

UNITED STATES DEPARTMENT OF THE INTERIOR Bureau of Reclamation Engineering and Research Center P.O. Box 25007 Building 67, Denver Federal Center Denver, Colorado 80225

THESE ARE REPRODUCTIONS OF SPECIFICATIONS ISSUED BY THE BUREAU OF RECLAMATION, ENGINEERING AND RESEARCH CENTER. THEY WERE MICROFILMED BY THE MICROGRAPHICS UNIT OF THE E & R CENTER IN A MANNER AND ON MICROFILM WHICH MEETS THE RECOMMENDED REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD INSTITUTE (ANSI) FOR PERMANENT MICROPHOTOGRAPHIC REPRODUCTIONS.

GR-78-3

WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM

Electric Power Branch Division of Research Engineering and Research Center Bureau of Reclamation

April 1978

April 1978

GR-78-3	TECHNICAL REPORT STANDARD TITLE P
GR-78-3	
Water Constraint and Prediction Algo	rithms 5. REPORT DATE
for Yellowtail Powerplant and Afterba	en e
for Tenowian Fowerplant and Arterba	y Dalli . Ferforming organization co
an an an an Araba an Araba an Araba an Araba an Araba. An an an Araba an Araba an Araba an Araba an Araba an Araba	
. AUTHOR(S)	8. PERFORMING ORGANIZATION
Steven C. Stitt	GR-78-3
PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.
Bureau of Reclamation	
Engineering and Research Center	11. CONTRACT OR GRANT NO.
Denver, Colorado 80225	
	13. TYPE OF REPORT AND PERIOD
SPONSORING AGENCY NAME AND ADDRESS	COVERED
Same	
	14. SPONSORING AGENCY CODE
SUPPLEMENTARY NOTES	
	김 그는 것은 것이 같아? 것이 가지 않는 것이 같아?
	승규는 것이 아직 공격을 가장에 있는 것이 이렇는 것이 가지?
	n an far search ann an Araban an tar an Araban an Araban ann an Araban ann an Araban ann an Araban ann an Araba Ann an Araban ann an Araban a
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t	ithm used to detect constraints on the war plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segminates are discussed. The first segminates are segminated by the second	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmelevel predictions up to 10 hours in	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segminates are discussed. The first segminates are segminated by the second	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmi level predictions up to 10 hours in permissible time of operation of the for	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmi level predictions up to 10 hours in permissible time of operation of the for	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmi level predictions up to 10 hours in permissible time of operation of the for	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segminates are discussed. The first segminates are segminated by the second	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmi level predictions up to 10 hours in permissible time of operation of the for	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segminates are discussed. The first segminates are segminated by the second	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segminates are discussed. The first segminates are segminated by the second	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow t conditions are discussed. The first segmi level predictions up to 10 hours in permissible time of operation of the for	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algori system at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shor segments of the algorithm which allow t conditions are discussed. The first segme level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb ations/ *algorithms/ computer programmin
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb story and the second segment predicts t predicts t advance. The second segment predicts t attions/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb ur generators at given loads before an afterb ations/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv forecasting/ river regulation/ river flow
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also shows segments of the algorithm which allow the conditions are discussed. The first segme level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the to he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts to ur generators at given loads before an afterb ur generators at given loads before an afterb ations/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv forecasting/ river regulation/ river flow peaking capacities/ water supply forecasting
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb ur generators at given loads before an afterb ations/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv forecasting/ river regulation/ river flow beaking capacities/ water supply forecasting dels
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the t he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb attions/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv forecasting/ river regulation/ river flow beaking capacities/ water supply forecasting dels llowtail Dam, Mont./ Yellowtail Powerplar k-Sloan Missouri Basin Program
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the to he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv. advance. The second segment predicts to ur generators at given loads before an afterb ur generators at given loads before an afterb ations/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserve forecasting/ river regulation/ river flow beaking capacities/ water supply forecasting llowtail Dam, Mont./ Yellowtail Powerplar k-Sloan Missouri Basin Program 02
The operation of the computer algorisystem at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the to he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv. advance. The second segment predicts to ur generators at given loads before an afterb ur generators at given loads before an afterb ations/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserve forecasting/ river regulation/ river flow beaking capacities/ water supply forecasting llowtail Dam, Mont./ Yellowtail Powerplar k-Sloan Missouri Basin Program 19. SECURITY CLASS [21. NO. OF FA
system at Yellowtail Dam and Power explained. The algorithm is also sho segments of the algorithm which allow t conditions are discussed. The first segm level predictions up to 10 hours in permissible time of operation of the for level limit is exceeded.	plant, Mont., including the afterbay dam, wn in flow chart form. In addition, the ty he powerplant operator to predict water syste ent will allow for Yellowtail Afterbay Reserv advance. The second segment predicts t ur generators at given loads before an afterb tur generators at given loads before an afterb attions/ *algorithms/ computer programmin applied)/ afterbays/ *scheduling/ *reserv- forecasting/ river regulation/ river flo- beaking capacities/ water supply forecastin dels llowtail Dam, Mont./ Yellowtail Powerplar k-Sloan Missouri Basin Program 19. SECURITY CLASS [21. NO. OF PA

0

... 11.

> ļ UNCLASSIFIED

Δ

o 4

9

•

1.2

1

 \mathcal{A}

/

.

e .

ġ.

1.0

Ó

GR-78-3

WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM

Steven C. Stitt

by

Electric Power Branch Division of Research Engineering and Research Center Denver, Colorado April 1978

.

 \mathbf{X}

. 9

UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION

ACKNOWLEDGMENT

. .

Mr. W. B. Gish of the Electric Power Branch contributed a great deal to the design of the water constraint and prediction algorithms. Mr. Del Adams, Project Manager; Mr. Harold Hergenrider, Operations and Maintenance Chief; and Mr. Toby Rodewald, Operations Foreman; all of the Yellowtail Project Office, supplied information and actual data used during simulation tests.

> The computer programs described in this report have been developed for use by the Bureau of Reclamation, and no warranty as to their accuracy, usefulness, or completeness is expressed or implied.

CONTENTS

Page

Ģ

Ň

Introduction Conclusions Applications Algorithm concepts		• • • •		· · · ·	• • •	3
Load Constraint Afterbay Level Sche Time to Limit Predic	duler . ction .	• • • •				· · 4 · · 4 · · 5
		• • • •	• • • •	• •	•	• • 5
Executive Buffers CRT formats . Hardware inputs Calibration system	• • • •					· · 6 · · 6 · · 7 · 8
Description of Algorith	-			• • •		
MODEL WCON Water Constraint Water Predictor Load Time Limit	· · · · · ·		· · · · ·		•	· · 8 · 9 · 10 · 10 · 10 · 10
Simulation Appendix A. Flow cha Appendix B. Water Co	art variable	definitions				

FIGURES

Figure

ļ

.

1

Ì

1. 1. 5

.

1	Yellowtail Unit vicinity map
2	General algorithm flow chart definitions
3	Water Constraint algorithm-interface definition
4	Water Constraint algorithm-Water Constraint routine
5	Water Constraint algorithm-Water Constraint and MODEL
	routines
6	Water Constraint algorithm-discharge calculation routines
7	Water Constraint algorithm–WCON routine
8	Water Constraint algorithm–WCON routine
9	Water Constraint algorithm–Water Predictor routine
10	Water Constraint algorithm—Load Time Limit and TLIM routines

FIGURES-Continued

•

•

.

÷,

ſ.

Figure	Page	
11	CRT format general flow	
12	Time and Water Substitution format layout	
13	Time and Water Substitution format control tree (sheet 1 of 2)	
14	Time and Water Substitution format control tree	
	(sheet 2 of 2)	
15	Load Time Limit Predictor format layout	
16	Load Time Limit Predictor format control tree	
17	Water Predictor format layout	
18	Water Predictor format control tree (sheet 1 of 2)	
19	Water Predictor format control tree (sheet 2 of 2)	
20	Alarm format layout and control tree	
21	Simplified flow of MODEL routine	
22	Derivation of rate filters	

INTRODUCTION

A water constraint system is necessary in the operation of a complex water system (in this case consisting of a dam and reservoir, powerplant, and afterbay reservoir) to assure that limits on upstream and downstream water levels are not exceeded. Some type of system must be employed to monitor these levels and to operate the generators and the gates and valves controlling the flow of water in such a manner as to maintain the levels within desired limits. The principles of the water control and constraint system may be executed in several different ways. Water control may be done manually. Some of the control may be performed by a hardwired system using water-level detectors and some type of indication device (strip charts, annunciators). A third method is to use a computer to control functions such as loading of generators (generator load and voltage algorithms are described in a companion report) and actuating spillway gates or outlet valves. The computer may also be used to perform the water constraint function. This report describes a system for monitoring water constraints to interact with both the powerplant operator and the load control programs. The river control is assumed automatic and is controlled by a special river control algorithm operating in the same computer.

The Yellowtail Unit is part of the Pick-Sloan Missouri Basin Program and consists of Yellowtail Dam and Bighorn Lake, the powerplant, the switchyard, and Yellowtail Afterbay Dam and Reservoir. See figure 1.

Yellowtail Dam is located near the mouth of Bighorn Canyon on the Bighorn River, about 34 kilometers (21 mi) due north of the Montana-Wyoming State line and 72 km (45 mi) southwest of Hardin, Mont. The powerplant is located immediately downstream from the dam and houses four 65 789 kV·A (kilovolt ampere) generating units, giving a total plant capacity of 250 megawatts. The afterbay dam is located about 3.6 km (2-1/4 mi) downstream from Yellowtail dam. It was constructed to provide a uniform daily discharge to the Bighorn River, level the peaking power discharges from the powerplant, and provide for the water requirements of the Bighorn Canal.

The proposed PPGC (Powerplant Generation Controller) for the Yellowtail Powerplant will be a minicomputer-based system. This system will allow the plant operator [via a CRT (cathode ray tube) screen at the powerplant] to monitor the status of the powerplant, control generator load and voltage for the four generators, and control the discharge of water to the Bighorn River and the Bighorn Canal at the afterbay dam.

The PPGC will also have a communication link to the PSCC (Power System Control Computer) at Watertown, S. Dak. This computer vill be programed to maintain and schedule load for the Upper Missouri power system. It will be capable of controlling the plant load at Yellowtail along with other powerplants in the Upper Missouri Region.

The AGC (Automatic Generation Control) program in the PPGC at Yellowtail is required to operate within the water system limits already existing at the plant. The water constraint portion of the algorithm is designed to perform that function. Periodic checks are made to ensure that the level limits on Bighorn Lake, the afterbay reservoir, the Bighorn River, and the Bighorn Canal have not been exceeded. The algorithm will activate an alarm if any of these limits are exceeded. Also, if the afterbay reservoir has exceeded level limits, the algorithm will not allow the AGC system to continue changing the load on the powerplant in such a way as to cause the afterbay to further exceed the limit.

At Yellowtail, these water constraints may have a day-to-day effect on the plant loading. To control the plant load, the plant operator must have some means of predicting when the water limits will be reached. Also, in emergency power system loading situations where full plant capacity is needed, the operator will need to predict how long the plant can operate before a water constraint is reached. The predictor portion of the algorithm performs these tasks.

CONCLUSIONS

The water constraint and prediction algorithm proposed for the Yellowtail Powerplant provides for detection of maximum and minimum level constraints for the afterbay reservoir, the Bighorn River, and the Bighorn Canal. The algorithm also provides for detection of maximum rate of level-change constraints, which include forebay level drawdown, and river level rates during ice-free conditions, ice-formation conditions, and ice-cover conductors.

The algorithm allows the powerplant operator to perform two prediction functions: the afterbay level for 10 hours in advance, and the amount of time available before the afterbay will exceed level limits. The algorithm uses a closed-loop-corrected water model to perform these predictions.

APPLICATIONS

The algorithm as outlined applies directly to the Yellowtail Unit. The water model used by the algorithm is unique to Yellowtail because of the afterbay reservoir. The water model predicts maximum and minimum constraints for the afterbay reservoir level. Therefore, the principles of prediction used in the algorithm would be applicable only to other projects which have an afterbay reservoir. However, the concepts of water constraint detection used by the algorithm could be applied to any water project.

The algorithm may also be adapted to operate in a central dispatch computer such as the Watertown PSCC. The required water levels, gate positions, and generator outputs would have to be telemetered to the PSCC.

ALGORITHM CONCEPTS

Load Constraint

The main purpose of the Yellowtail water algorithm is to constrain the plant load controller from causing the afterbay reservoir to exceed high and low elevation limits. In one day of operation, the afterbay at Yellowtail can vary as much as 8.2 meters (27 ft) between minimum and maximum elevations. The algorithm will detect when either limit has been reached. When the maximum limit is encountered, the algorithm provides alarms to the operator and sets a flag to the AGC to stop the generator loads from increasing. When a minimum limit is found, the algorithm again alarms and sets a flag to stop the generator load from decreasing. The algorithm will detect and alarm to the operator other exceeded limits such as: excessive forebay level drawdown rate, river level maximum and minimum elevations, excessive river level rates of change, and canal maximum and minimum elevations.

Afterbay Level Scheduler

The algorithm will also aid the operator by predicting the water conditions at the plant for 10 hours in advance. The operator can enter a/10-hour plant loading schedule and determine whether this schedule would cause the afterbay to exceed level limits at any point during the schedule period. If he finds that the loading schedule will cause the afterbay to go to limits, he can adjust his loading schedule and rerun the prediction until he finds a schedule that will work. In this way he can know the capability of the plant.

The operator may create any type of conditions for the water system over a 10-hour period and obtain a prediction of the level of the afterbay in 1-hour increments for that 10-hour period. For example, he may enter a 10-hour schedule for the total plant load (10 data entries, one for each hour), and then he may assume all other water conditions remain constant at present actual values (gate positions, river elevation, canal elevation). With this information, the algorithm will generate an afterbay level schedule. If at any time the algorithm predicts the afterbay to be exceeding a limit, an alarm message is displayed. In addition to plant load, the operator has the option to enter several other plant conditions for other predictions. He may enter different gate positions, forebay elevation, or canal elevation to be used by the predictor. He may also enter a 10-hour river elevation schedule. The algorithm will also use the next 10 hours of scheduled plant load as indicated by the Watertown area control computer for the 10-hour load schedule, if it is available. In all instances, the algorithm predicts what the afterbay level will do over the next 10-hour period, given the conditions entered by the operator through a CRT display.

Ġ

Time to Limit Prediction

Another portion of the algorithm will allow the operator to predict how much time he has to run the plant at a certain load before an afterbay limit is exceeded. The operator may enter any total plant load to make the prediction. He may also enter values for fore ay elevation, gate positions, and the canal elevation. However, the river elevation is always taken as the present actual value. This portion of the algorithm is intended for short-term time predictions of less than 5 hours where more accuracy is desired. The longer time-oriented predictions can be made with the 10-hour scheduler previously described. The algorithm also indicates the operation time to an afterbay limit for normal plant capacity and emergency plant capacity. The maximum or minimum type of limit encountered is also shown.

INTERFACE

Executive

The flow charts of the Water Constraint algorithm are found in figures 2 through 10 of this report. Figure 2 defines some of the standard symbols used within the flow charts. The interface requirements for the water algorithm are shown in figure 3. Figures 4 through 10 show the processes of the algorithm in flow chart form. Appendix A gives an alphabetical list of all the variables used in the algorithm flow charts, with a brief definition of what each variable represents. The algorithm is made up of three separate programs in order to accomplish the three different tasks outlined above (Load Constraint, Afterbay Level Schedule, Time to Limit Predictor). The Water Constraint program must be called on a periodic basis by the "Executive" (see fig. 3). The timing of this call is not critical. The maximum time between calls depends upon the water system. It should be called often enough that changes in the water system can be detected accurately. A calling time ranging from every 5 to 15 minutes would be acceptable at Yellowtail. The Executive must also supply the Water Constraint program with the actual computer time. When a power-up occurs, the Executive must not call the Water Constraint until the operator has initialized the computer time. A flag, "power-up predictor," must be set by the Executive to indicate a power-up has occurred.

Buffers

All the programs use a buffer system to isolate the running program from the data base (see fig. 3). The programs use buffered data so that they can be interrupted during their operation without affecting the data being used during that particular pass. Buffers are required for hardware input, software (format) inputs and outputs, and alarm outputs.

CRT Formats

The operation and layout of the CRT formats that support the algorithm are shown on figures 11 through 20. The CRT formats proposed for the PPGC at Yellowtail employ a "question and answer" method on the bottom three lines of the formats to operate them. Figure 11 shows the general flow of the "questions and answers" used by each format. The computer supplies the first question in the control tree area (bottom three lines) of the format. When the operator wishes to change the format, he responds to the question in order to direct the computer to a certain area of the format. The computer continues to "ask" questions, with the operator supplying the answers until the particular quantity

to be changed has been determined. The particular questions (first question, second question, etc.) and the possible operator answers for each question are shown following each of the CRT layout drawings. For example, figure 12 shows the layout for the time and water substitution format. The figure also shows the definitions for each quantity on the format. Figures 13 and 14 show the particular questions and answers to be used to enter the operator changeable quantities on that format.

This method of CRT operation is slower than other methods such as using a light pen or joy stick for cursor positioning. However, the faster methods require more sophisticated and expensive CRT equipment and software.

There are four formats required to support the algorithm. First, an alarm format is required (see alarm buffer on fig. 3). The three other formats are: the Time and Water Substitution format as shown on figure 12, the Water Predictor format shown on figure 17, and the Load Time Limit predictor shown on figure 15.

Hardware Inputs

The hardware inputs required by the algorithm are shown in figure 3. All water flows in the system must be calculated. So, all gate and valve positions, levels, and unit loads must be supplied to the algorithm. Some quantities may be operator entered. For example, the spillway gate and outlet works valve positions are entered by the operator via the Time and Water Substitution format (fig. 12). There are no transducers monitoring those gate and valve positions. However, the accuracy of the algorithm relies on the accuracy of those inputs. Thus, the operator must be sure he makes a new entry whenever a gate or valve position is changed.

Calibration System

A calibration system is necessary to calibrate the algorithm. Data quantities must be able to be displayed and changed by this system. The calibration system consists of a CRT format to be designed by the system supplier and eight channels of D/A (digital to analog) converters. The format will allow examination and changing any memory cell containing data. Also the scaling, offsets, and data addresses used in the D/A converter system should be controlled by the format. The D/A outputs will be used to drive an eight-channel strip chart recorder. This system permits the display of trends for various inputs and outputs of the model predictor system and the adjustment of constants within the model for best operation.

DESCRIPTION OF ALGORITHM OPERATION

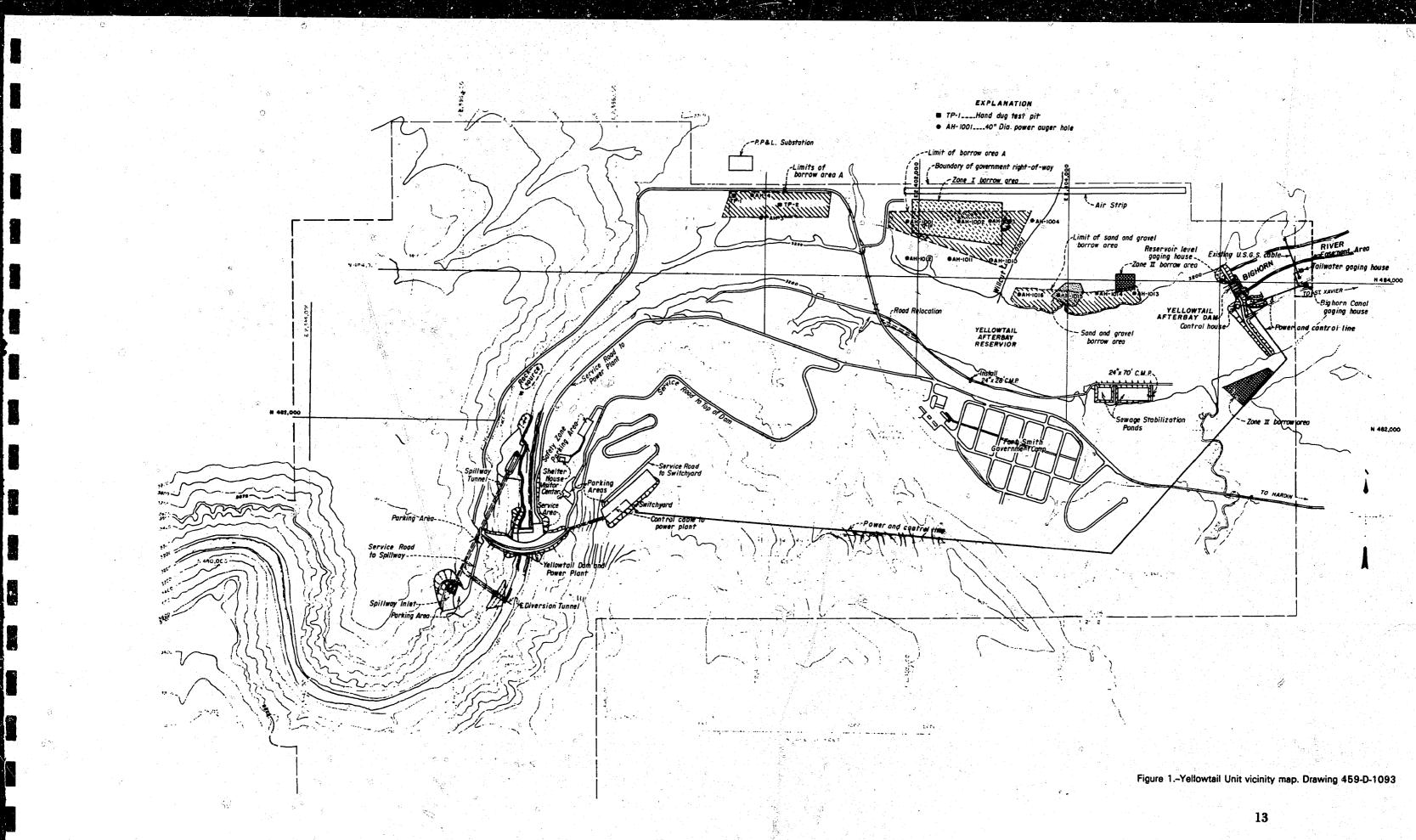
Each of the three programs in the water algorithm use either or both of the routines MODEL and WCON. The operation of these routines will be described first, followed by an explanation of how the three programs use these routines to accomplish their different tasks.

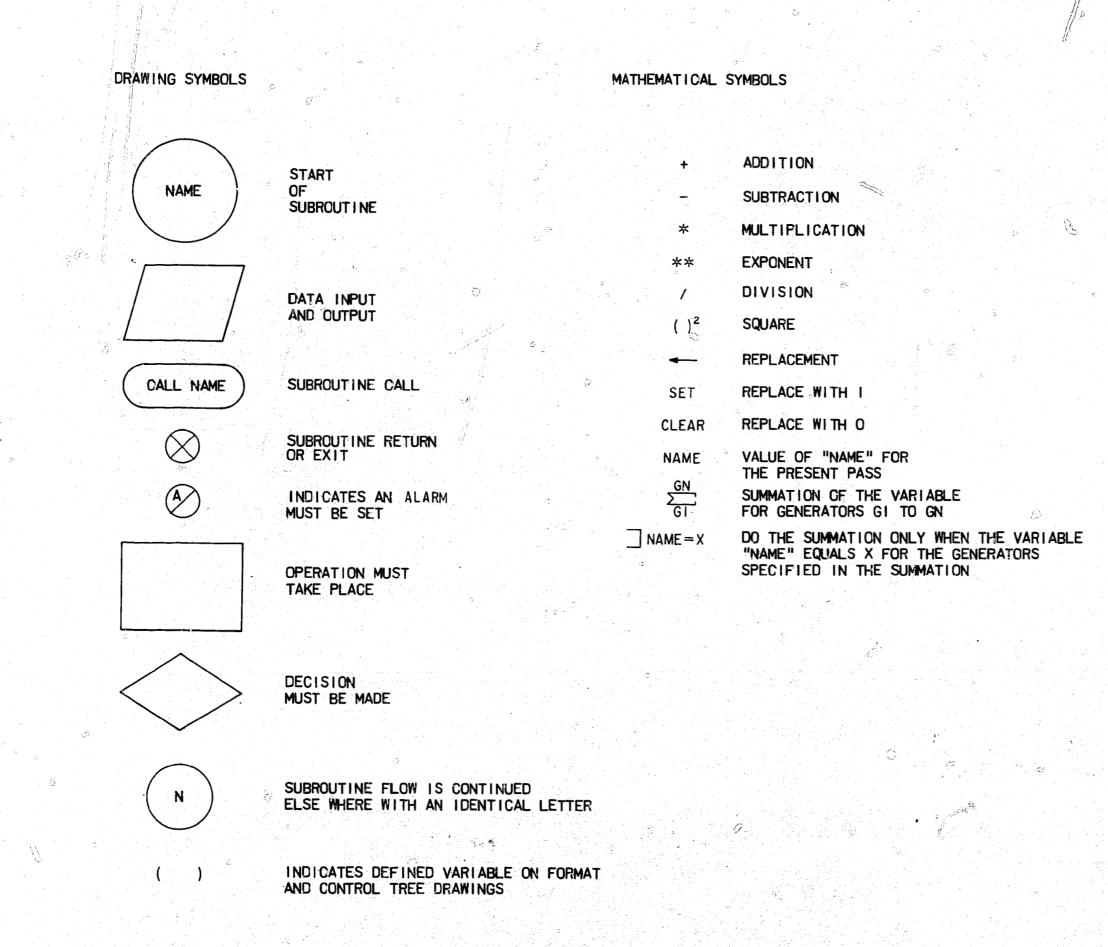
<u>MODEL-</u>The routine MODEL contains all of the equations for turbine discharge, spillway discharge, outlet works discharge, river discharge, and canal discharge. These equations were created using curve-fitting techniques from design and test curves. All of these are used to model the Yellowtail Afterbay Reservoir. Given all of the water levels, gate positions, and unit loads, the total water discharge either into or out of the afterbay can be calculated. See figure 21 for a simplified diagram of the MODEL routine. The MODEL routine is always supplied with a value of time for prediction. Given this time and the total discharge calculation, the routine predicts what the afterbay volume will be after that time has expired-assuming the discharge is constant. An equation is used to convert that afterbay volume to a predicted afterbay level. WCON-The routine WCON searches for afterbay and river constraints that are being exceeded. Maximum and minimum limits on the afterbay, river, and canal are checked. Also, a 30-minute prediction for the afterbay level is made from its present rate of change. If this prediction exceeds a limit, the operator receives an alarm, giving him some indication of an approaching limit.

The particular water constraints which are currently applicable at Yellowtail are shown in appendix B. In addition to these constraints, the WCON routine also checks the canal for minimum and maximum levels. These limits are not specified and can be set to any desired value by the computer programmer. The level constraints for the afterbay and the river change according to the seasons (irrigation and nonirrigation). Also, the river rate-of-change constraints change with different ice conditions (ice-free, ice-cover, and ice formation or breakup). The operator enters the season and the ice conditions via the time and water substitution format (fig. 12) so the algorithm can apply the correct constraints.

The forebay level drawdown and river level rate of change is checked by using software filters. This technique is necessary because of the long rate-limit times. For example, the forebay limit on drawdown is 1 meter in any 24-hour period. The computer storage capability is insufficient to store 24 hours' worth of data taken at 10-minute increments (the interval necessary for this limit to be constantly checked); therefore, software filters are used to detect these limits. The derivation of one of these filters is shown in figure 22. Figure 22A shows the Laplace form for the filter, with time domain sketches shown for a constant increasing level rate. Figure 22B is a simplification of the Laplace form so it can be used to create a digital filter. Figure 22C shows the digital form used by the computer and the equations used by the forebay-level filter. The filtered rate outputs of these software filters contain the time information necessary to detect different rate limits. Given the filter time constant, the output of the filter will indicate how long the level has been changing at a certain rate.

<u>Water Constraint</u>-The Water Constraint program is called by the computer Executive approximately every 10 minutes. The program sets up and calls the MODEL routine, setting the prediction time for 10 minutes. Every time the Water Constraint program is called, it determines whether the predicted value for the afterbay level made by MODEL on the last pass (10 minutes earlier) is equal to the actual level. The MODEL routine is then continually corrected in a proportional fashion according to the error in its prediction. The Water Constraint program also calls the WCON routine. Any flags set by WCON are used to set the necessary alarms and stop allocation flags.

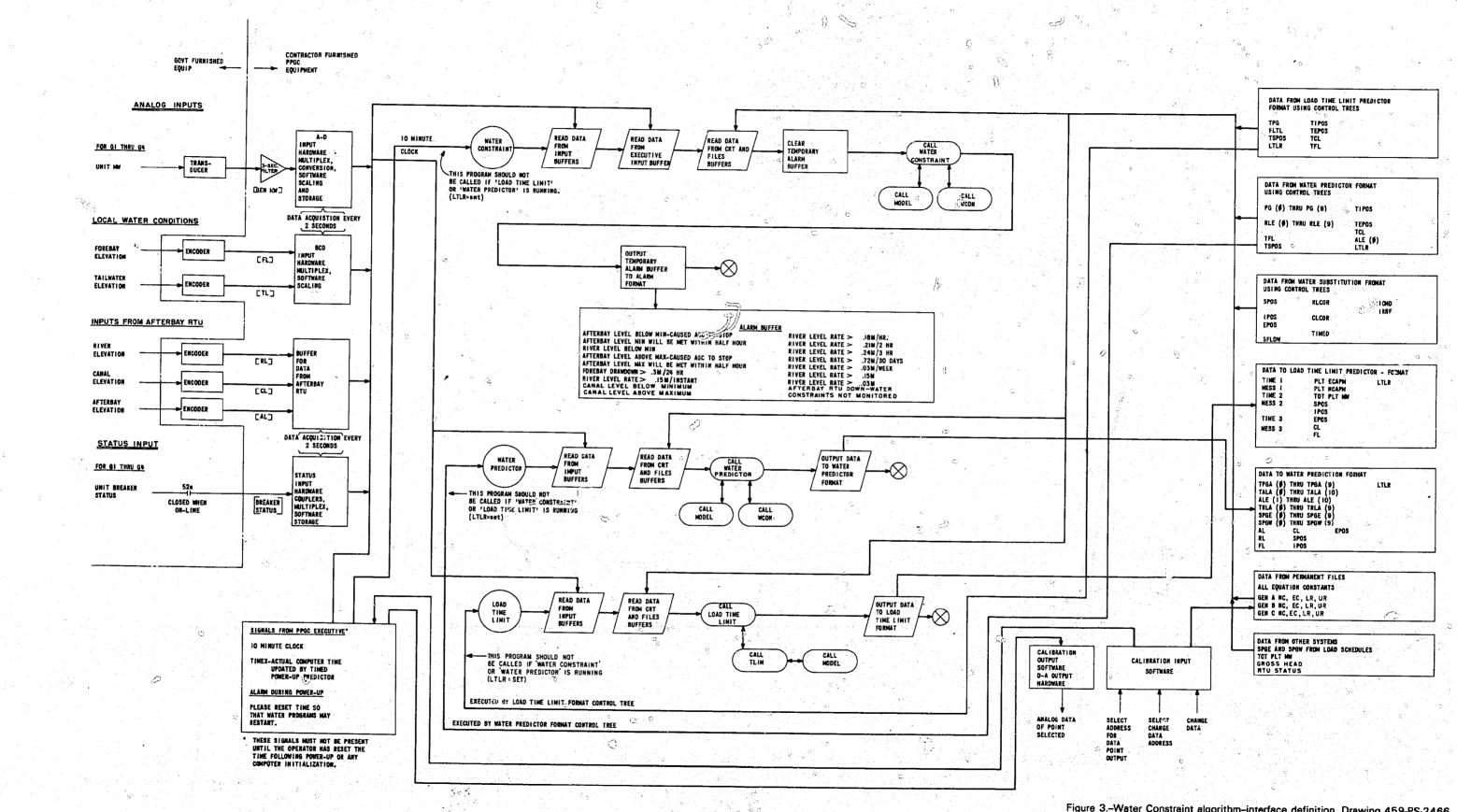

<u>Water Predictor</u>-The Water Predictor program is called by the Water Predictor format which the operator is using to run the 10-hour scheduler with. Whenever the operator has set up the water conditions he wants the program to use in making the 10-hour afterbay level schedule, he executes the Water Predictor. The program then calls the MODEL routine, setting the prediction time for 1 hour. It also calls WCON to check for limit conditions exceeded by any of the predicted quantities. This process is repeated 10 times in order to create the 10-hour afterbay schedule.


Load Time Limit-The Load Time Limit operates in much the same way as the Water Predictor described above. The Load Time Limit program is executed by the Load Time Limit format which the operator is using to create the water conditions he wants the program to use. When the program is executed, it in turn calls the MODEL routine, setting the prediction time for 12 minutes. However, the Load Time Limit does not call the WCON routine. It simply checks the predicted afterbay level for an exceeded limit. The program keeps executing the process in a loop until a limit is exceeded or it has iterated through 10 hours of prediction time. If it has not found a limit for 10 hours in advance, it terminates.

SIMULATION

The Water Constraint portion of the algorithm was tested using actual water-level charts and power charts supplied by the Yellowtail Project Office. Input data necessary to run the program for a 24-hour period was used. The afterbay level generated by the MODEL routine (variable ALNEW) agreed to within 5 percent of the actual afterbay level recorded for that period. This result is very good considering the inherent errors of the water model used. The actual discharge curves used for turbine discharge, spillway discharge, river discharge, etc., have a certain degree of error. Also, the curve-fitting techniques used to formulate discharge equations induce error.

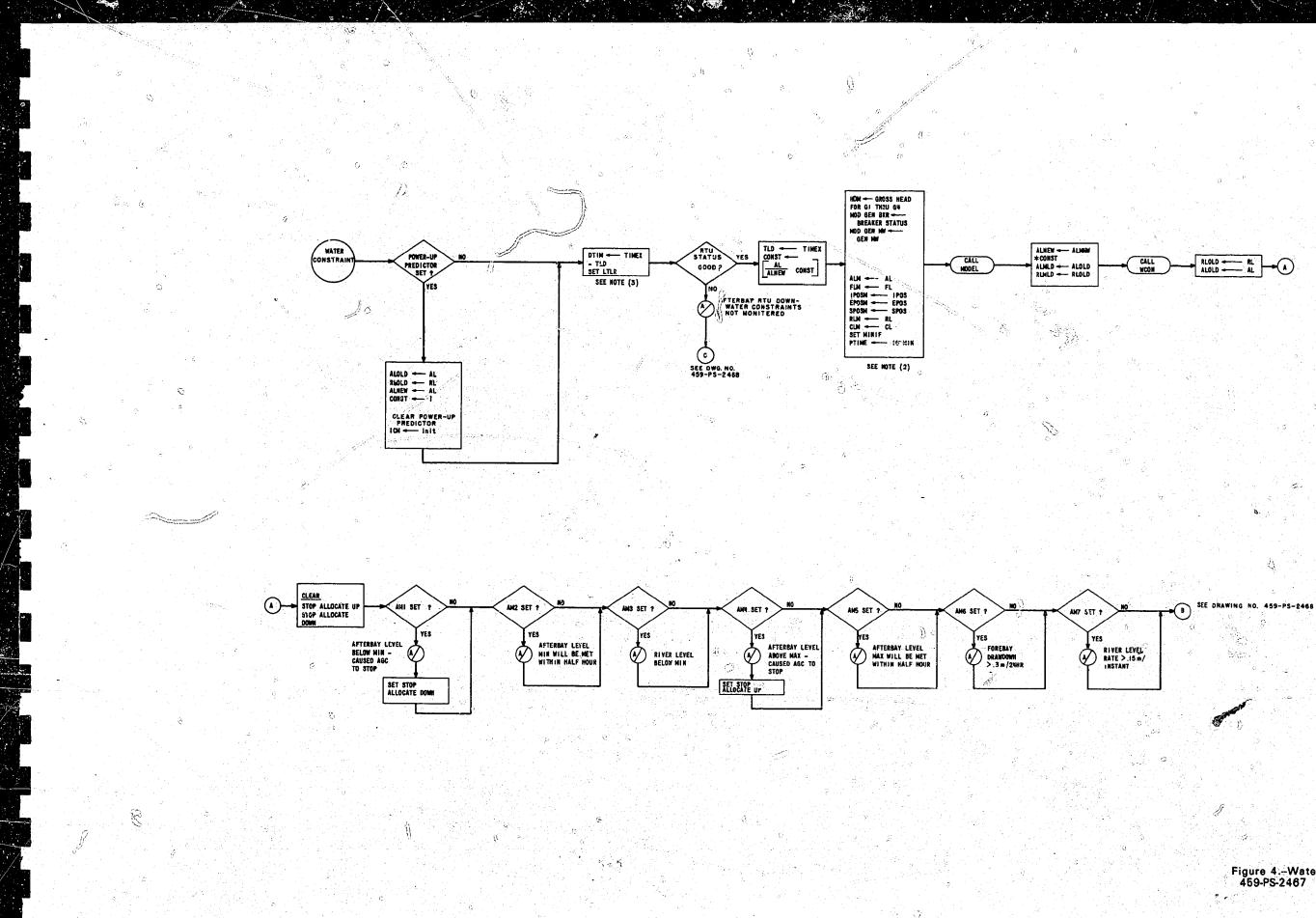
The software filters used to detect level-rate constraints were also tested. For the shorter time constants of up to 3 hours, rate changes to be detected in a 3-hour period or less, the filter accurately (within 10 percent) alarmed the rate limits. For the longer time constants, the filter accuracy decreased (up to approximately 25 percent) and would detect falsely on fluctuations in the level. However, since these filters are used only for alarm purposes, the inaccuracy during level fluctuations is acceptable and in some cases may be desirable.



DECISION SYMBOLS

=	EQUIVALENT
>	GREATER THAN
<	LESS THAN
2	GREATER THAN OR EQUAL
≤	LESS THAN OR EQUAL
ŧ	NOT EQUAL
+	POSITIVE
-	NEGATIVE
	ABSOLUTE VALUE
SET	VARIABLE EQUAL TO I
CLEAR	VARIABLE EQUAL TO O
OR	LOGICAL INCLUSIVE OR
AND	LOGICAL AND

Figure 2.-General algorithm flow chart definitions. Drawing 459-D-2491



Ŷ. يربي،

.

Figure 3.-Water Constraint algorithm-interface definition. Drawing 459-PS-2466

۰.

NOTES

 \square

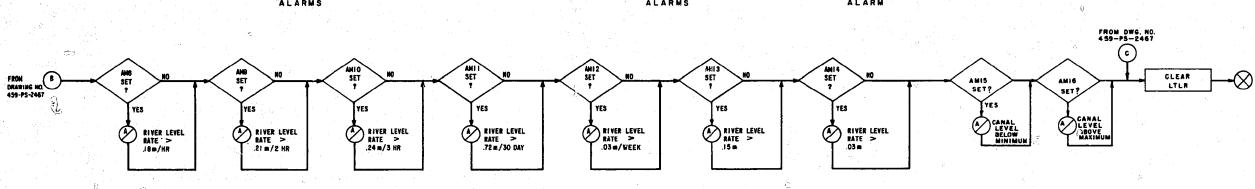
 THE VARIABLE 'TLD' SMALL BE SET = Φ AT INITIAL LOAD OF THE SYSTEN. IT SMALL NOT BE CHANGED ON POWER UP INITIALIZATION.

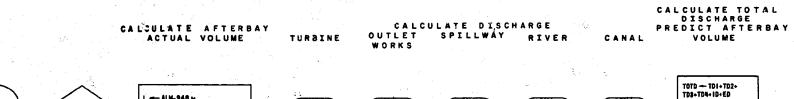
£ . . .

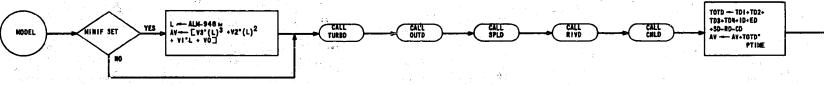
5.

- THE VARIABLES 'IPOS', 'EPOS', AND 'SPOS' SHALL BE SET = Φ AT INITIAL LOAD OF THE SYSTEM. THEY SHALL NOT BE CHANGED ON POWER-UP INITIALIZATION.
- 3) THE FLAG 'LTLR' WHEN SET WILL KEEP THE EXECUTIVE FROM GALLING ANY OF THE OTHER WATER PREDICTOR ROUTINES

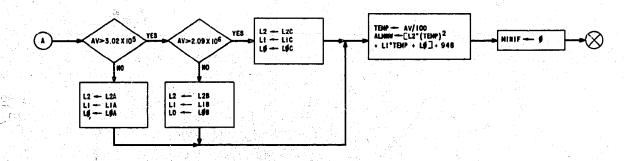
Figure 4.-Water Constraint algorithm-Water Constraint routine. Drawing 459-PS-2467

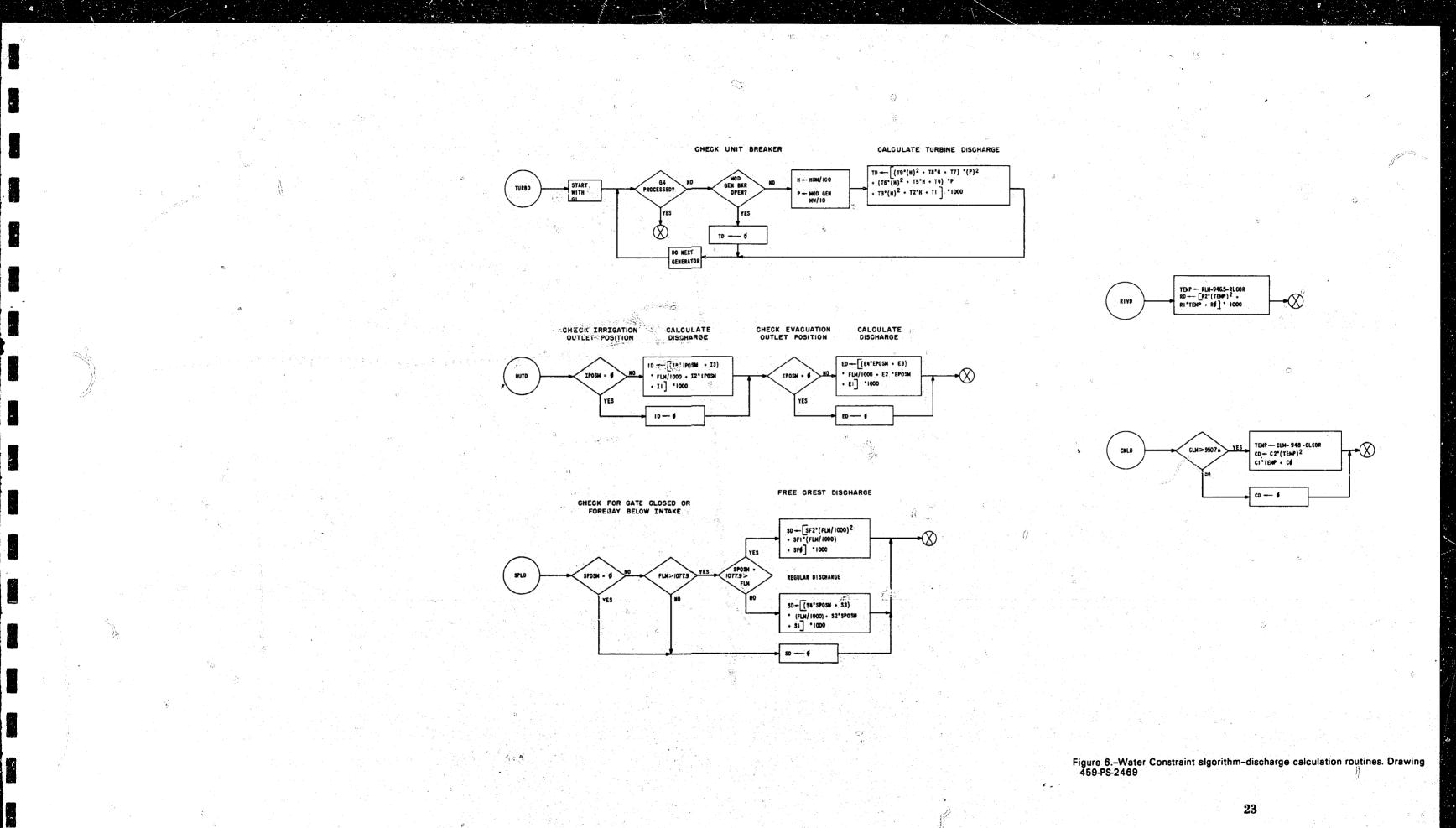

ICE FREE CONDITIONS ALARMS

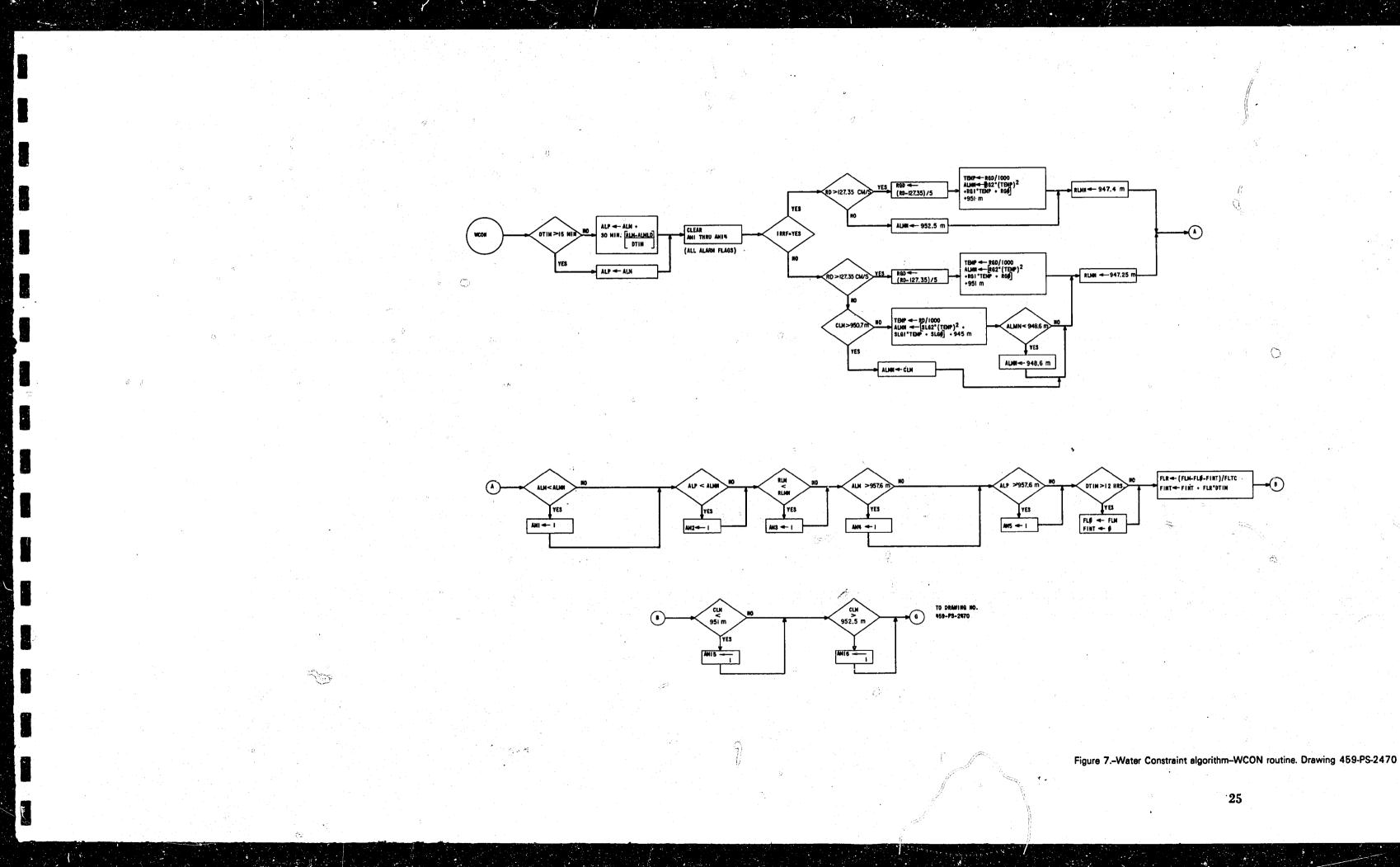

*u___*__

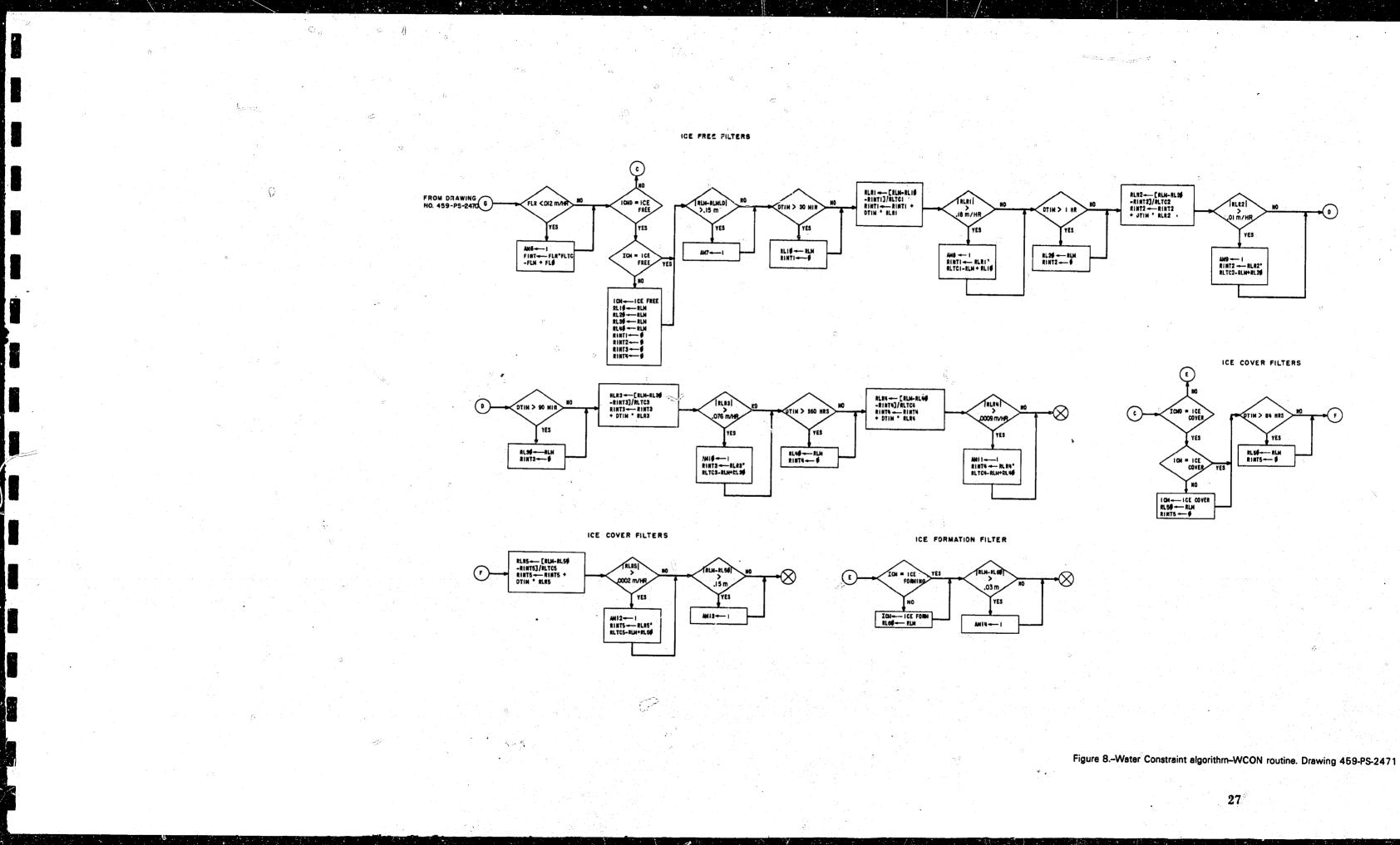

North .

ZOL COVER CONDITIONS ICE FORMATION AND BREAKUP Alarms Alarm


÷.,


CALCULATE PREDICTED Afterbay Level From 3 Curves


1. 6 4


Figure 5.-Water Constraint algorithm-Water Constraint and MODEL routines. Drawing 459-D-2468

Th

-

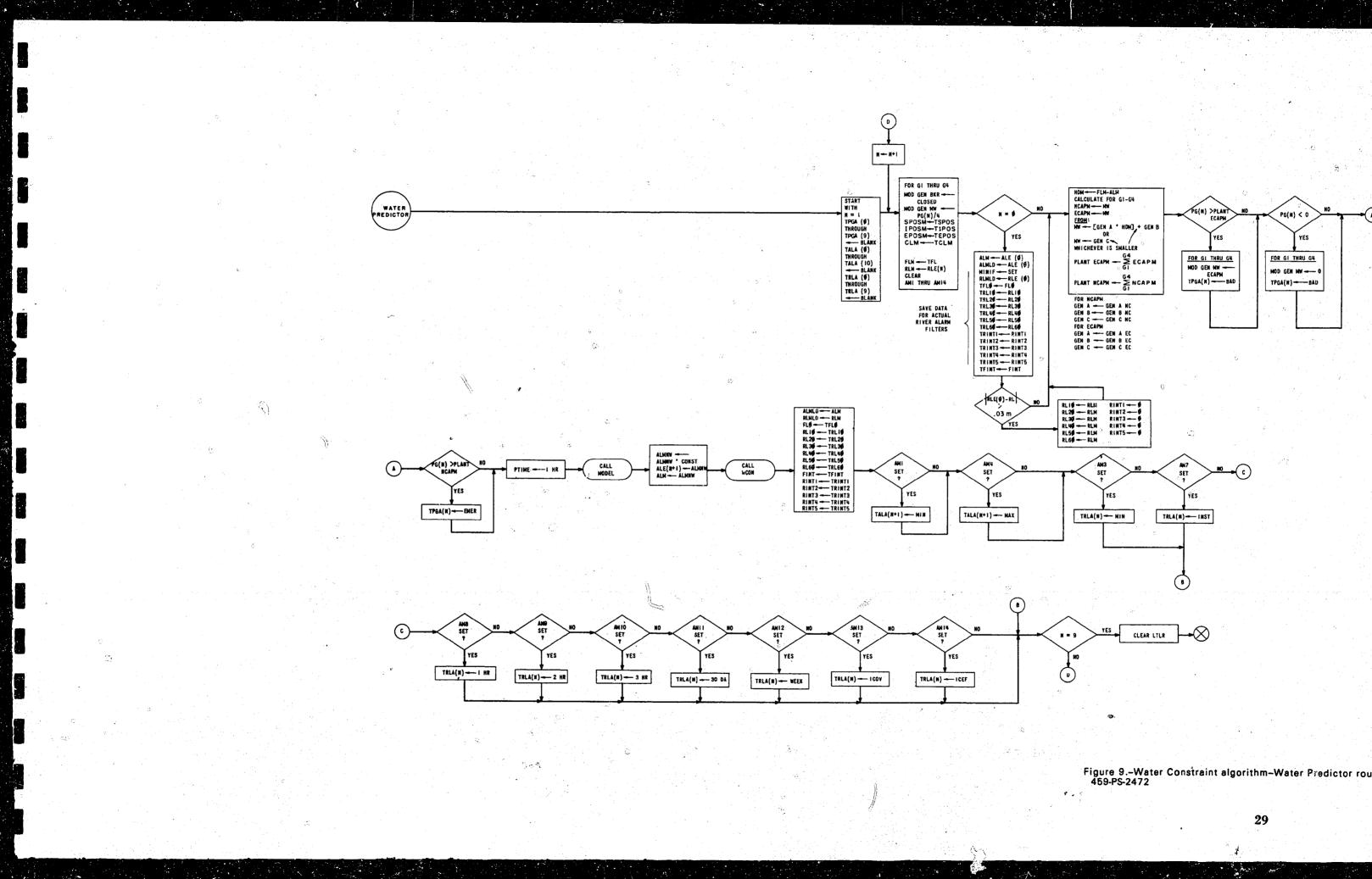


Figure 9.-Water Constraint algorithm-Water Predictor routine. Drawing 459-PS-2472

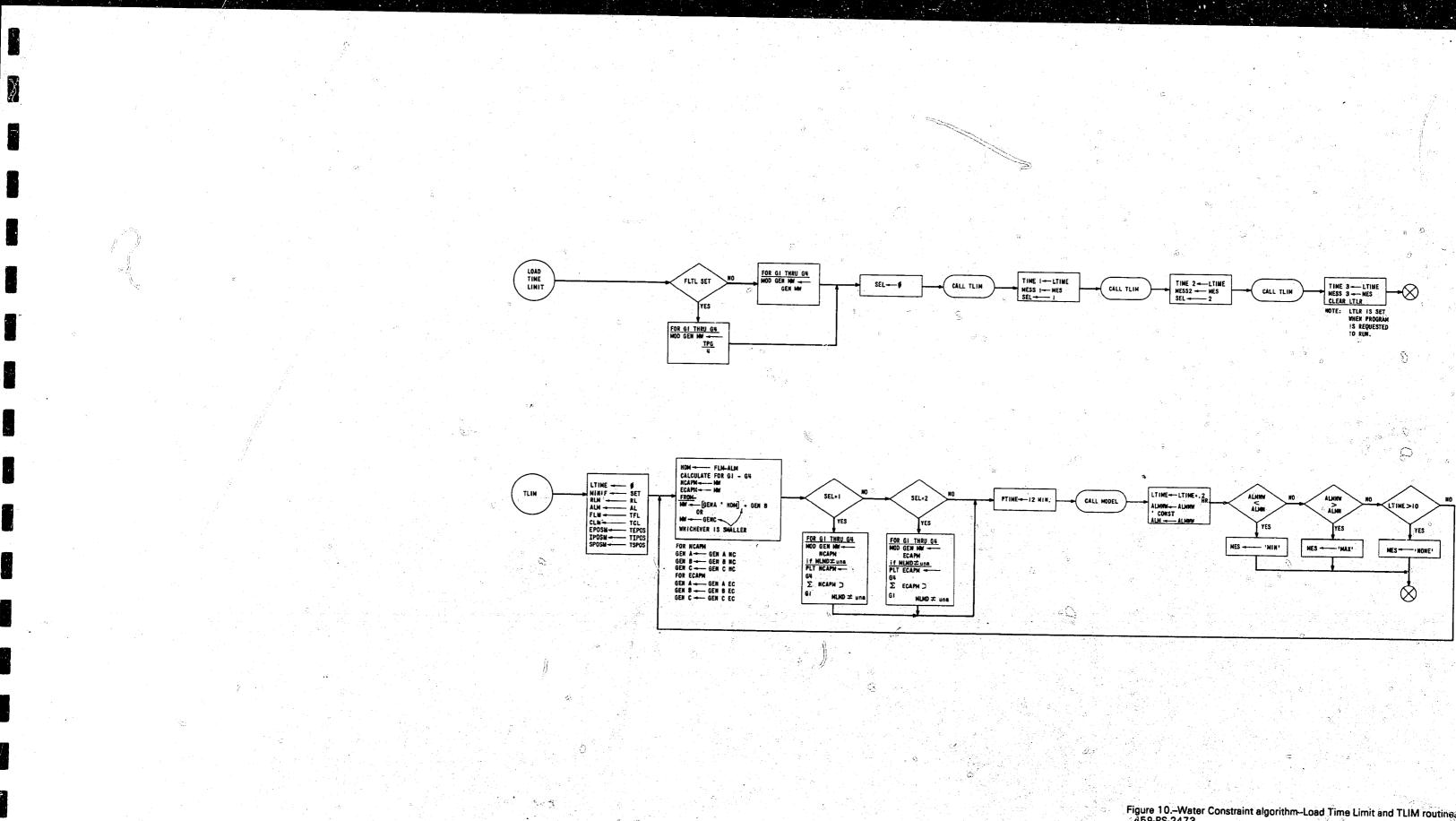


Figure 10.-Water Constraint algorithm-Load Time Limit and TLIM routines. Drawing 459-PS-2473

13

°G-

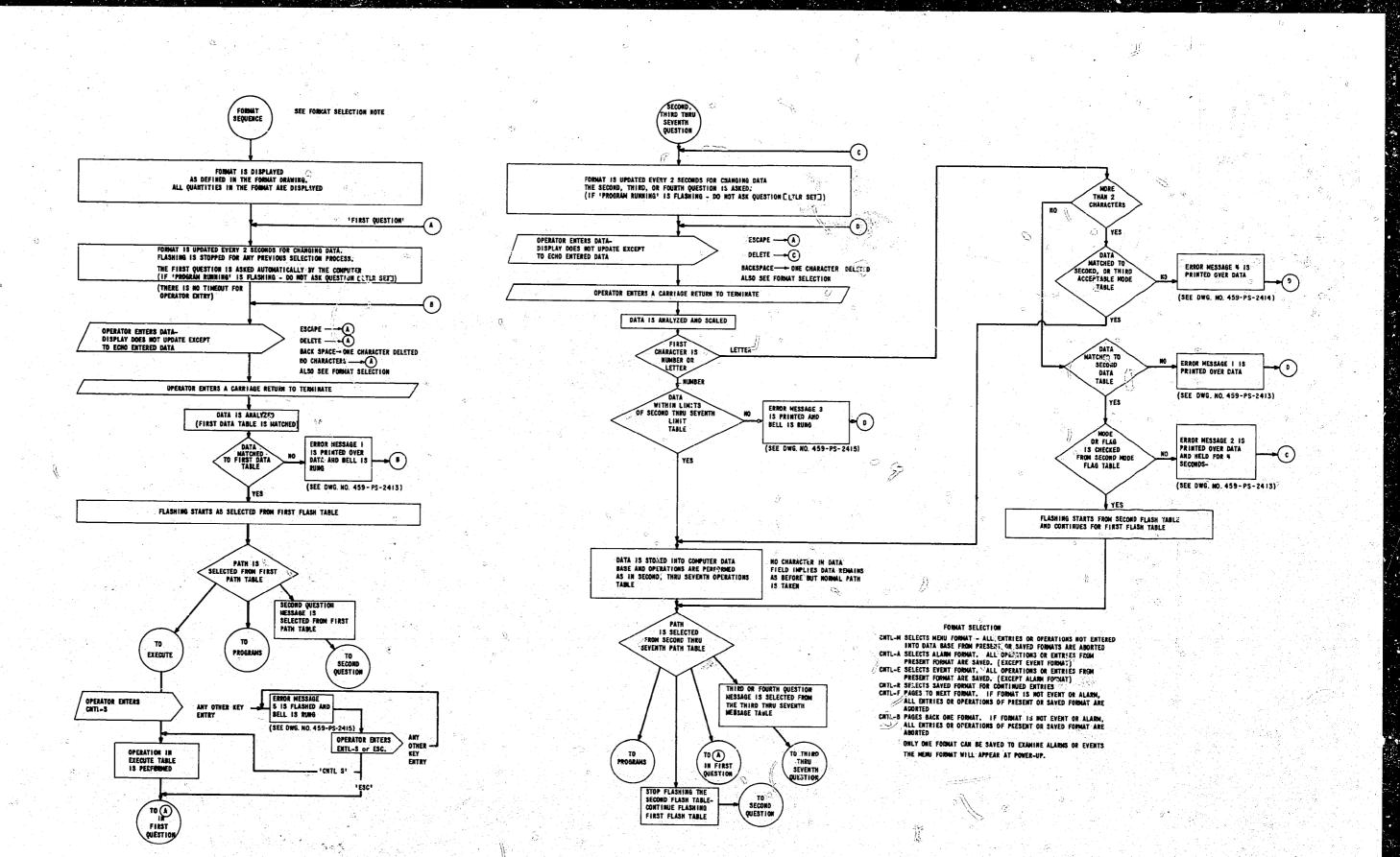


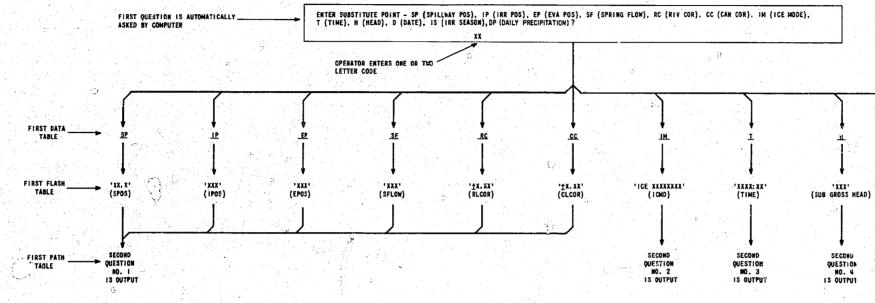
Figure 11.-CRT format general flow. Drawing 459-PS-2411

09/	/12/76 18:36:2	6 TIME AND WATER	SUBSTITUTION PAGE 17	ALARM X	na sana ang sana sana sana sana sana san		
		ALUE VALUE SED MEASURED	SPILLWAY GATE POSITIO				WATER S
	PLANT HEAD X	X X X X X	IRRIGATION OUTLET POS	XXX %			
			EVACUATION OUTLET POS			\int	<u></u>
	RIVER ICE MODE	ICE XXXXXXXX Son XXX	SPRING FLOW	X X X CM/S		'VALUE USED' - THE VALUE THAT THE ALGORITHMS USE FOR CONTRO The quantity may be substituted by the operator in case of transpucer failure	0L.
G	TIME XX/XX/		RIVER CORRECTION	±X.XX M		VALUE MEASURED' - THE VALUE THAT IS CALCULATED FROM FOREBAY TAILBAY TRANSDUCER VALUES. (FOR PLANT HEAD)	AND
			CANAL CORRECTION	X.XX M		PLANT HEAD	
			DAILY PRECIPITATION	XXX.X MM			
			(1) Strategy and the second se Second second secon second second sec				
				G ^r ee		'TIME' IS THE CURRENT TIME OF DAY AND DATE WITNIN THE Computer. The display is accurate to ± 2 seconds since update time is slow.	
	OTTOM 3 LINE	S ARE FOR CONT	ROL TREE			(HGHTH) F (DAY) F (YEAR) F - FROM (HOUR) F - TIMEX (SECON)F	ATED

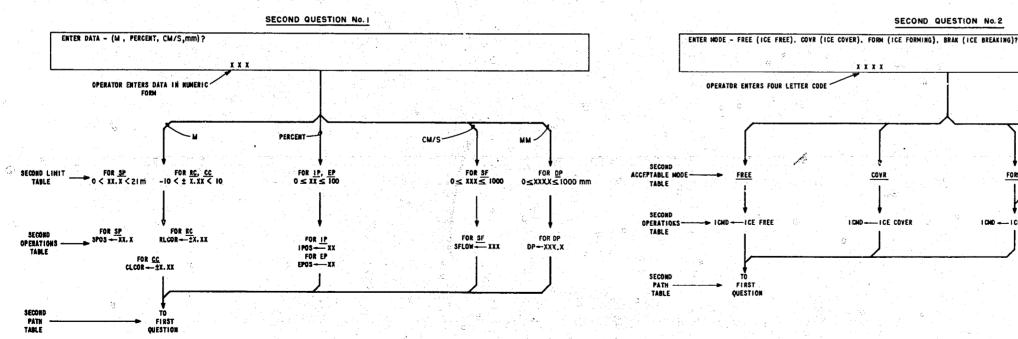
يوڻ ۽ ۽

.

 $\gamma_{1} = \gamma_{1}^{\mu_{1}}$

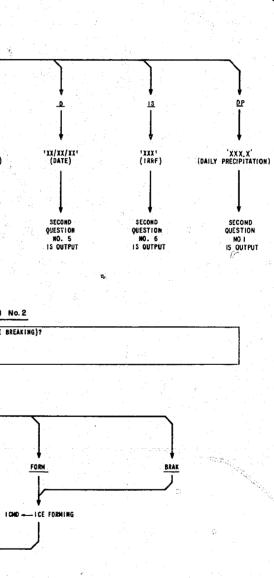

SPILLWAY GATE POSITION', 'IRIGATION OUTLET POS', SVACUATION OUTLET POS', 'SPRING FLOW', 'RIVER CORRECTION' CMAL CORRECTION' - ALL THERE POINTS ARE OPERATOR MIRREP POINTS FOR THE QUANTITIES WHICH THE ALCORITHMS BE. THE COMPUTER HAS NO MEANS OF MEASURING THESE MANTITES. MALY PASCIPITATION' - AN OPERATOR ENTERED QUANTITY WHICH IS USED IV THE DAILY SUMMARY. "ICE NODE" IS NODE OF ICE OPERATION ON THE RIVER THE RIVER ICE FREE - NO ICE ON RIVER ICE COVR - CRAPLETE ICE COVER ON THE RIVER ICE FORM _____ WHEN ICE ICE BRAK _____ IS UNSTABLE. (1040) F IRRIGATION SEABON' HAS A 'YEB' OR 'NO' NTRY. IT IS USED IN THE CALCULATION F MINIMUM AFTERBAY LEVELS \odot (IRRF) F • NOTES I. L. Indicates, data from load control. F. Indicates data from format control tree only.

17


Figure 12.-Time And Water Substitution format layout. Drawing 459-PS-2423

٤.,

. <u>.</u>



ÇA.

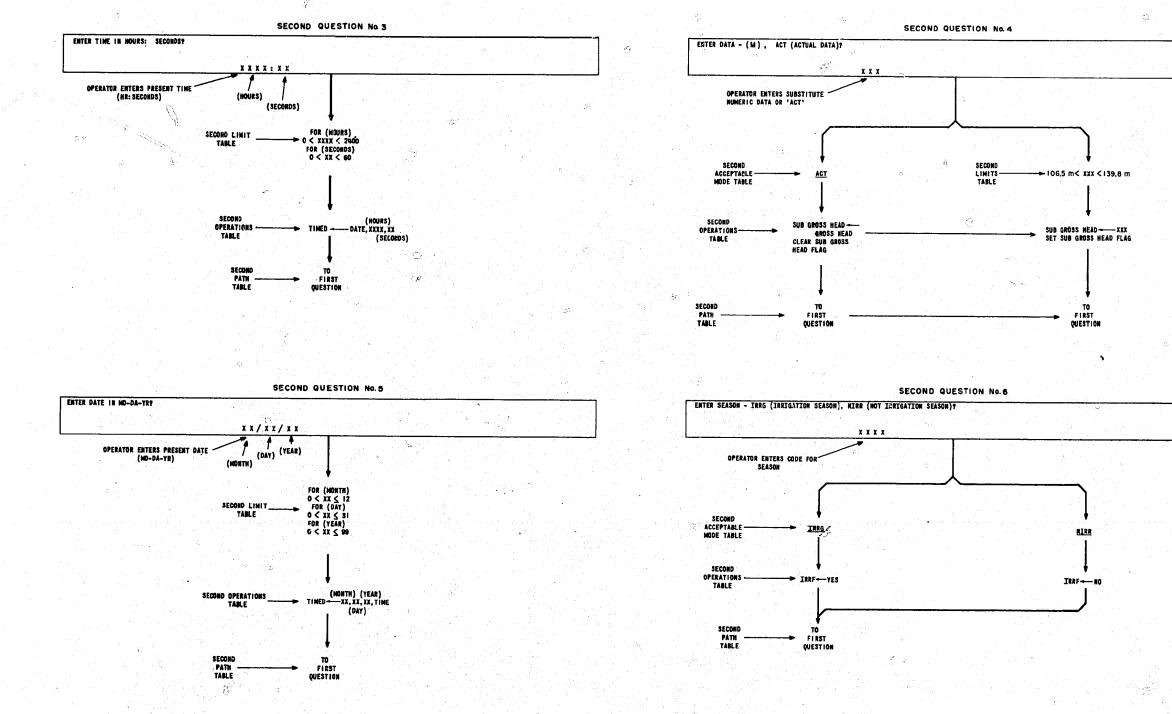
7

/

19 10 an

· · · ·

MOTES 1) SEE DWG. NO. 459-P5-2414 FOR LROR MESSAGE NO. 1. 2) SEE DWG. NO. 459-P5-2414 FOR EROR MESSAGE NO. 3. 3) SEE DWG. NO. 459-P5-2415 FOR ERROR MESSAGE NO. 3.



- (j) -

 $\langle \cdot \rangle$

 \bigcirc

Figure 13.-Time And Water Substitution format control tree (sheet 1 of 2). Drawing 459-PS-2424

in Set

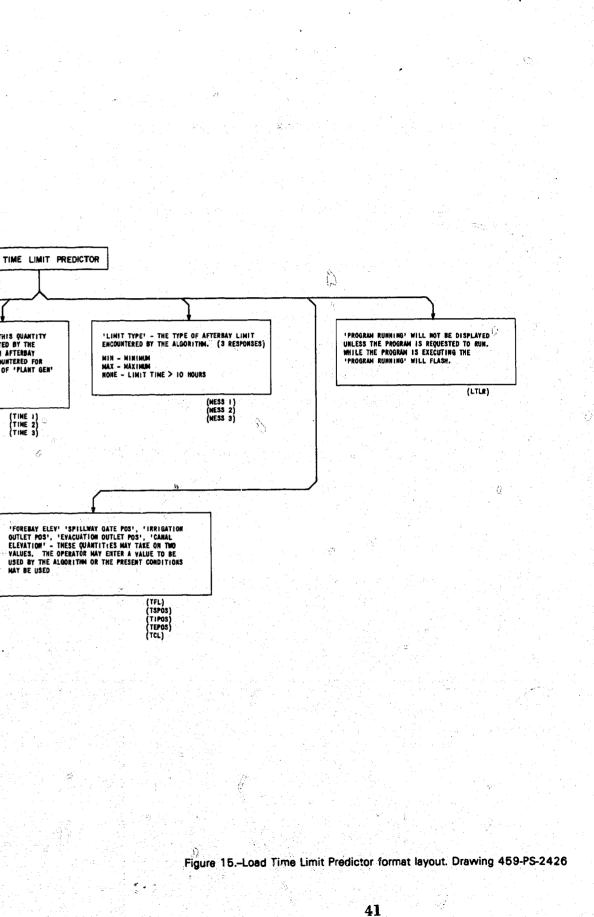
TANE

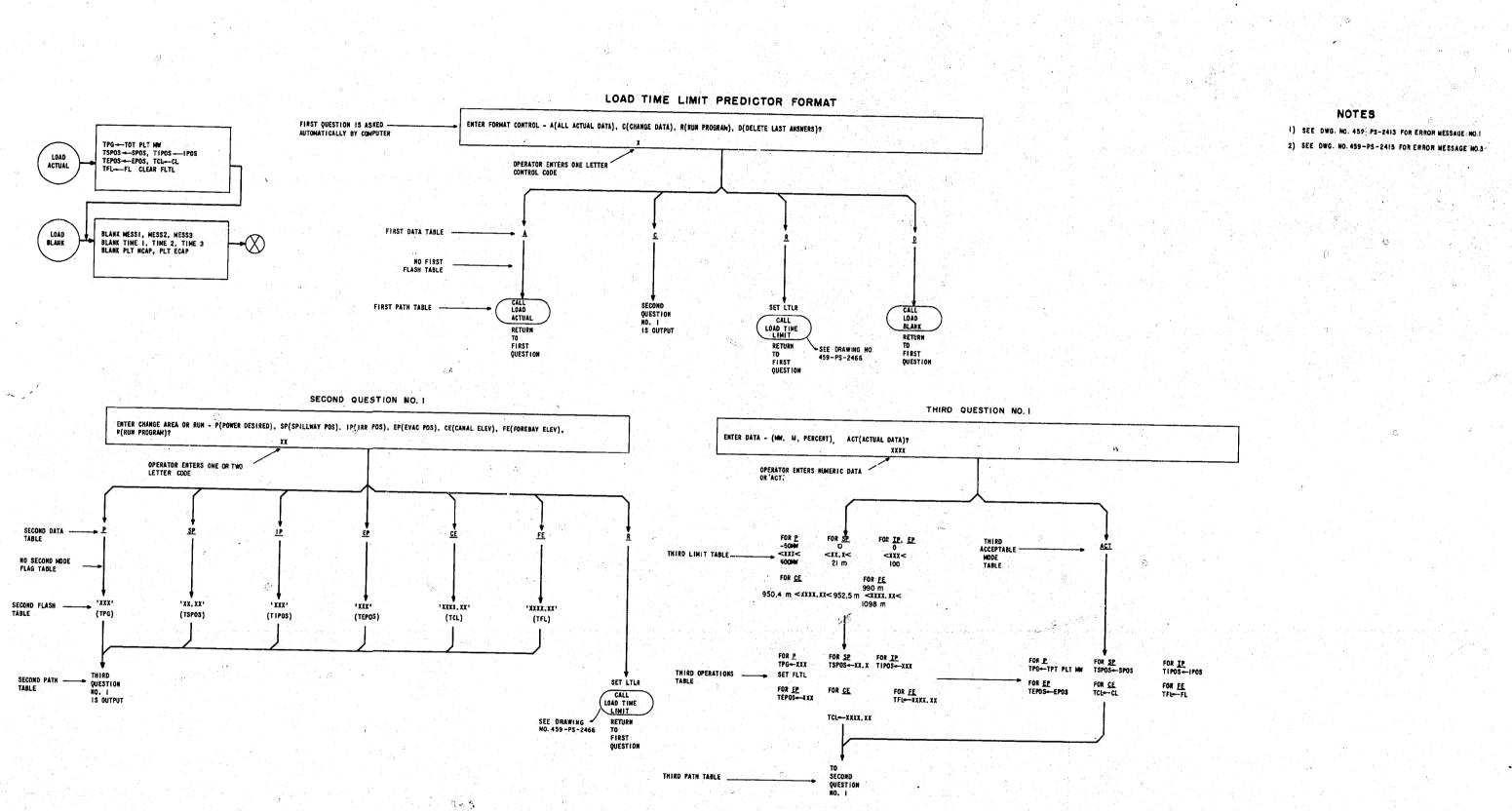
NOTES L SEE DAG NO 459-P92414 FOR ERROR MESIAGE NG. 4. 2 SEE DAG NO 459-P52415 FOR ERROR MESSAGE NO. 3.

(مىسىر) سەريەن

.

11 A

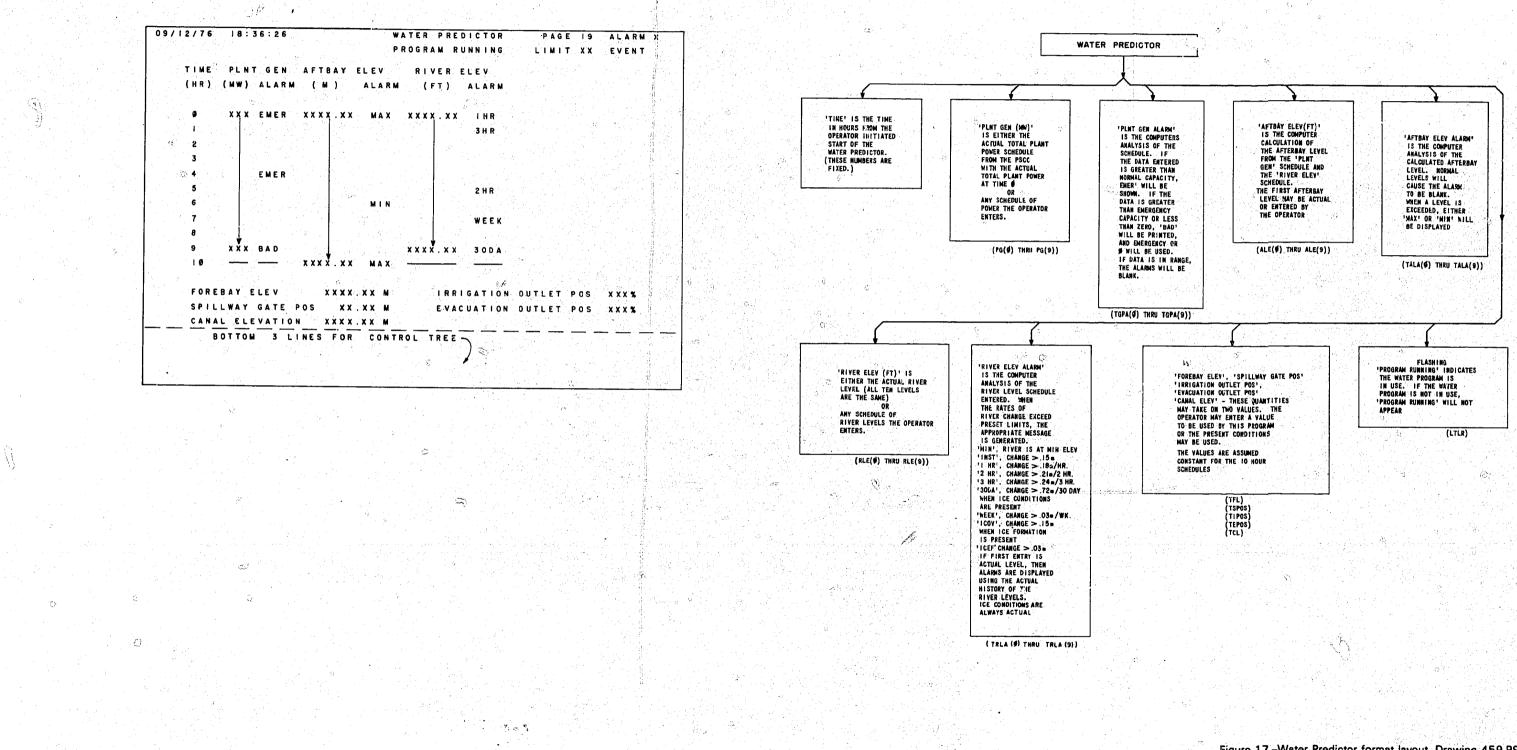

Figure 14.-Time And Water Substitution format control tree (sheet 2 of 2). Drawing 459-PS-2425


* . .

03/12/76 18:36:26 LOAD TIME LINIT PREDICTOR PAGE 18 ALARM X PROGRAM RUNNING LIMIT XX EVENT LOAD TIME LIMIT PREDICTOR PLANT GEN LINIT TIME LINIT FOREBAY ELEV XXXX.XX M (MW) (HR) TYPE DESIRED XXX XX . X MIN SPILLWAY GATE POS 🐪 X X . X X 🛛 🔭 'PLANT GEN' - THIS QUANTITY IN THE CASE OF <u>DESIRED</u> MAY TAKE ON TWO VALUES. THE OPERATOR MAY ENTER A VALUE WHICH HE WOULD LIKE THE ALGORITHM TO CALCULATE A TIME LINIT FOR OR THE PRESENT PLANT GENERATION MAY BE USED. FOR <u>NORM CAP</u> AND <u>DEMERGENCY CAPACITY ARE USED</u> ASSUMING ALL 4 GEN ARE ON LINE IF AVAILABLE 'LINIT TIME' - THIS QUANTITY IS TIME CALCULATED BY THE ALGORITHM FOR AM AFTERBAY LIMIT TO BE ENCOUNTERED FOR ALL THREE CASES OF 'PLANT GEN' (IN HOURS) IRRIGATION OUTLET POS XXX % NORM CAP XXX XX .-X MAX EMER CAP XXX XX.X MAX EVACUATION OUTLET POS XXX % CANAL ELEVATION XXXX.XX M (TINE 1) (TINE 2) (TINE 3) (TPG) (PLT NCAPN) (PLT ECAPN) BOTTOM 3 LINES FOR CONTROL TREE

1 e 1

A B



4

Figure 16.-Load Time Limit Predictor format control tree. Drawing 459-PS-2427

۰.

 $\hat{\mathbb{C}}$

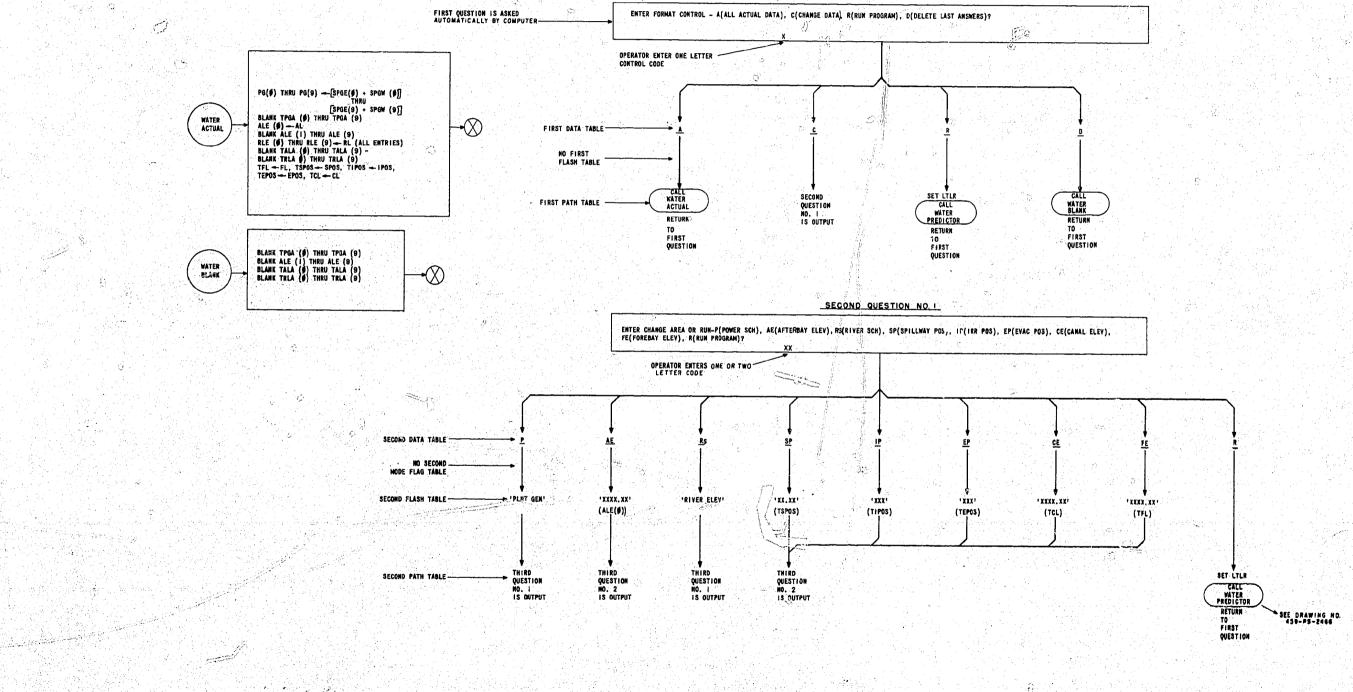
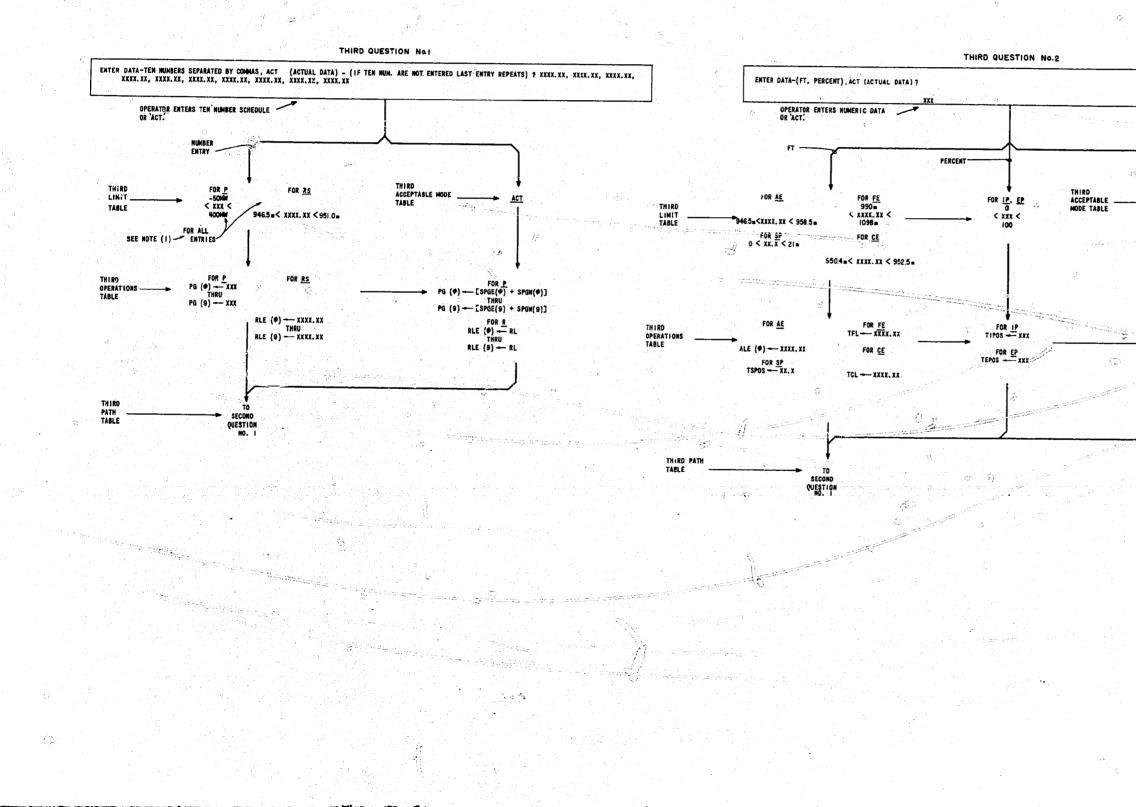

0

Figure 17.-Water Predictor format layout. Drawing 459-PS-2428

٠.

WATER PRE


٩

1.

Figure 18.-Water Predictor format control tree (sheet 1 of 2). Drawing 459-PS-2429

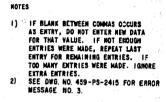
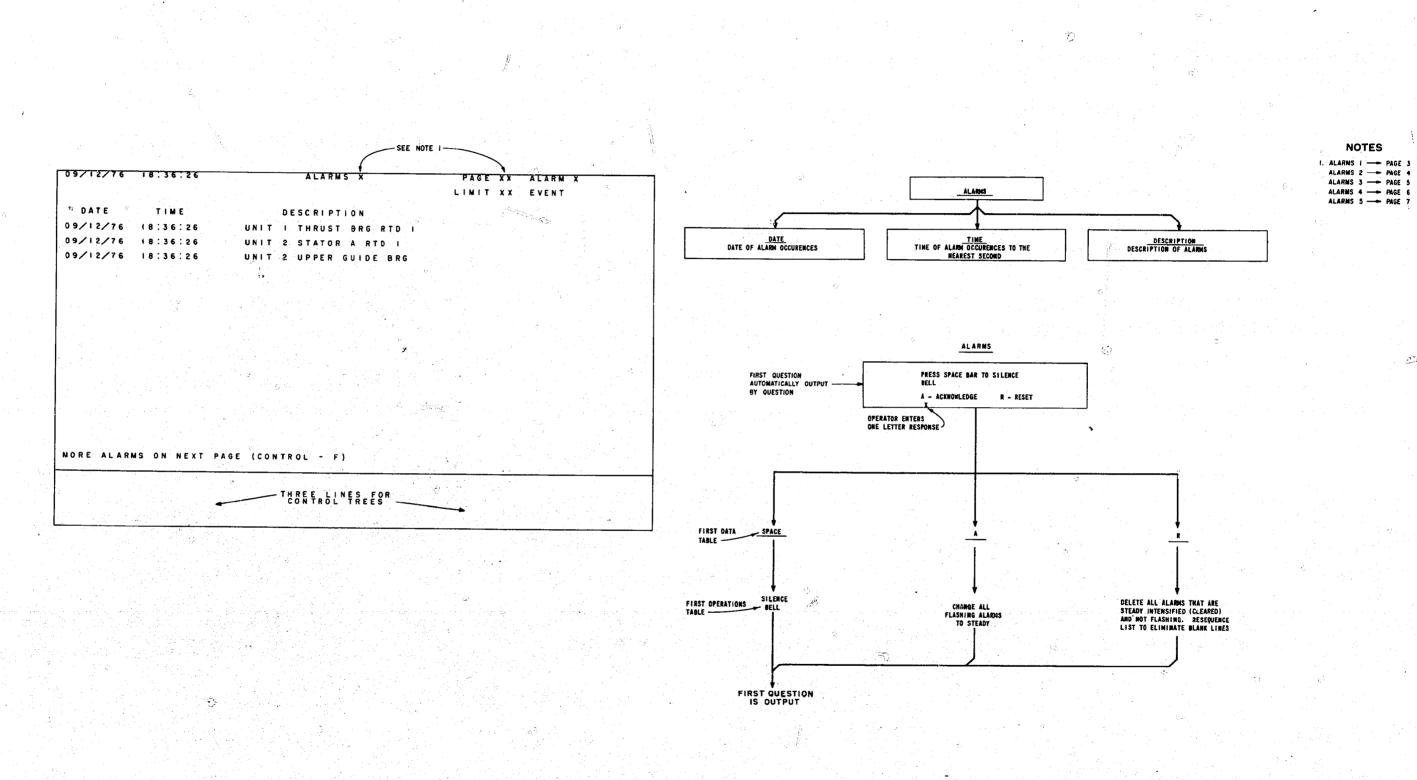



Figure 19.-Water Predictor format control tree (sheet 2 of 2). Drawing 459-PS-2430

FOR AE FOR FE

FOR SP FOR CE TSPOS - SPOS TCL ----- CL

FOR IP FOR EP

× • •

Figure 20.-Alarm format layout and control tree. Drawing 459-PS-2404

22

51

. . . .

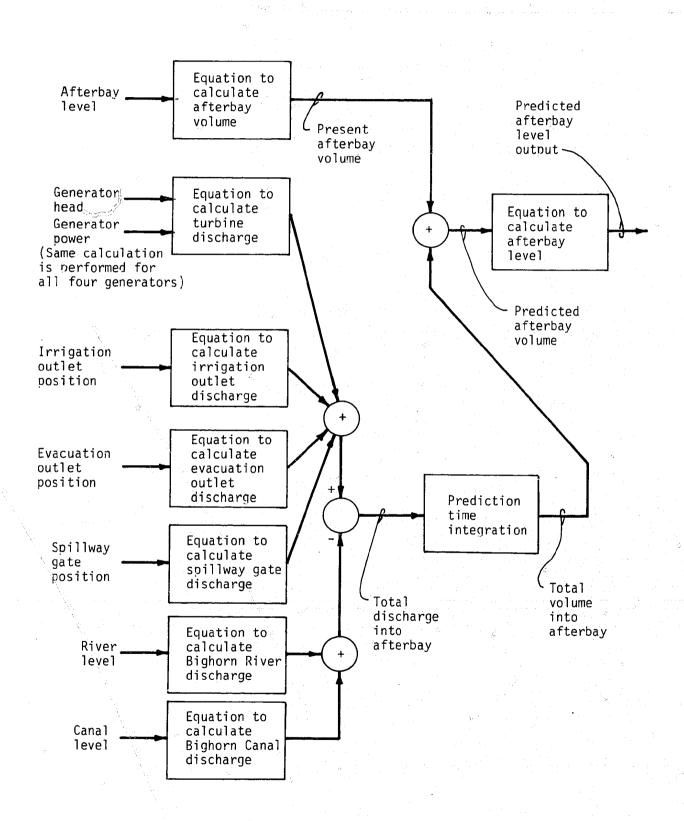


Figure 21.-Simplified flow of MODEL routine.

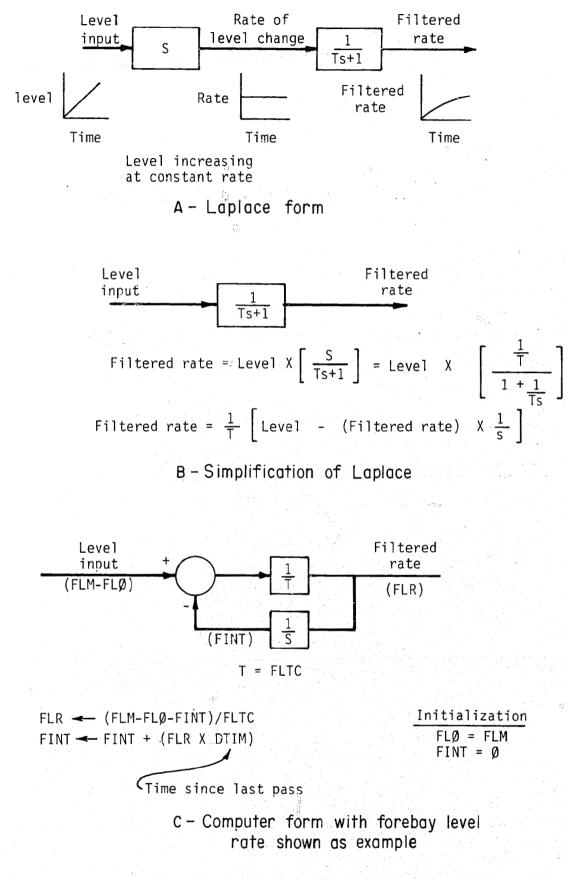


Figure 22.-Derivation of rate filters.

APPENDIX A

144

42

 \mathbf{n}

1

FLOW CHART VARIABLE DEFINITIONS

 \odot

APPENDIX A

1

1

2

<u>, C</u>.

FLOW CHART VARIABLE DEFINITIONS

AL	Transducer measured afterbay level (meters)
ALE (0)	Initial afterbay level for 10-hour scheduler. May be present actual value or operator entered (meters)
ALE (1) through ALE (10)	10-hour predicted afterbay level schedule (meters)
ALM	The afterbay level used by the MODEL routine (meters)
ALMLD	Afterbay level on the last pass used by WCON routine (meters)
ALMN	Afterbay minimum level calculated by WCON (meters)
ALMNW	Afterbay level predicted by MODEL routine (meters)
ALNEW	Corrected value for the predicted afterbay level (meters)
ALOLD	Value of the afterbay level for the last pass (meters)
ALP	30-minute afterbay level prediction by WCON (meters)
AM 1 through AM 16	Alarm flags set by the WCON routine
Α٧	Afterbay volume calculated by MODEL (cubic meters)

୍

BREAKER STATUS	Status, open or closed, of the unit breaker
C2, C1, C0	Equation constants to calculate Bighorn Canal water discharge. $C0 = 22.21$; $C1 = -18.88$; $C2 = 3.9$
CD	Bighorn Canal discharge calculated by MODEL (cubic meters per second)
CL	Transducer-measured Bighorn Canal elevation (meters)
CLCOR	The correction factor used to calculate canal discharge (meters)
CLM	The Bighorn Canal elevation used by MODEL (meters)
CONST	Correction constant used to correct model
DTIM	Time since last pass of algorithm
E4, E3, E2, E1	Constants for calculating evacuation outlet discharge. E4 = 0.53; E3 = 0.028; E2 = -0.45 ; E1 = -0.025
ЕСАРМ	Calculated unit emergency capacity (megawatts)
ED	Evacuation outlet discharge (cubic meters per second)
EPOS	Evacuation outlet position (operator entered) (percent open)
EPOSM	Evacuation outlet position used by the MODEL routine (percent open)

FINT	Forebay level integration
FL	Transducer-measured forebay level (meters)
FLO	Initial forebay level value used for integration (meters)
FLM	Forebay leve! used by MODEL routine (meters)
FLR	Filtered forebay level rate of change (meters per
	minute)
. FLTC	Forebay level filter time constant (minutes)
FLTL	Flag to indicate to "Load Time Limit" that plant load
	is being entered by the operator
GEN A, GEN B, GEN C	Constants used to calculate unit capacities
GEN A EC, GEN B EC, GEN C EC	Constants used to calculate unit emergency capacities.
GEIN C EC	
GEN A NC, GEN B NC, GEN C NC	Constants used to calculate unit normal capacities
GEN MW	Transducer-measured unit power (megawatis)
Н	
	Constant used in turbine discharge calculation
HDM	Plant head used by MODEL routine (meters)

 i_i

Ĩ

I4, I3, I2, I1	Constants used to calculate irrigation outlet discharge.
	I4 = 0.57; I3 = 7.5 x 10 ⁻³ ; I2 = -0.489; I1 = -6.2 x 10 ⁻³
ICM	Water system ice mode (operator-entered)
ICMD	Water system ice mode used by the operator display
	equipment
ID	Irrigation outlet discharge (cubic meters per second)
IDOO	
IPOS	Irrigation outlet position (operator-entered) (percent
	open)
· · · · · · · · · · · · · · · · · · ·	
IPOSM	Irrigation outlet position used by MODEL routine
ана. 1. т. н. ж	(perceņt open)
IRRF	Flag to indicate irrigation or nonirrigation season
\mathbf{L}	Constant used to calculate afterbay volume
	에는 가장에 있는 것이 가장에 있는 것이 같은 것이 같은 것이 있는 것이 있다. 것이 가장에 가장에 가장에 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 같이 있다. 것이
L2, L1, L0	Constants used to calculate predicted afterbay level
L2A, L1A, L0A	Constants used to calculate predicted afterbay level.
	L2A = 3.4×10^{-7} ; L1A = 1.46×10^{-3} ; L0A = -0.24
L2B, L1B, L0B	Constants used to calculate predicted afterbay level.
	$L2B = -3.9 \times 10^{-9}; L1B = 2.6 \times 10^{-4}; L0B = 2.712$
L2C, L1C, L0C	Constants used to calculate predicted afterbay level.
	$L2C = -9.8 \times 10^{-10}$; $L1C = 2.08 \times 10^{-4}$; $L0C = 3.12$

-

LTIME	Time prediction made by "Load Time Limit"
LTLR	Flag used to keep any of three main programs from executing at same time.
MES	Contains limit message code for "Load Time Limit"
MESSI	Limit message code for entered plant load
MESS2	Limit message code for normal plant capacity
MESS3	Limit message code for emergency plant capacity
MINIF	Initialize flag for the MODEL routine
MOD GEN BKR	Unit Breaker Status used by MODEL routine
Ν	Counter for 10-hour schedule predictor
NCAPM	Unit normal capacity used by predictors (megawatts)
Ρ	Constant used to calculate turbine discharge
PG (0) through PG (9)	10-hour total plant generation schedule used by "Water Predictor"
PLANT ECAPM	Total plant emergency capacity used by MODEL routine (megawatts)
PLANT NCAPM	Total plant normal capacity used by the MODEL routine (megawatts)

.

POWER-UP PREDICTOR

Power-up flag for algorithm

Prediction time used by MODEL routine
Constants used to calculate river discharge.
R2 = 0.058; R1 = -0.047; R0 = 0.02
Calculated Bighorn River discharge (cubic meters per second)
Constants used to calculate afterbay level minimum
from radial gate discharge. $RG2 = -0.018$;
RG1 = 0.458; RG0 = 3.02
Calculated radial gate discharge (cubic meters per second)
국민이는 사람들은 것이 아직 물건을 위해 지갑한 것을 통해 위해 가지 않는 것 같아요. 문화 문화 문화 문화 문화
second)
second) River level integrations
second) River level integrations Transducer-measured river level (meters) Initial river level used for integrations (meters)
second) River level integrations Transducer-measured river level (meters)
second) River level integrations Transducer-measured river level (meters) Initial river level used for integrations (meters) River level correction factor used in calculating river
second) River level integrations Transducer-measured river level (meters) Initial river level used for integrations (meters) River level correction factor used in calculating river discharge (meters)
second) River level integrations Transducer-measured river level (meters) Initial river level used for integrations (meters) River level correction factor used in calculating river discharge (meters) 10-hour river level schedule used by the "Water

RLMLD River level for the previous pass as used by the WCON routine (meters) **RLMN** Minimum river level used by WCON routine (meters) RLOLD Value of the river level for last pass of algorithm (meters) **RLR1** through **RLR5** River level filtered change rates (meters per minute) **RLTC1 through RLTC5** River level filter time constants (minutes) **RTU STATUS** Status, either up or down, of the afterbay dam RTU S4, S3, S2, S1 Constants for calculating spillway discharge. S4 = 2.8; S3 = 2.03; S2 = -2.51; S1 = -2.16SDCalculated spillway discharge (cubic meters per second) SEL Flag to indicate time limit calculations for entered plant load, normal plant capacity, and emergency plant capacity SF2, SF1, SF0 Constants to calculate free-crest spillway discharge. $SF2 = 3.98 \times 10^3$; $SF1 = -8.5 \times 10^3$; $SF0 = 4.5 \times 10^3$ SFLOW Spring flow into afterbay (operator-entered) (cubic meters per second)

SLG2, SLG1, SLG0

Constants used to calculate afterbay level minimum from sluice gate discharge. SLG2 = 65.93; SLG1 = 42.5; SLG0 = 2.29

SPGE(1) through SPGE(9)

SPGW(1) through SPGW(9)

SPOS

SPOSM

STOP ALLOCATE DOWN

STOP ALLOCATION UP

T1 through T9

TALA(0) through TALA(10) Total plant generation scheduled to the east (next 10 hours) (megawatts)

Total plant generation scheduled to the west (next 10 hours) (megawatts)

Spillway gate position (operator-entered) (percent open)

Spillway gate position used by the MODEL routine (percent open)

Flag to AGC to stop load decreases

Flag to AGC to stop load increases

Constants used to calculate turbine discharge. T9 = 0.0025; T8 = -0.0073; T7 = 0.0055; T6 = -0.0047; T5 = 0.0088; T4 = 0.0018;T3 = 0.0085; T2 = -0.022; T1 = 0.020

لتوليهم

Afterbay alarm message outputs

RLMLD

RLMN

RLOLD

RLR1 through RLR5

RLTC1 through RLTC5

RTU STATUS

S4, S3, S2, S1

SD

SEL

SF2, SF1, SF0

SFLOW

River level for the previous pass as used by the WCON routine (meters)

Minimum river level used by WCON routine (meters)

Value of the river level for last pass of algorithm (meters)

River level filtered change rates (meters per minute)

River level filter time constants (minutes)

Status, either up or down, of the afterbay dam RTU

Constants for calculating spillway discharge. S4 = 2.8; S3 = 2.03; S2 = -2.51; S1 = -2.16

Calculated spillway discharge (cubic meters per second)

Flag to indicate time limit calculations for entered plant load, normal plant capacity, and emergency plant capacity

Constants to calculate free-crest spillway discharge. SF2 = 3.98×10^3 ; SF1 = -8.5×10^3 ; SF0 = 4.5×10^3

Spring flow into afterbay (operator-entered) (cubic meters per second)

SLG2, SLG1, SLG0

Constants used to calculate afterbay level minimum from sluice gate discharge. SLG2 = 65.93; SLG1 = 42.5; SLG0 = 2.29

SPGE(1) through SPGE(9)

SPGW(1) through SPGW(9)

SPOS

SPOSM

STOP ALLOCATE DOWN

STOP ALLOCATION UP

T1 through T9

Total plant generation scheduled to the east (next 10 hours) (megawatts)

Total plant generation scheduled to the west (next 10 hours) (megawatts)

Spillway gate position (operator-entered) (percent open)

Spillway gate position used by the MODEL routine (percent open)

Flag to AGC to stop load decreases

Flag to AGC to stop load increases

Constants used to calculate turbine discharge. T9 = 0.0025; T8 = -0.0073; T7 = 0.0055; T6 = -0.0047; T5 = 0.0088; T4 = 0.0018;T3 = 0.0085; T2 = -0.022; T1 = 0.020

TALA(0) through TALA(10) Afterbay alarm message outputs

TCL

TD1 through TD4

TEMP

TEPOS

TFINT

`. . TFL

TFL0

TIME 1

TIME 2

TIME 3

TIMED

Bighorn Canal elevation used by the prediction programs (meters)

Turbine discharge calculated for units 1 through 4 by MODEL routine (cubic meters per second)

A temporary storage variable

Evacuation outlet position used by prediction programs (percent open)

Temporary storage for variable FINT

Forebay level used by prediction programs (meters)

Temporary storage for variable FL0

Predicted time to afterbay limit for total plant generation entered by operator (calculated by "Load Time Limit")

Predicted time to afterbay limit for normal plant capacity (calculated by "Load Time Limit")

Predicted time to afterbay limit for emergency plant capacity (calculated by "Load Time Limit")

Computer time initialization variable entered by operator on power-up

TIMEX

TIPOS

TL

TLD

TOTD

TOT PLT MW

TPG

TPGA(0) through TPGA(9)

TRINT 1 through TRINT 5

TRL 10 through TRL 60

TRLA(0) through TRLA(9) Actual computer time from executive

Irrigation outlet position used by prediction programs (percent open)

Transducer-measured tailwater elevation (meters)

Time of last pass of water predictor

Total discharge into the afterbay (calculated by MODEL routine) (cubic meters per second)

Total plant load as calculated by the AGC system (megawatts)

Total plant generation used by "Load Time Limit" routine (megawatts)

Alarm messages for plant generation schedule entries

Temporary storage for variables RINT 1 through RINT 5

Temporary storage for variables RL 10 through RL 60

Alarm messages for entered 10-hour river level schedule

TSPOS

.

-

Spillway gate position used by prediction programs (percent open)

V0 through V3

Constants used to calculate afterbay volume given afterbay level. V3 = -1370.5; $V2 = 6.96 \times 10^4$; $V1 = -1.22 \times 10^5$; $V0 = 4.3 \times 10^4$

 \hat{U}

APPENDIX B

ŝ

WATER CONSTRAINTS FOR THE YELLOWTAIL UNIT

3

~

APPENDIX B

WATER CONSTRAINTS FOR THE YELLOWTAIL UNIT (Data as of July 1976)

I. Bighorn River Level Rate Constraints

A. For ice-free conditions:

J. S. S. S.

¢.

- (1) Change greater than 0.15 m at any instant.
- (2) Change greater than 0.18 m during any hour.
- (3) Change greater than 0.21 m during any 2-hour period
- (4) Change greater than 0.24 m during any 3-hour period.

(5) Change greater than 0.73 m during any 30-day period.

B. For ice-cover conditions:

- (1) Change greater than 0.15 m during complete time.
- (2) Change greater than 0.03 m during any week.
- C. For ice-formation or breakup conditions:
 - (1) Change greater than 0.03 m during complete time.

II. Bighorn Lake Constraint

(1) Drawdown greater than 0.3 m during any 24-hour period.

III. Bighorn River Level Constraints

A. During irrigation season:

(1) Minimum level 962.56 m (discharge of 33.98 m³/s).

B. During nonirrigation season:

(1) Minimum level 962.41 m (discharge of $28.32 \text{ m}^3/\text{s}$).

48

IV. Afterbay Reservoir Level Constraints

A. During irrigation season:

(1) Minimum elevation 967.74 m.

(2) Maximum elevation 972.92 m.

B. During nonirrigation season:

(1) Minimum elevation 963.78 m.

(2) Maximum elevation 972.92 m.

ABSTRACT

Å

The operation of the computer algorithm used to detect constraints on the water system at Yellowtail Dam and Powerplant, Mont., including the afterbay dam, is explained. The algorithm is also shown in flow chart form. In addition, the two segments of the algorithm which allow the powerplant operator to predict water system conditions are discussed. The first segment will allow for Yellowtail Afterbay Reservoir level predictions up to 10 hours in advance. The second segment predicts the permissible time of operation of the four generators at given loads before an afterbay level limit is exceeded.

ABSTRACT

The operation of the computer algorithm used to detect constraints on the water system at Yellowtail Dam and Powerplant, Mont., including the afterbay dam, is explained. The algorithm is also shown in flow chart form. In addition, the two segments of the algorithm which allow the powerplant operator to predict water system conditions are discussed. The first segment will allow for Yellowtail Afterbay Reservoir level predictions up to 10 hours in advance. The second segment predicts the permissible time of operation of the four generators at given loads before an afterbay level limit is exceeded.

ABSTRACT

The operation of the computer algorithm used to detect constraints on the water system at Yellowtail Dam and Powerplant, Mont., including the afterbay dam, is explained. The algorithm is also shown in flow chart form. In addition, the two segments of the algorithm which allow the powerplant operator to predict water system conditions are discussed. The first segment will allow for Yellowtail Afterbay Reservoir level predictions up to 10 hours in advance. The second segment predicts the permissible time of operation of the four generators at given loads before an afterbay level limit is exceeded.

ABSTRACT

The operation of the computer algorithm used to detect constraints on the water system at Yellowtail Dam and Powerplant, Mont., including the afterbay dam, is explained. The algorithm is also shown in flow chart form. In addition, the two segments of the algorithm which allow the powerplant operator to predict water system conditions are discussed. The first segment will allow for Yellowtail Afterbay Reservoir level predictions up to 10 hours in advance. The second segment predicts the permissible time of operation of the four generators at given loads before an afterbay level limit is exceeded. GR-78-3 Steven C. Stitt WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM Bur Reclam Rep GR-78-3, Div Res, Apr 1978. Bureau of Reclamation, Denver, 72 p., 22 fig, 2 app.

DESCRIPTORS-/ *computer applications/ *algorithms/ computer programming/ digital systems/ water management (applied)/ afterbays/ *scheduling/ *reservoir operation/ computer models/ river forecasting/ river regulation/ river flow/ drawdown/ electric power demand/ peaking capacities/ water supply forecasting/ computer programs/ mathematical models

IDENTIFIERS-/ minicomputers/ Yellowtail Dam, Mont./ Yellowtail Powerplant, Mont./ Yellowtail Afterbay Dam/ Pick-Sloan Missouri Basin Program

COSATI Field/Group: 13B COWRR 1302

GR-78-3

Steven C. Stitt

WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM

Bur Reclam Rep GR-78-3, Div Res, Apr 1978. Bureau of Reclamation, Denver, 72 p., 22 fig, 2 app.

DESCRIPTORS-/ *computer applications/ *algorithms/ computer programming/ digital systems/ water management (applied)/ afterbays/ *scheduling/ *reservoir operation/ computer models/ river forecasting/ river regulation/ river flow/ drawdown/ electric power demand/ peaking capacities/ water supply forecasting/ computer programs/ mathematical models

IDENTIFIERS-/ minicomputers/ Yellowtail Dam, Mont./ Yellowtail Powerplant, Mont./ Yellowtail Afterbay Dam/ Pick-Sloan Missouri Basin Program

COSATI Field/Group: 13B COWRR 1302

GR-78-3

Steven C. Stitt WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM

Bur Reclam Rep GR-78-3, Div Res, Apr 1978. Bureau of Reclamation, Denver, 72 p., 22 fig, 2 app.

DESCRIPTORS-/ *computer applications/ *algorithms/ computer programming/ digital systems/ water management (applied)/ afterbays/ *scheduling/ *reservoir operation/ computer models/ river forecasting/ river regulation/ river flow/ drawdown/ electric power demand/ peaking capacities/ water supply forecasting/ computer programs/ mathematical models

IDENTIFIERS-/ minicomputers/ Yellowtail Dam, Mont./ Yellowtail Powerplant, Mont./ Yellowtail Afterbay Dam/ Pick-Sloan Missouri Basin Program

COSATI Field/Group: 13B COWRR 1302

GR-78-3 Steven C. Stitt WATER CONSTRAINT AND PREDICTION ALGORITHMS FOR YELLOWTAIL POWERPLANT AND AFTERBAY DAM

Bur Reclam Rep GR-78-3, Div Res, Apr 1978. Bureau of Reclamation, Denver, 72 p., 22 fig, 2 app.

DESCRIPTORS-/ *computer applications/ *algorithms/ computer programming/ digital systems/ water management (applied)/ afterbays/ *scheduling/ *reservoir operation/ computer models/ river forecasting/ river regulation/ river flow/ drawdown/ electric power demand/ peaking capacities/ water supply forecasting/ computer programs/ mathematical models

IDENTIFIERS-/ minicomputers/ Yellowtail Dam, Mont./ Yellowtail Powerplant, Mont./ Yellowtail Afterbay Dam/ Pick-Sloan Missouri Basin Program

COSATI Field/Group: 13B COWRR 1302