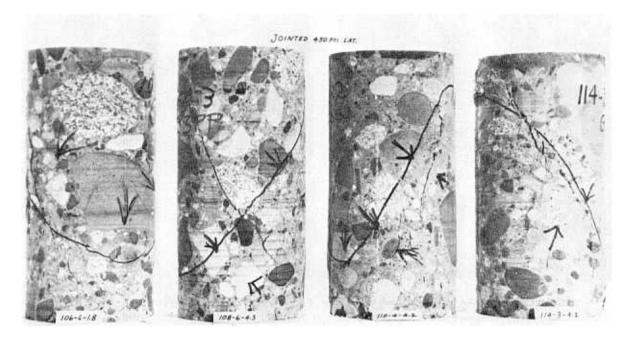


Figure 9. - Jointed cores after failure in triaxial test at $450-1b/in^2$ lateral pressure.

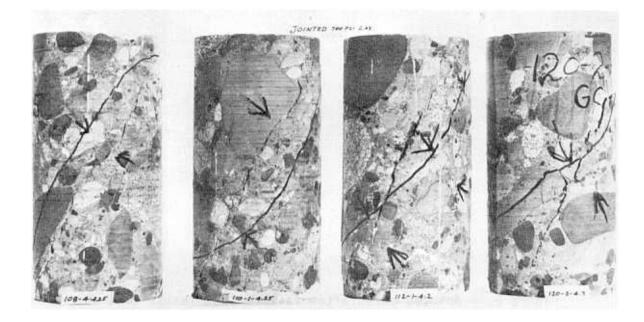


Figure 10. - Jointed cores after failure in triaxial test at 700-1b/in² lateral pressure.

60



Figure 11. - Jointed cores after failure in triaxial test at 1,000 lb/in² lateral pressure.

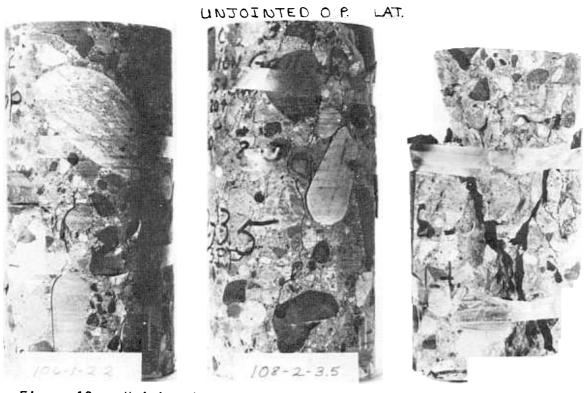


Figure 12. - Unjointed cores after failure in uniaxial compression test.

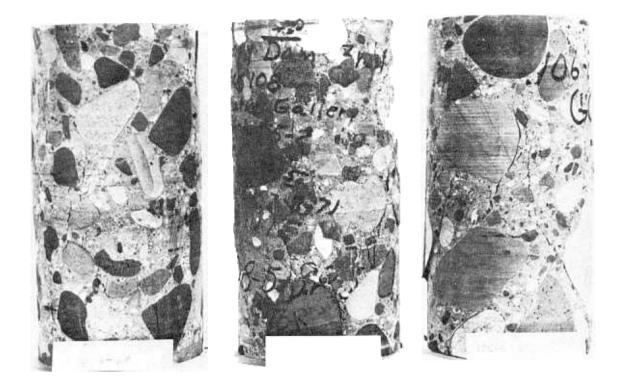


Figure 13. - Unjointed cores after failure n triaxial test at 450-1b/in² lateral pressure.

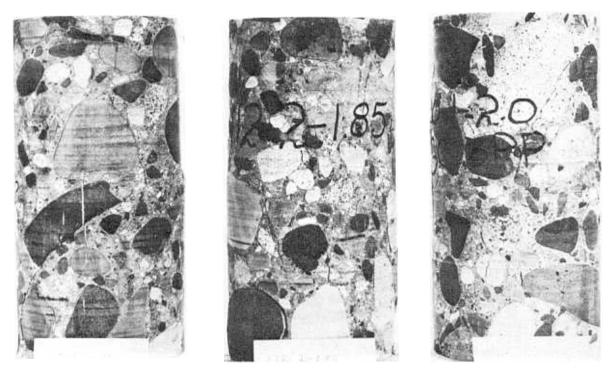


Figure 14. - Unjointed cores after failure in triaxial test at 1,000-lb/in² lateral pressure.

Appendix B

INFORMATIONAL DOUTING

Form DFC-11 (12-61) Piteau of Reclamation

INT ORMATIONAL ROUTING	r
Netoraalum	Denver, Colorado
Chief, Concrete and Structural Branch	December 22, 1971
>	
Chief, Applied Sciences Branch	
Examination of afterbreak specimens of 6-inch triaxial tests - Grand Coules Forebay Dam Thi	
Examination by: S. Rubenstein	
Petrographic Referral Code: 71-33	
Introduction	L L

Twenty-eight samples of 6-inch diameter by 12-inch concrete cores were submitted by the Concrete and Structural Branch to the petrographic laboratory for examination. Tifteen of the samples were selected as representative of the afterbreak specimena of the triaxial test. The samples were from the foundation and drainage galleries of Grand Coulee Third Powerplant Forebay Dam. Table 1 contains a list of the samples and location. The concrete was 6 months to 1 year old. The concrete was drilled at a dip of 30° to intersect the lift joint at a 30° angle. Specimens of unjointed core were also tested for comparison.

Scope of Examination

The purpose of the examination was to describe the mode of failure of the jointed concrete as a result of the triaxial test. The concluste was received in a cracked condition after triaxial testing (the before and after condition is shown in photographs which appear in the portion of this report prepared by the Concrete and Structural Branch). The cylinders were then split with a 4-inch chisel along the predominant plane of failurs to uncover the surface of the plane. Photographs were taken of the split cores to illustrate the node of failure and show a comparison with the estimated joint plane. Photographs and staining tests were also hade to define the joint before structural tests.

Table 2 contains a summary of the examination and includes block number, drill hole, depth, mode of failure, angle of break, jointing, fracturing, poor bond, air voids, and other features associated with failure.

ŧ

Twelve photographs which indicated representative mode of failure, surface features relating to jointing and fracturing and air voids were taken (Figures 1 to 6). In addition, two enlarged photographs showed the size of aggregate and distribution near the unbroken joint (Figure 7) and two photographs showed the results of the staining tests to delineate the unbroken joint (Figure 8). The stain did penetrate the underside of the concrete slab in voids subparallel to joint plane, but the results were not too conclusive. A photograph of a joint at right angles which separated was also included (Figure 6).

J. H. Jewis

Copy to: 1520 1523 H. Riffle

SRubenstein:dlm-mt2

Ta	h	10	1
10	0	TC	.

LIST OF SAMPLES

Block	Drill hole	Depth	Location*
106	5	1.6	Foundation gallery U/S wall
108	5	3.25	Foundation gallery U/S wall
108	2	4.5	Foundation gallery stairwell
108	6	4.3	Drainage gallery D/S wall
108	4	4.25	Foundation gallery
110	4	4.2	Drainage gallery D/S wall
112	1	4.2	Foundation gallery stairwell
112	2	4.15	Drainage gallery D/S wall
114	1	1.3	Foundation gallery
114	1	4.3	Foundation gallery
114	3	4.2	Drainage gallery D/S wall
116	3	4.15	Drainage gallery D/S wall
120	1	2.0	Foundation gallery stairwell
120	1	4.2	Foundation gallery stairwell
120	2	4.3	Foundation gallery

* The samples were drilled at an elevation of 1119.6 feet.

Table 2

Summary of Examination of Afterbreak Specimens of 6-inch-diameter Concrete Lift-joint Study Grand Coulee Third Powerplant

Unjointed							
Spec No.	s ₃	s ₁	Angle of break	Mod e o f f ailur e	Feature associated with failure		
114-1-1.3	0	5870	-	Cone-shaped break	Breaks around aggregate across cement		
108-5-3.25	450	7390	25°	Broke tangent to surface of large aggregate	Breaks around aggregate across cement		
120-1-2.0	1000	10,780	-	Irregular break	Breaks around aggregate		
Jointed							
120-1-4.2	0	2650	-	Breaks along joint plane, smooth surface	Poor bond, large entrapped air void delineating joint		
106-5-1.6	0	4750	-	Breaks along joint plane with jagged surface	Breaks around aggregate across cement		
103-2-4.5	200	5360	30°	Breaks along joint plane, smooth surface	Shallow entrapped air void		
114-1-4.3	200	4070	27 °	Breaks along joint, jagged surface	Breaks around aggregate across coment		
108-6-4.3	450	7390	25°	Breaks along joint (at right angles to estimated joint, jagged surface)	Breaks around aggregate		
110-4-4.2	450	7490	20°	Breaks along joint plane, jagged surface	Breaks around aggregate		

Spec No.	S3	S1	Angle of break	Mode of failure	Feature associated with failure
114-3-4.2	450	5600	25°	Breaks along joint, jagged surface	Breaks around aggregate across cement
108-4-4.25	700	7550	31°	Breaks along joint, jagged surface	Breaks around aggregate across cement, entrapped air void in joint plane
120-2-4.3	700	9210	30°	Breaks along joint, smooth surface	Breaks around aggregate across cement
112-1-4.2	700	8030	30°	Breaks along joint, jagged surface	Some broken aggregate
116-3-4.15	1000	10,860	32°	Breaks along joint, jagged surface	Breaks around aggregate
112-2-4.15	1000	11,400	30°	Breaks along joint, jagged surface	Breaks around aggregate

Table 2 (Continued)

Note: Drilled at 30° dip to intersect the joint at a 30° angle. Elevation 1119.6 feet.

69

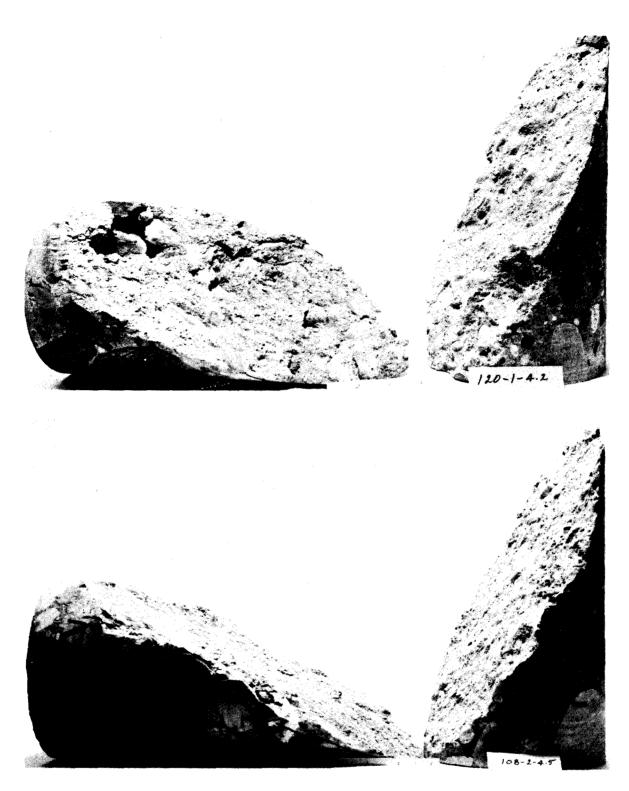


Figure 1. - Photograph of jointed concrete showing failure surface Top - at "0" lateral load (note hole in horizontal piece and smooth plane indicating poor bond) Bottom at 200 lb/in² lateral load (note smooth plane) C-8322-49 C-8322-54

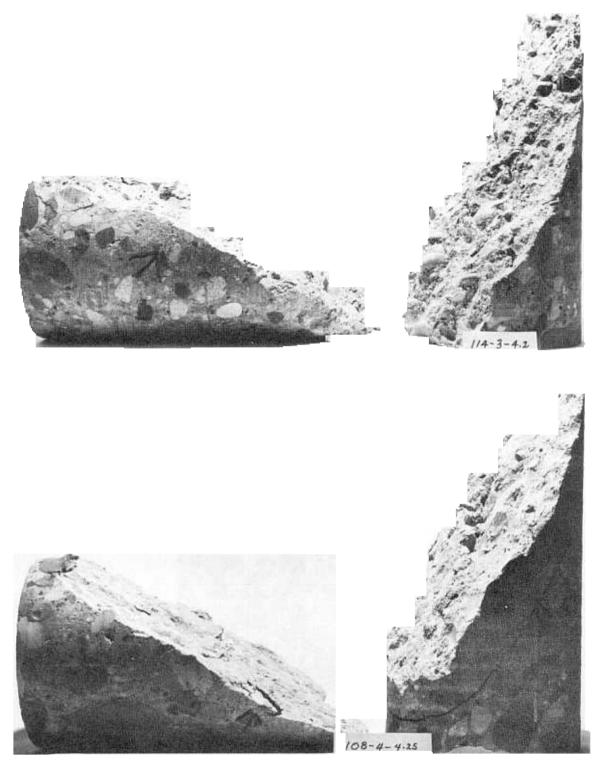


Figure 2. - Photograph of jointed concrete showing failure surface Top - at 450 lb/in² load (note jagged type of break) Bottom at 700 lb/in² load (note jagged break and hole) C-8322-51 C-8322-62

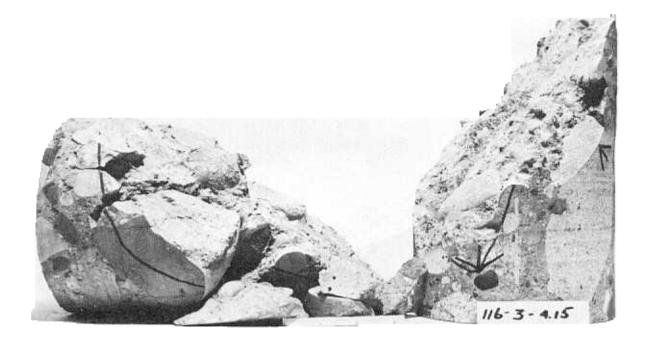


Figure 3 - Photograph of concrete showing failure surface Top - jointed concrete 1,000 psi lateral load (note jagged break Bottom - unjointed concrete "0" lateral load (cone shaped break) C-8322-57 C-8322-56

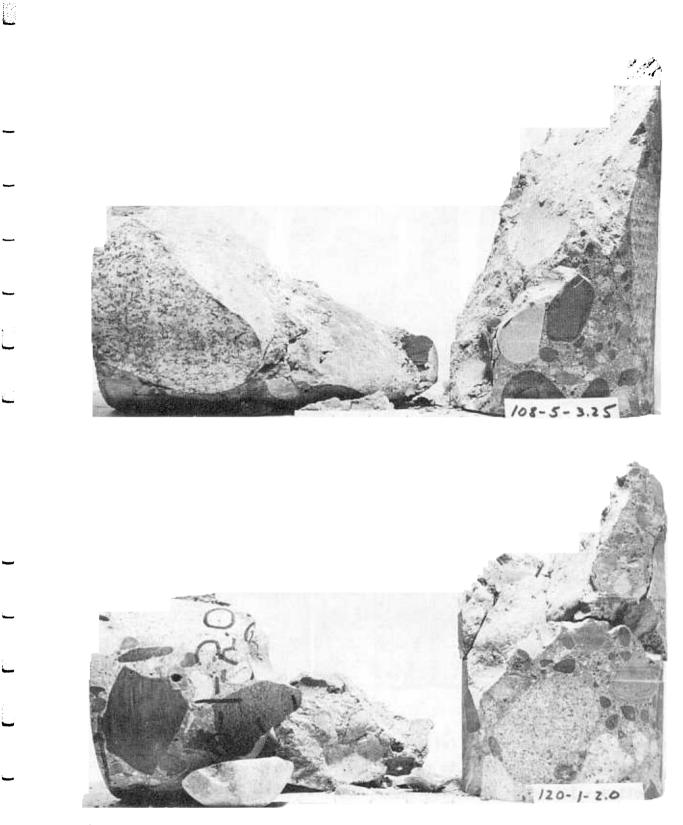


Figure 4. - Photograph of unjointed concrete showing failure surface Top - at 450 lb/in² lateral load (note splitting tangent to large aggregate) Bottom at 1,000 lb/in² lateral load (irregular break) C-8322-58 C-8322-59

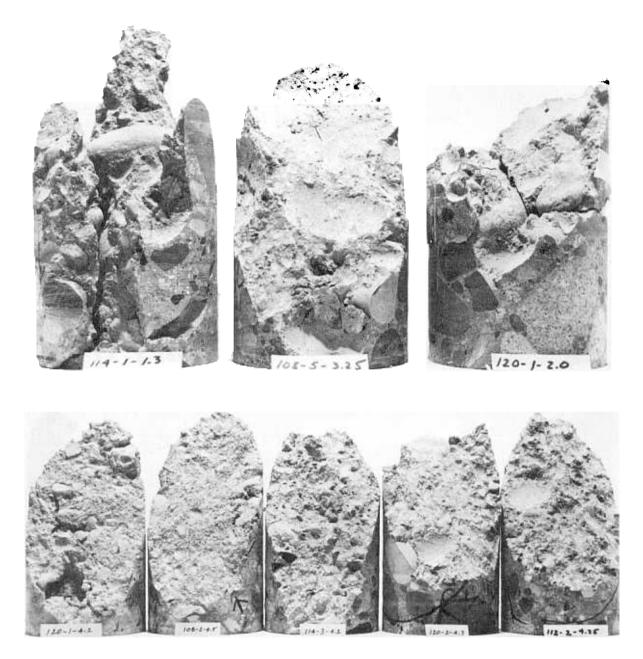
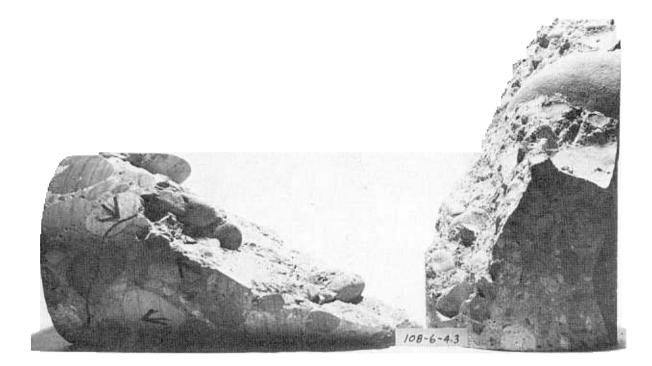




Figure 5. - Comparison of failure of unjointed and jointed concrete Top - unjointed - (left to right) "0", 450 and 1,000 lb/in² lateral load Bottom - jointed - (left to right) "0", 200, 450, 700, and 1,000 lb/in² lateral load ; C-8322-47 C-8322-48

Grand Coulee Forebay Dam 3rd PP Block 108 10 inch core Hole 1

Co st+4 tion Joint

Figure 6. - Photograph of jointed concrete failure surface Top - split at right angles to approximate joint (shown by arrows) Bottom - showing separation at right angles to the axis of the core (not subjected to triaxial test) C-8322-63 C-8322-25

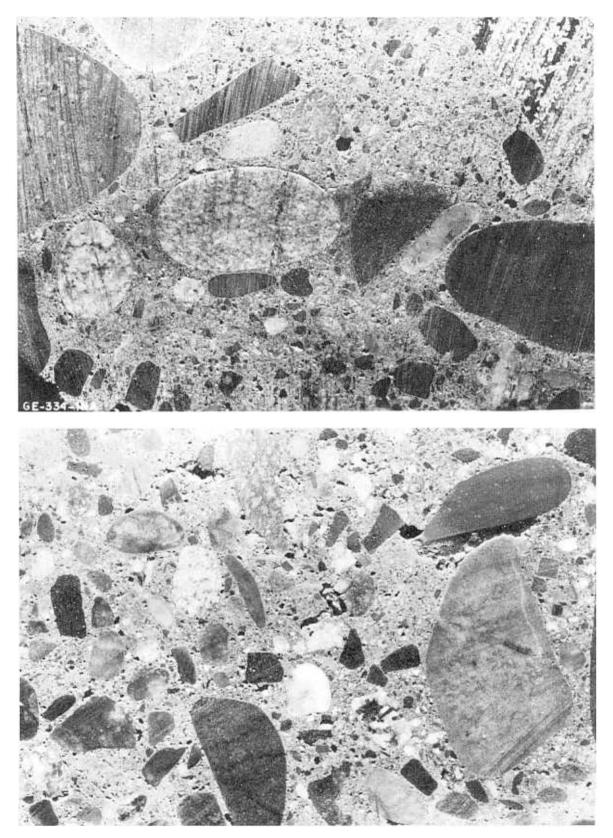


Figure 7. - Photograph of concrete showing size of aggregate and distribution indicating possible joint planes Top - sample 106-3-4 Bottom - sample 106-1 GE-334-1 GE-334-2 76

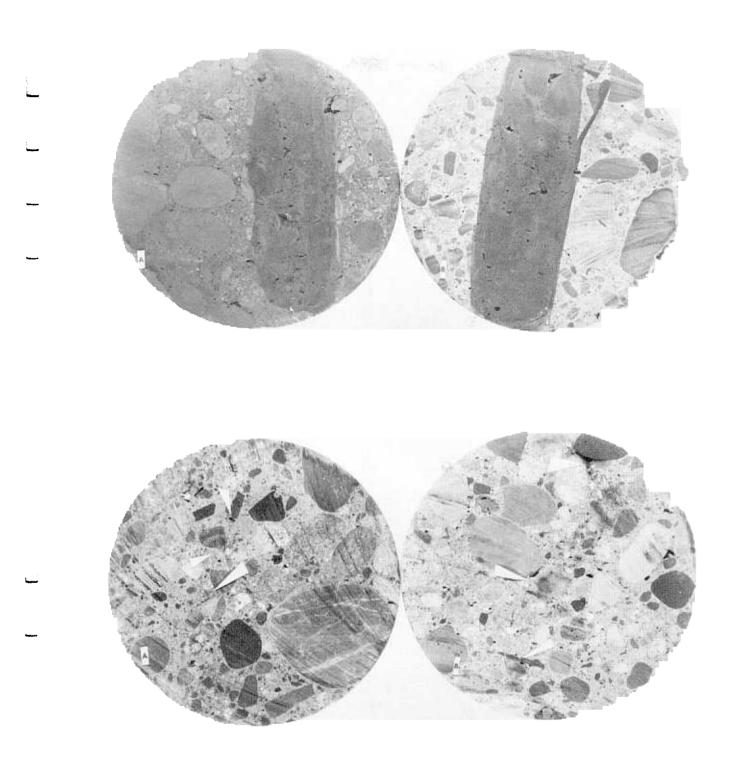


Figure 8. - Photograph of results of staining test to delineate unbroken joint (sample 106-3-4) Top - stained top of concrete Bottom - underside penetration of stain (white arrows) in voids subparallel

to joint plane C-8322-64 C-8322-65

<u>___</u>