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PURPOSE 

This study was conducted to aid in the design of a slurry disposal pipeline for the Yuma Desalting 

Plant. Current plans propose mixing waste calcium carbonate sludge and sedimentation basin grit 

with water and pumping it through a pipeline to a disposal site. 

Changes in plant operation and uncertainty of the length of pipeline needed prompted this study. 

Previous tests performed at the CSMRI (Colorado School of Mines Research Institute) [1]° and the 

YDTF (Yuma Desalting Test Facility) [2] were reported in March and May 1978, respectively. These 

studies used 2- and 2V2-in-diameter pipes in their test loops. No rheological data were collected 

in the CSMRI study and the YDTF rheology was incomplete; therefore, scaling these test results 

to include different pipe diameters was impossible. 

INTRODUCTION 

A 90-Mgal/d desalting plant is currently under construction near Yuma, Arizona. This plant will 

use reverse osmosis membrane reactors to treat Colorado River water before it enters Mexico. 

A partial lime-softening pretreatment system will be used to treat the feedwater to the desalting 

plant. Up to 300 tons of calcium carbonate sludge and 30 tons of sedimentation basin grit, which 

can accumulate in the pretreatment system each day, will have to be transported to a disposal 

site. A slurry pipeline is being considered as a means to transport this waste. 

Because this slurry, even in small solids concentrations, behaves as a non-Newtonian fluid, the 

traditional equations used to design water-conveyance systems are not applicable. The nonlin- 

earities of the fluid must be defined before a confident design can be attempted. 

A laboratory pumping test is the best method for defining critical f low parameters. However, 

because of the difficulty in collecting accurate and complete rheological data, scaling pumping test 

results to include other pipe diameters can be precluded. Without good rheological data, pipeline 

loop data can be expanded to include only pipe diameters 1 inch larger or smaller than the pipe 

diameter tested. 

SUMMARY AND CONCLUSIONS 

Laboratory data were collected to evaluate pumping waste sludgeand grit as a slurry to a disposal 

site. The pipeline loop tests used a nominal 6-in i.d. pipe with sludge from the YDTF. Test runs 

• Numbers in brackets refer to entries in the bibliography. 



were made varying the total solids concentration, pH, sedimentation-basin grit content, and 

Mg(OH)2 content. 

1. All slurries tested in the pipeline loop behaved as non-Newtonian fluids in laminar flow for 

solids concentrations from 17 to 39 percent by weight. 

2. Friction losses increased with increasing solids concentration. 

3. Friction losses increased with increasing Mg(OH)2 concentration, particularly when the slurry 

pH was 11 and above. 

. The addition of sedimentation-basin grit compounded the problem of heterogeneity be- 

cause the larger (heavier) particles settled at higher pipeline velocities than the fine calcium 

carbonate sludge particles. 

. Deposition velocities increased slightly with an increase in solids concentration. However, 

increases in deposition velocities were even more evident with an increase in Mg(OH)2 

concentration. 

6. The pipeline operating velocity should be at least 1 ft/s in excess of the deposition velocity 

of the first settled particles. 

7. Rheological investigations showed that viscosity increased with increasing shear rate (di- 

latent behavior). 

. Viscosity tended to increase quite dramatically with solids concentration. The pH level, in 

conjunction with the Mg(OH)2 concentration, was an important variable. The pH level in- 

dicated that the more basic the slurry, the higher the viscosity. 

9. Comparison of quiescent settling rates showed important general trends that can be related 

to the flow properties of the slurry. 

10. The 6-in pipeline loop showed significantly less friction loss than the previously tested 2- 

and 21/2-in pipeline loops. Typical Newtonian scaling laws cannot be used to predict the 

actual friction-loss values. 
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H Y D R A U L I C  T E S T S  

The Model 

The pipeline loop facility used for the hydraulic tests is shown on figure 1. The loop consisted of 

a 6 x 6 Denver SRL centrifugal slurry pump and approximately 200 ft of pipe. Friction head loss 

was measured with differential manometers in two horizontal test sections. The first test section 

was a 60-ft length of epoxy-lined asbestos-cement pipe; the second section was a 40-ft length 

of heavy-walled unlined steel pipe. Prior to model construction, measurements showed a mean 

i.d. (inside diameter) of 0.48 ft for the asbestos-cement pipe and 0.532 ft for the steel pipe. A 

6-ft length of clear plastic pipe was used to observe f low conditions and settling characteristics. 

The sludge used in the laboratory tests was a product of the pilot plant at the YDTF. It had been 

.dewatered to a solids concentration of about 65 percent by weight and shipped in 55-gal drums. 

A propeller mixer mixed the sludge, grit, and water into a slurry in the mixing tank. The pump 

circulated slurry from the mixing tank through the pipeline and back to the tank. Flow rates in the 

pipeline were set by throttling a gate valve directly downstream from the pump. A Foxboro 6-in 

magnetic f lowmeter was used to measure the f low rate of slurry through the pipeline. The flow- 

meter was calibrated with a volumetric tank. A high-speed digital voltmeter monitored the output 

of the flowmeter. A pitot-type sediment sampler was used to gather slurry samples at various 

levels in the pipe. 

Model Calibration and Shakedown Run 

Testing in the 6-in pipeline loop began with clear water in a calibration and equipment shakedown 

run. Water was pumped through the loop to ensure that all elements of the model were working 

properly. A range of f low rates was set and data points were gathered for the magnetic f lowmeter 

calibration. Flow was diverted into the volumetric tank and timed for several f low rates. Some 

additional calibration points were taken at a solids concentration of 4 percent by weight. Using 

the respective cross-sectional areas of the two kinds of pipe, a curve was developed showing 

mean linear velocity versus voltmeter reading (fig. 2). This calibration assumed that the pipe was 

flowing full and that the pipe area was unrestricted by deposition of solids in the pipe bottom. 

Pipeline Loop Test Procedure 

For each test, the sludge, grit, and water quantities were adjusted to achieve a targeted slurry 

mixl The slurry was circulated through the pipeline at several different f low rates. At each flow 

rate, several tasks were completed: 

3 



1. The digital voltmeter reading was recorded. 

2. The pressure differentials on the manometers were recorded. 

3. The flow was observed in the clear plastic pipe; and comments were recorded. 

4. A slurry sample was taken from the mixing tank to determine the specific gravity by hy- 

drometer and the total solids concentration. 

5. Slurry samples were taken at two levels in the pipe with a pitot-type sediment sampler to 

determine any variation in the solids concentration. 

TEST RESULTS 

After the initial calibration and shakedown runs, several test runs were made. These test runs 

were designed to evaluate varying the total solids concentration from approximately 20 to 40 

percent (simulating the range of combined sludge and grit load expected at the plant), adjusting 

the pH level up to 11, and increasing the solid Mg(OH)2 concentration up.to about 8 percent by 

weight. The test procedure described in the previous section was followed for each run. A synopsis 

of the runs is shown in table 1. 

In addition to the results presented in table 1, an estimate of the deposition velocity of the slurry 

was made by comparing the solids concentration of samples taken from the pipeline.The samples 

were extracted from locations along the vertical centerline of the pipe, 1 inch below the crown 

and 1 inch above the invert. Sediment sampler data from runs 3, 6, and 7, are presented on figures 

13, 14, and 15, respectively. The deposition velocity is noted by Vd. 

Standard Chemical Tests and Rheology 

Chemical tests on the slurry were conducted by the Chemistry Laboratory staff. Several tests and 

measurements were taken on each slurry sample. These tests included percent solids by weight, 

specific gravity measured by hydrometer, pH level, percent grit by weight, and percent Mg(OH)2 

by weight. In addition, quiescent settling rates and viscosities were measured for a variety of 

slurry samples. 

The total solids concentration by weight was determined by the techniques described in Standard 

Methods, [5]. The sample was evaporated to near dryness on a steam bath, then oven-dried at 
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Table 1. - Synopsis of test runs. 

Run No. Total solids Added grit Specific pH Magnesium Figure No. 
concentration concentration gravity hydroxide 

% b y w t  % b y w t  % b y w t  

I 
I 
I 
i 
I 
I 
i 
I 
I 

1 3 - 1.018 9 3.01 - 

2 14.1 - 1.100 9 3.01 - 

3" 17 (I)** 2 1.136 9 3.0~ 3 
8 (F) 1.048 

4 20.4 (I) 2 1.130 9 3.01 4 
17.5 (F) 1.120 

5 21.1 (I) 2 1.152 9 3.01 5 
18.9 (F) 1.120 

6 22.4 (I) 2 1.160 9 3.01 6 
16.9 (F) 1.112 

7 23.4 (I) 2 1.166 9 3.01 7 
17.5 (F) 1.120 

8 38.6 (I) - 1.340 9 3.01 8 
37.6 (F) 1.315 

9 35.6 (I) - 1.300 11 4.15 9 
33.6 (F) 1.280 

10 37.1 (I) - - 11.3 5.21 10 
36.7 (F) 

11 34.2 (I) - - 11.0 6.96 11 
33.8 (F) 

12 37.5 (I) - - 11.2 7.7 12 
35.7 (F) 

• During run 3 it was noted that water was being added to the pipeline loop through the packing gland of the slurry pump. In subsequent 

I 
I 
I 
I 
I 
i 
i 

runs, sludge was added to the mixing tank throughout the test run to keep the solids concentration as constant as possible. 
°• (I) and (F) denote the solids concentration at the start (initial) and end (final) of the test run, respectively. 

105 °C overnight. The dry weight was compared with the wet weight, and the percent of total 

solids by weight was calculated. The total solids concentration was determined for each sample 

taken during the pipeline loop tests and for each sample mixed in the chemistry laboratory for 

additional settling and viscosity measurements. The specific gravity was measured by hydrometer. 

Two different hydrometers were used because of the large range of specific gravities measured. 

Figure 16 shows the relationship between slurry specific gravity and total solids concentration. 

Specific gravity was not measurable with the hydrometer for some of the slurry mixtures tested. 

A combination electrode meter was used to determine the pH level at room temperature. A series 

of acid insolubility tests determined the concentration of sedimentation-basin grit. The Mg(OH)2 

concentration was determined by comparing the sample with a 5-percent Mg(OH)2 standard, using 

atomic absorption spectrophotometry. 



The settling velocity is one of the more important pipeline design parameters. The value of settling 

velocity can best be determined by actual pipeline tests; however, through quiescent settling tests, 

some valuable information can be learned about the consistency and dewaterability of the slurry. 

The quiescent settling tests consisted of placing a well-mixed sample in a graduated cylinder and 

recording the location of the settled interface at various'times. A comparison of figures 17 and 

18 shows the effect of pH on settling for slurries ranging from 20.8 to 53.6 percent total solids 

concentration by weight with an 8-percent Mg(OH)2 concentration. Figure 19 shows a group of 

slurries at a pH of 11 with a Mg(OH)2 concentration of 2 percent. 

Discussion and Analysis 

Non-Newtonian fluids are defined as materials that do not conform to a direct proportionality 

between shear stress and shear rate. An almost infinite number of rheological relationships exist 

for this class of fluids. Through experimentation, a great number of these fluids were found to be 

described by a two-constant power function of the form: 

( -dv )n 
3=  K --~ (1) 

where: 
= shear stress 

K = viscous consistency factor (pseudoviscosity) 

-dv 
dr - shear rate for f low in a circular pipe 

n = power law index 

The power law model, as this function is called, is empirical in nature. Newtonian behavior is 

described by the power law for the special case where n equals 1 and K equals the Newtonian 

viscosity. Values of n between 0 and 1 characterize pseudoplastic fluids for which the apparent 

viscosity,/1 (du/dr), decreases with increasing shear rate (p is the viscosity). Conversely, values 

of n greater than 1 correspond to dilatent fluids, for which the apparent viscosity increases with 

shear rate. 

The model data was analyzed using the power law and a modification of Prandtl's mixing length 

concept detailed by Hanks [3]. Using this model with the Fanning friction factor, f=21:w/~ 2, and 

the Metzger-Reed generalized Reynolds number (eq 2), allowed meaningful presentation of the 

model data. 
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( n 
Re ~ = 8 4 + 3n (2) 

where: 

p = density 

= mean velocity 

rw = pipe radius 

~w = shear stress at the pipe wall 

Plotting In APD/4L vs. In 8~/D (where: AP = pressure drop in length L, and D = pipe diameter) 

yields the value of n, the power law index, as the slope of this line. Then the mixing-length model 

can be applied and plots of the friction, f, vs. generalized Reynolds number can be made. 

The pipeline loop data taken in runs 9 through 12 are shown in the form described above on figure 

20. All the data points on the plot fall on the laminar-flow line defined by f= 16/Re'. This is 

somewhat surprising, especially because some data points were taken at pipeline velocities in 

excess of 10 ft/s. Dilatent.fluids, while having lower critical Reynolds numbers for transistion than 

Newtonian fluids, also have longer transition zones. In this slurry flow, the boundary layer is highly 

stable; this aids in keeping the f low laminar. Unlike water, a fairly large disturbance is necessary 

to push the boundary layer into unsteady behavior and induce turbulent f low [4]. In the laboratory 

test loop, a stable boundary layer developed in the relatively short measuring sections, leading 

one to believe that the prototype flow behavior will be similar. 

Undoubtedly, areas of turbulent f low existed in the model and will exist in the prototype. Most of 

the literature suggests that non-Newtonian fluids will behave as Newtonian fluids in the turbulent 

region. Any major disturbance in the flow, such as valves or elbows, will probably cause turbulent 

f low to occur. However, a relatively short, straight, undisturbed section of pipe is all that is required 

to change the f low back to laminar. 

The shortness of the pipeline test loop, compared with the proposed prototype lengths, is certain 

to cause some differences in f low characteristics. Probably the most easily predictable difference 

will be a higher deposition velocity in the prototype. For this reason, the prototype design velocity 

should be at least 1 ft/s above the deposition velocity found in the model. 

Rheological data can allow the designer to scale friction losses for different pipe diameters and 

roughnesses. However,• many problems can prevent accurate and complete viscometric meas- 

urements. With a pseudohomogeneous fluid, such as this slurry, particles can settle during the 

viscosity measurement - effectively changing the total solids concentration of the sample. When 

7 



this gradual settling occurs, the fluid appears to be thixotropic (or having a viscosity that is de- 

pendent on the amount.of shearing it has experienced). However, what appears to be thixotropic 

behavior by this slurry can be explained simply by the drop in solids concentration as particles 

settle during the viscosity measurements. 

In practice, the rheological properties of a slurry are not unique over a wide range of shear stresses. 

Therefore, rheological parameters should be evaluated for the expected wall shear stresses in the 

actual prototype application. Designers should be careful to avoid scaling parameters outside the 

range covered by any rheological measurements. 

The best source for slurry pipeline design parameters is from data taken on a model pipeline loop 

with a similar diameter. 
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Mission of the Bureau of Reclamation 

The Bureau of  Reclamation o f  the U.S. Department of  the Interior is 
responsible for the development and conservation of  the Nation's 
water resources in the Western United Stateg 

The Bureau's original purpose "to provlae for the reclamation of  arid 
and semiarid lands in the West" today covers a wide range of  interre- 
la ted functions. These include pro viding municipal and industr/'al water 
supplies; hydroelectric power generation;.irrigation water for agricul- 
ture," water quality improvement," flood control; river navigation; river 
regulation and control; fish and wildlife enhancement," outdoor recrea- 
tion; and research on water-related design, construction, materials, 
atmospheric management, and wind and solar power. 

Bureau programs most frequently are the result of  close cooperation 
with the U.S. Congress, other Federal agencies, States, local govern- 
ments, academic institutions, water-user organizations, and other 
concerned group~ 

A free pamphlet is available from the Bureau entitled "Publications 
for Sale." It describes some of t~e technical publications currently 
available, their cost, and how to order them. The pamphlet can be 
obtained upon request from the Bureau of Reclamation, At tn D-922, 
P O Box 25007, Denver Federal Center, Denver CO 80225-0007. 


