HYDRAULIC MODEL STUDIES
 OF A TURNOUT FROM LATERAL WB38 CHUTE - WAHLUKE BRANGH CANAL - WASHINGION

Glenn L. Beichley
Division of Research
Office of Chief Engineer

Bureau of Reclamation

August 1970

Bureas of Reclamation TECHNICAL REPORT STANDARD TITLEPAGE	
	3. RECIPIENT'S CATALOG NO.
4. TITLE ANU SUETITLE Hydraulic Model Studies of a Turnout from Lateral WB38 Chute - Wahluke Branch Canal - Washington	5. REPORT DATE August 1970
	6. FERFORMING ORGANIZATION CODE
T. KリTHOR(S) Glenn L. Beichley	8. PERFORMING ORGANIZATION REPORT NO.
5. PERFORMING ORGANIZATION NAME ANO ADDRESS Division of Research Office of Chief Engineer Bureau of Reclemation Denver, Colorado 80225	10. WORK UNIT NO.
	11. CONTRACT OR GRANT NO.
	13. TYPE OF REPORT AND PERIOD COVEREO
12. SPONSORING AGENCY NAME AND ADDRESS	
	14. SPONSORING AGENCY COOE

15. SUPPLEMENTARY NOTES
16. ABSTRACT

A 1:6 scale model of a turnout from a Wahluke Branch Canal lateral chute was used to develop the hydraulic design of the entrance into the turnout. An efficient design consisting of a grill over an entrance in the chute floor was developed; a discharge coefficient was determined from the results for application to the design of similar turnouts. Baffle bars consisting of vertical strips of corrugated metal were developed to distribute the flow from the compartment beneath the floor of the chate into the constant-head orifice compartment. General guidelines were developed for using the baffle bars at other turnouts.
17. KEY WORDS AND DOCUMENT ANALYSIS
-. DESCRIPTORS~/ laterals/ orifices/ *turnouts/ *grills/ *baffles/ canals/ *chutes/ Washington/ discharges/ hydraulic models/ hydraulics/ culverts/ Vee-notched weirs/ hydraulic jump/ discharge coefficients/ hydraulic design
b. IDENTIFIERS--/Wahluke Branch Canal, Wash,/ Columbia Basin Project, Wash/ constant-head-orifice T 0
c. COSATIField/Group

18. DISTRIGUTION STATEMENT Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Virginia 22151.	19. SECURITY CLASS (THIS REPORT) UNCLASSIFIED	22
	20. SECURITY CLASS ITHIS PAGE UNCLASSIFIED	22. PRICE $\$ 3.00$

REC-OCE-70-33

HYDRAULIC MODEL STUDIES
OF A TURNOUT FROM LATERAL WB38 CHUTE - WAHLUKE BRANCH
CANAL - WASHINGTON
by
Glenn L. Beichley

August 1970

Hydraulics Branch
Division of Research
Office of Chief Engineer
Denver, Colorado

ACKNOWLEDGMENT

The studies were conducted by the writer and reviewed by T. J. Rhone under the supervision of the Applied Hydraulics Section Head, W. E. Wagner. The final plans evolved from these studies were developed through the cooperation of the Canals Branch of the Division of Design and the Hydraulics Branch in the Research Division in the Office of Chief Engineer during the period of January and February 1968.

Reprint or republication of any of this material shall give appropriate credit to the Bureau of Reclamation, Department of the Interior.
Page
Purpose 1
Conclusions 1
General Application 1
Introduction 1
The Model 1
The Investigations 1
Preliminary Design 1
Modifications 2
Recommended Design 2
Application of the Results to Other Turnouts 3
Figure
1 Location Map 5
2 Chute Plan, Profile, and Sections 7
3 Chute Sta. $41+05.4-$ WB38C Turnout 9
4 Chute Turnout Grills 11
5 1:6 Scale Model Preliminary Design 13
6 Preliminary Chute Sta. 41+05.4-WB38C Turnout 15
7 Preliminary Chute Turnout Grills 17
8 Preliminary Design Operation 19
9 Model Views of Recommended Design 20
10 Recommended Design Operation 21
11 Recommended Design Operation 22

PURPOSE

The purpose of the study was to develop the hydraulic design of turnouts from a lateral chate in Block 25 of the Wahluke Branch Canal.

CONCLUSIONS

1. The length of the intake in the floor of the chute was shortened 50 percent; this intake was long enough to divert the design flow of 75 cubic feet per second (2.12 cubic meters per second) from the chute.
2. T-bars in the grill (grizzly) of the floor intake were replaced with 3 - by 3 -inch (76.2 - by 76.2 -millimeter) angles placed with the apex pointing up. The spacing between centers of the angles is 6-7/16 inches (163.26 mm).
3. Vertical baffles spaced across the opening between the compartment under the floor of the chute and the constant-head orifice turnout compartment improved the flow distribution into the constant-head orifice.
4. A coefficient of discharge was determined for the grizzly for use in the design of other grizzlies at other turnouts.
5. General guidelines were determined for use in the design of baffle arrangements at other turnouts.

GENERAL APPLICATION

The results of this study can be applied to the design of similar turnouts from canal chutes and of drop-type energy dissipators as illustrated in Engineering Monograph No. 25. ${ }^{1}$

INTRODUCTION

Wahluke Branch Canal, a part of the Columbia Basin Project, is located in East Central Washington about 20 miles (32 kilometers) southeast of Ephrata, Figure 1. Lateral WB38, is a chute from the canal to the Wahatis Wasteway, Figure 1. From the chute there are several turnouts to other laterais, Figure 2, the largest is the turnout at WB38C, Figures 3 and 4, which was model tested in this study. The capacity of this turnout is 75
cfs (2.12 cms) diverted from a flow of 75 cfs (2.12 cms) to $192 \mathrm{cfs}(5.44 \mathrm{cms})$ in Lateral WB38.

THE MODEL

The model, Figure 5, built to a geometrical scale of $1: 6$, included a 3.5 - by 4.0 -foot (1.07 - by $1.22-\mathrm{m}$) head box; a 105 -foot ($32-\mathrm{m}$) prototype length of the chute; the turnout grill to WB38C lateral; the constant-head orifice structure in the turnout; the culverts from the constant-head orifice structure to the trapezoidal canal lateral; the exit transition from the culverts; a 30 -foot ($9.14-\mathrm{m}$) prototype length of the rock-lined trapezoidal canal. A slioe gate at the outlet from the head box was used to regulate the flow depth and velocity in the chute. A portable orifice venturi meter measured the total flow to the head box; the Vee-notch weir box measured the flow remaining in the chute downstream from the turnout. A fixed weir at the downstream end of the rock-lined canal section maintained the proper water surface elevation in the canal.

THE INVESTIGATIONS

The primary purpose of the investigation was to insure that the grill (grizzly) over the entrance to the turnout to WB38C lateral from Lateral WB38 chute discharge the proper quantity of flow from the chute in a hydraulically satisfactory manner. In developing the design, it was necessary to investigate a range of flows from $75 \mathrm{cfs}(2.12 \mathrm{cms})$ to $192 \mathrm{cfs}(5.44 \mathrm{cms})$ in the chute; in all cases the flow to be diverted was 75 cfs (2.12 cms). The results of the study were to be applied to the design of the other turnouts from the chute.

The Preliminary Design

The preliminary design of the turnout to WB38C, Figures 6 and 7, utilized a grizzly 20 feet (6.10 m) long in the concrete floor of the chute through which the flow to the turnout entered.

With only $75 \mathrm{cfs}(2.12 \mathrm{cms})$ in the chute, the grizzly discharged about $73 \mathrm{cfs}(2.07 \mathrm{cms})$ into the turnout, Figure 8. The other $2 \mathrm{cfs}(0.06 \mathrm{cms})$ continued along the top flat surfaces of the T-bars to the far end of the grill. It appeared that this quantity of flow would continue along the top flat surfaces of the T-bars for a great distance. Since $73 \mathrm{cfs}(2.07 \mathrm{cms})$ entered the

1 "Hydraulic Design of Stilling Basins and Energy Dissipators," U.S. Department of the Interior, Bureau of Reclamation Engineering Monograph No. 25 by A. J. Peterka.
turnout in about the first third of the grizzly's length, the grizzly appeared to be longer than necessary, Figure 8.

Operation of the structure with $75 \mathrm{cfs}(2.12 \mathrm{cms})$ being diverted from 192 cfs (5.44 cms) in the chute was completely satisfactory at the grizzly, Figures 5 and 8. However, it was noted that the downstream half of the grizzly could be covered and the performance was just as satisfactory.

With $192 \mathrm{cfs}(5.44 \mathrm{cms})$ in the chute, the flow that entered the turnout was concentrated on the lift side of the constant-head orifice structure. Actually some reverse flow occurred on the right side. With 75 cfs $(2.12 \mathrm{cms})$ in the chute, the flow into the constant-head orifice structure was more evenly distributed with slightly more flow on the right side.

Modifications

The grizzly was shcrtened to half its original length by eliminating the dowrstream portion. The 4 -inch ($101.6-\mathrm{mm}$) wide T-bart were replaced with $1-1 / 4$-inch ($31-3 / 4-\mathrm{mm}$) by $1-1 / 4$-inch ($31-3 / 4-\mathrm{mm}$) angles with $1-1 / 16$-inch $(27 . \mathrm{mm})$ open spaces between the $1-1 / 4-$ inch ($31.3 / 4 \cdot \mathrm{~mm}$) surfaces. The flat surfaces of the angles still carried a small portion of the flow across the entrance at the chute discharge of 75 cfs (2.12 cms).

The $1-1 / 4$-inch ($31-3 / 4-\mathrm{mm}$) angles were then replaced with 3 -inch ($76.20-\mathrm{mm}$) by 3 -inch ($76.20-\mathrm{mm}$) angles placed with the apex up at 6-7/16 inches ($163-1 / 4 \mathrm{~mm}$) on centers, Figure 4. The clearance between the floor of the chute and the sloping floor beneath the grizzly was reduced at the downstream end when the grizzly and entrance was shortened. To provide additional room, the slope of the floor beneath the grizzly was steepened.

The concept of placing the angles with the apex up appeared to be an excellent one since the required amount of flow entered the openings between angles for all lateral flows. However, finding a method of anchoring the ends of the angles to the floor of the chute to prevent them from becoming a debris trap presented some problems.

The steeper slope on the floor beneath the grizzly was unsatisfactory since the hydraulic jump in the compartment below the floor of the chute was much more turbulent and the turbulence carried into the
constant-head orifice structure. It was believed that the flatter slope in the previous design provided a more streamlined entrance into the jump and better energy dissipation in the form of fine-grained turbulence.

The flatter slope was reinstalled and a test was made to evaluate the need for the grizzly. At $192 \mathrm{cfs}(5.44 \mathrm{cms})$ in the chute with the grizzly removed, the water level in the downstream compartment of the constant-head orifice fluctuated tremendously, often overtopping the walls. With the grizzly in place, the fluctuations were reduced to about 6 inches (152.40 mm) and the flow in both compartments of the constant-head orifice structure was much more stable. The grizzly also reduced the wave heights and smoothed the flow in the chute downstream from the entrance to the turnout.

To provide better flow distribution into the constant-head orifice structure, vertical baffle bars $5 \cdot 1 / 3$ inches (135.47 mm) wide were placed at various spacings across the opening from the compartment below the floor of the chute. This bar width was used because it was anticipated that strips of corrugated metal (two corrugations wide) would be used to provide strength and rigidity to the long, slender baffles.

Recommended Design

The recommended design, Figures 3, 4, and 9, utilizes the 10 -foot-long turnout grill made from the 3 - by 3 -inch (76.2- by $76.2-\mathrm{mm}$) angles on $6-7 / 16$-inch $(163.26-\mathrm{mm})$ centers with the apex of the angles up.

A scheme for supporting the grill at the downstream end was developed and tested that provided maximum clearance between the floor of the chute and the sloping floor of the turnout entrance and would catch a minimum amount of debris at low flows. Leaves and small twigs from dried Russian thistles added to the flow in the chute were not detained on the grill. It was noted that rocks in bedload sediment could become wedged between the angles; however, this type of debris was not expected.

No hydraulic problems were encountered when 75 cfs $(2.12 \mathrm{cms})$ was diverted from chute flows ranging between $75 \mathrm{cfs}(2.12 \mathrm{cms})$ and $192 \mathrm{cfs}(5.44 \mathrm{cms}$), Figures 10 and 11 . Nor were any adverse conditions noted when none of the flow in the chute was diverted.

At 75 cfs (2.12 cms) in the chute, some foam from the hydraulic jump in the compartment below the lateral
floor appeared on the downstream end of the grizzly, Figure 10. However, less than 1 cfs (0.03 cms) was carried across the grizzly. At discharges of $76 \mathrm{cfs} \mathbf{2 . 1 5}$ cms) or more in the chute, $75 \mathrm{cfs}(2.12 \mathrm{cms})$ was diverted into the turnout and the hydraulic performance in the chute was excellent, Figures 11 and 12.

The arrangement. of the baffles between the compartment beneath the floor of the chute and the constant-head orifice turnout structure was developed in the model using wood slats, Figure 9, to represent the $5-1 / 3$-inch ($135.47-\mathrm{mm}$) wide corrugated metal baffles in the prototype, Figure 3. Corrugated metal strips (two corrugations wide), were used to provide strength and rigidity to the long, slender baffles. Closer spacing of the strips at the downstream end of the compartment improved the distribution of flow into the constant-head turnout when the chute was discharging $192 \mathrm{cfs}(5.43 \mathrm{cms}$). Placing two strips together at the upstream end of the compartment improved the flow around the upstream corner into the constant-head orifice structure when the chute flow was 75 cfs (2.12 cms). Further, it was determined that the total flow area of the openings between the strips could be reduced to approximately, but not less than, the flow area of the two orifices between the two compartments of the constant-head orifice turnout structures. Therefore, the total number of $5-1 / 3$-inch ($135.47-\mathrm{mm}$) wide strips was limited to 16.

APPLICATION OF THE RESULTS TO OTHER TURNOUTS

To apply the results of this study to the design of the grizzlies at other turnouts from the chute, the discharge coefficient was determined for the grizzly discharge expression referred to in Engineering Monograph No. 25^{1}

where L is the length of grizzly, Q is the thtal discharge, C is an experimental coefficient, S is the average space width between angles including the end spaces to canal walls, N is the number of spaces, g is the acceleration of gravity, and y is the flow depth in the canal. The value of C for the $10-\mathrm{foot}(3.05 \cdot \mathrm{~cm})$
${ }^{1}$ Op. cit. p. 1
long grill discharging 75 cfs (2.12 cms) was 0.47 . Since the same size angles and spacing was to be used at other turnouts, the required grizzly lengths could be determined for the given flow depths and discharges through the grizzly.

In applying the results of this study to the design and arrangement of the vertical baffle strips at the flow entrances to the other constant-head orifice tumouts, two general requirements were met. First, the total number of strips that was used was limited to the number that would not reduce the area between baffles to less than the flow area of the orifices between compartments in the constant-head orifice. Second, the open area was proportioned between baffles across the width of the opening as closely as possible to the spacing developed for the turnout in this investigation.

General view looking upstream along chute showing the head box and vee-notched wier box with the constant-head orifice turnout, pipe culverts, and canal lateral extending to the left. Photo P222-D-67488

Looking downstream showing the turnout grill and the constant-head orifice structure with the two head gages to regulate the flow diverted from the chute. Photo P222-D-67490

Chute flow is $75 \mathrm{cfs}(2.12 \mathrm{cms})$ with $73 \mathrm{cfs}(2.07 \mathrm{cms})$ diverted. Photo P222-D-67487

Chute flow is 192cfs (5.43 cms) $75 \mathrm{cfs}(2.12 \mathrm{cms})$ in turnout. Photo P222-D-67489

Figure 9

Baffled turnout looking upstream. Photo ?222-D-67493

WAHLUKE BRANCH CANAL
MODEL VIEWS OF RECOMMENDED DESIGN 1:6 SCALE MODE!

Chute flow is 75 cfs (2.12 cms). Photo P222-D-67494

Chute flow is $80 \mathrm{cfs}(\mathbf{2 . 2 6} \mathrm{cms})$. Note: $75 \mathrm{cfs}(2.12 \mathrm{cms})$ in turnout. Photo P222-D-67495

WAHLUKE BRANCH CANAL RECOMMENDED DESIGN OPERATION 1:6 SCALE MODEL

Figure 11

Chute flow is $95 \mathrm{cfs}(2.69 \mathrm{cms}$). Photo F222-D-57496

Chute flow is $192 \mathrm{cfs}(5.43 \mathrm{cms}$). Note: 75 cfs (2.12 cms) in turnout. Photo P222-D-67497

WAHLUKE BRANCH CANAL RECOMMENDED DESIGN OPERATION 1:6 SCALE MODEL

7-1750 (1-70)
Birceu of Reclamaina

CONVERSION FACTORS--BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testiny and Materials (ASTM Metric Practice Guide, E 380-63) except that additional fantors (*) commonly used in the Bureau have been adjed. Further discussion of definitions of quantities and units is given in the ASTM Metric Prantice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "International Dystem of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg , Gives it an acceleration of $9.80665 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$, the standard acceleration of free fall toward the ajrth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg , gives it an acceleration of $1 \mathrm{~m} / \mathrm{se} \mathrm{c} / \mathrm{sec}$. These units must be distinguisheu from the (inzonstant) local weight of a body having \exists mass of 1 kg ; that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the term "kllogram" (or derived mass unit) has been used in thjs guide instead of "kilogramforce ${ }^{"}$ in expressing the canversion factors for forces. The newton unit of force will find increasing use, and is essential In SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I
QUANTI'IES AND UNITS OF SPACE

ABSTRACT

A 1:6 scale model of a turnout from a Wahluke Branch Canal lateral chute was used to develop the hydraulic design of the entrance into the turnout. An efficient design consisting of a gril over an entrance in the chute floor was developed; a discharge coefficient was determined from the results for application to the design of similar turnouts. Baffle bars consisting of vertical strips of corrugated metal were developed to distribute the flow from the compartment beneath the floor of the chute into the constant-head orifice compartment. General guidelines were devetoped for using the baffie bars at other turnouts.

ABSTRACT

A 1:6 scale model of a turnout from a Wahluke Branch Canal lateral chute was used to develop the hydraulic design of the entrance into the turnout. An efficient design consisting of a grill over an entrance in the chute floor was devaloped; a discharge coafficient was determined from the results for application to the design of similar turnouts. Baffle bars consisting of vertical strips of corrugated metal were developed to distribute the flow from the compartment beneath the floor of the chute into the constant-head orifice compartment. General quidelines were developed for using the baffle bars at other turnouts.

ABSTRACT

A 1:6 scale model of a turnout from a Wahluke Branch Canal lateral chute was used to develop the hydraulic design of the entrance into the turnout. An efficient design consisting of a grill over an entrance in the chute floor was developed; a discharge coefficient was determined from over an entrance in the chute floor was developed; a discharge coetficient was determined from
the results for application to the design of similar turnouts. Baffle bars consisting of vertical strips of corrugated metal were developed to distribute the flow from the compartment beneath the floor of the chute into the constant-head orifice compartment. General guldelines were developed for using the baffle bars at other turnouts.

ABSTRACT

A 1:6 scale model of a turnout from a Wahluke Branch Canal lateral chute was used to develop the hydraulic design of the entrance into the turnout. An efficient desigh consisting of a grill over an entrance in the chute floor was developed; a discharge coefficient was determined from over an entrance in the chute foor was dor application to the design of similar turnouts. Baffle bars consisting of vertical strips of corrugated metal were developed to distribute the flow from the compartment beneath the floor of the chute into the constant-head orifice compartment. General guidelines were developed for using the baffle bars at other turnouts.

REC-OCE-70.33

Beichlay, GL
HYDRAULIC MODEL STUDIES OF A TURNOUT FROM LATERAL WB3B CHUTE-WAHLUKE BRANCH CANAL-WASHINGTON.
Bur Reclam Rep REC-OCE-70-33، Hydraul Br, July 1970. Bureau of Reclamation, Denver, 22 p, 11 fig, 3 tab, 1 ref

DESCRIPTORS-/ laterals/ orlfices/ "turnouts/ "grills/ "baffles/ canals/ "chutes/ Washington/ discharges/ hydraulic models/ hydraulics/ culverts/ Vee-notched weirs/ hydraulic jump/ discharge coefficients/ hydraulic design
IDENTIFIERS-/ Wahluke Branch Canal, Wash/ Columbia Basin Project, Wash/ constant-head-orlfice TO
b

REC-OCE-70-33

Beichley, G L
HYDRAULIC MODEL STUDIES OF A TURNOUT FROM LATERAL WB38 CHUTE-WAHLUKE BRANCH CANAL-WASHINGTON
Bur Reclam Rep REC-OCE-70-33, Hydraul Br, July 1970. Bureau of Reclamation, Denver, 22 p, 11 fig, 3 tab, 1 ref
DESCAIPTORS-/ laterals/ orifices/ *turnouts/ *grilts/ *baffles/ canals/ "chutes/ Washington/ discharges/ hydraulic models/ hydraulics/ culverts/ Vee-notched weirs/ hydraulic iump/ discharge coefficients/ hydraulic design
IDENTIFIERS-/ Wahluka Branch Canal, Wash/ Columbia Basin Project, Wash/ constant-head-orifice T O

REC-OCE-70.33
Beichley, G L
HYDRAULIC MODEL STUDIES OF A TURNOUT FROM LATERAL WB38 CHUTE-WAHLUKE BRANCH CANAL-WASHINGTON.
Bur Reclam Rep REC-OCE-70-33, Hydraul Br, July 1970. Bureau of Reclamation, Denver, 22 p, 11 fig, 3 tab, 1 ref
DESCRIPTORS-/ laterals/ orifices/ "turnouts/ "grills/ "baffles/ canals/ *chutes/ Washington/ discharges/ hydraulic models/ hydraulics/ culverts/ Vee-rotched weirs/ hydraulic jump/ discharge coefficients/ hydraulic design
IDENTIFIERS-/ Wahluke Branch Canal, Wash/ Columbia Basin Project, Wash/ constant-head-orifice T O

REC-OCE-70-33

Beichley, G L
HYORAULIC MODEL STUDIES OF A TURNOUT FROM LATERAL WB3B CHUTE-WAHLUKE BRANCH CANAL-WASHINGTON.
Bur Reclam Rep REC-OCE-70-33. Hydraul Br, July 1970. Bureau of Reclamation, Denver, 22 p. 11 fig, 3 tab, 1 ref

DESCRIPTORS-/ laterals/ orifices/ *turnouts/ "grills/ "baffiles/ canals/ "chutes/ Washington/ discharges/ hydraulic models/ hydraulics/ culverts/ Vee-notched weirs/ hydraullc Jump/ discharge coefficients/ hydraulic design
IDENTIFIERS-/ Wahluke Branch Canal, Wash/ Columbia Basln Project, Wash/ constant-head-orifice TO

