REC-0CE-70-17

HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM. PA MONG PROJECT, LAOS AND THAILAND

P. H. Burgi Division of Research Office of Chief Engineer Bureau of Reclamation

May 1970

	TECHNIC	AD UPLOUT DIMUNUD IIID YNGT
1. Report No. REC-OCE-70-17	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subti	tle	5. Report Date
Hydraulic Model S	Studies of the Spillway Bucket	May 1970
Energy Dissipat	or Pa Mong Dam Pa Mong	6 Performing Organization
Energy Dissipat	of, it houg ban, it houg	Codo
Project, Laos a	ind inaliand	COLE
7. Author(s)		8. Performing Organization
E U Bured		Report No.
I. H. Durgr		d^{μ}
9. Performing Orga	nization Name and Address	10. Work Unit No.
Division of Resea	arch	
Office of Chief H	Ingineer	11 Contract or Grant No.
Bureau of Peclam	ation "	II. Complace of drand hor
Derver Colorado	80225	
Denver, Colorado	80223	13. Type of Report and
12. Sponsoring Ag	ency Name and Address	Period Covered
		1
		14. Sponsoring Agency Code
	NT 4	
15. Supplementary	Notes	
		:
Model studies we dissipation for discharge of 36, The slotted buck minimum surface	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slott et design resulted in exceller wave action and bed erosion.	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to-
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacing bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempth to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempth to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the buc	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in exceller wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacin bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slotd et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we dissipation for discharge of 36, The slotted buck minimum surface spacing ratios w width and spacing bucket lip eleva of an offset on air in the high-	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempth to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip elevat of an offset on air in the high- light DESCRIPTORS/ * spillways/ *eros entrainment/ off flow IDENTIFIERS/ *	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the buc hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator.
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- 17. Key Words DESCRIPTORS/ * spillways/ *eros entrainment/ off flow IDENTIFIERS/ *	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the buck hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- limit of the high- limit of the high- limit of the high server spillways / *eros entrainment / off flow IDENTIFIERS/ *	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- lip eleva of an offset on air in the high- lip eleva of an offset on air in the high- discrete the high- spillways/ *eros entrainment/ off flow IDENTIFIERS/ *	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- limit of the high- limit of the high- limit of the high server entrainment of the high server limit of the high server spillways / *eros entrainment of the high server limit of the high server limit of the high server limit of the high server and the high server server spillways / *eros entrainment of the high server server limit of the high server	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth has of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- l7. Key Words DESCRIPTORS/ * spillways/ *eros entrainment/ off flow IDENTIFIERS/ * 18. Distribution S 19. Security Class	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project Pl. No. of Pages 22. Price
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip elevat of an offset on air in the high- limit of the high- spillways / the high- limit of the high- difficular of the high- limit of the high- we have been high- limit of the high- limit of the high- high of the high- high of the high o	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slote et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/ Statement sif. 20. Security Classif. 2 (of this page)	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project Pl. No. of Pages 22. Price
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip elevat of an offset on air in the high- limit of the high- limit of the high- limit of the high- limit of the high- spillways / the high- limit of the high- distribution of the high- limit of the high- high of the high- limit of the high- limit of the high- distribution of the high- limit of the high- high of the high o	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slott et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/ Statement sif. 20. Security Classif. 2 (of this page)	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project Pl. No. of Pages 22. Price
Model studies we: dissipation for discharge of 36, The slotted buck minimum surface spacing ratios we width and spacing bucket lip eleva of an offset on air in the high- ir in the high- light	re made to determine the most the Pa Mong Dam spillway. The 150 cu m/sec. Solid and slott et design resulted in excellen wave action and bed erosion. ere tested in an attempt to ac g as possible. Several length tion were tested to determine the spillway surface indicated velocity flow entering the bud hydraulic models/ *energy disa ion/ laboratory tests/ riprap sets/ hydraulic structures/ wa slotted buckets/ Pa Mong Dam/ Statement sif. 20. Security Classif. 2 (of this page)	efficient means of energy e spillway has a design ted buckets were tested. At energy dissipation with Various tooth width-to- chieve as large a tooth as of apron placed at optimum length. Tests d a method of entraining cket energy dissipator. sipation/ *buckets/ aprons/ / discharges/ velocity/ air aves (water)/ *pulsating Pa Mong Project P1. No. of Pages 22. Price 23

R

REC-OCE-70-17

HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM, PA MONG PROJECT, LAOS AND THAILAND

ĥ

by P. H. Burgi

May 1970

Hydraulics Branch Division of Research Office of Chief Engineer Denver, Colorado

 \sim

UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel Secretary

BUREAU OF RECLAMATION Ellis L. Armstrong Commissioner

ACKNOWLEDGMENTS

The study was conducted by the author and reviewed by T. J. Rhone under the supervision of the Applied Hydraulics Section Head W. E. Wagner. The recommended design resulted from cooperation between the Concrete Dams Section, Division of Design, and the Hydraulics Branch, Division of Research. Photography was by W. M. Batts, Office Services Branch.

CONTENTS

																				Г	age	
Purpose		_																			1	
Introduction	•					•			·	÷		·								÷	1	
Results	•	•	•	•	•	•	-		-	,	٠	•	-	-	-	•		•	•		1	
Application	•		•		•	•	-	•••	,	•	•	•	•	•	•	•	•	•	•		1	
	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	-	•	•	•	•	•	1	
The Investigation	•	•	•	·	•	•	•	• •	•	•	•	•	·	·	-	·	·	•	·	•	2	
The investigation	•	•	•	•	•	•	•	• •	•	•	•	·	•	•	•	•	•	·	•	•	2	
Solid Bucket Investigations	•	•		•	•	•	-			•	•	•			-		•		•	•	2	
Initial Solid Bucket Design	_																		:		2	
Other Solid Bucket Designs	·	e.				•			ĺ						÷						2	
Tailwater Considerations	·	•	-	-	•	•	•		•	•	•	•	•	•	•	•	•	•	•	-	2	
Various Exit Designs	•	•	•	•	•	•	•	•••		•	•	•	•	•	•	•	•	٠	•	•	2	
Various Exit Designs	•	-	•	•	•	•	• 7	•••		•	•	•	·	•	•	•	•	•	•	•	0	
Slotted Bucket (Recommended)		•	•	•	•	•	•			•	۰.	•	•	•	•	•		•	•	•	3	
Initial Slotted Bucket Design												-								· _	· 3	
Tooth Modifications		Ē			-				•	•		·		Ì	-						3	
Spillway Offset	•	•	•	·	•	•	•	• •	·	•	•	•	•	•	•	•	•	•	•	:	. 3	
Downstream Aprop	•	•	·	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	, .	2	~
Biprap Protection	·	-	•	•	•	•	•	• •	•	•	•	·	•	•	•	•	·	•	•	•	4	and the second s
	•	-	·	•	•	•	•	•••	•	•	•	•	•	•	•	•	·	•	•	,	-	
Bibliography		•		• .	•	•	•		•					•	•		•			•	4	
								? `?	2													
		11	IST	o	F	тΑ	BL	FS	ļj —													
		_		Ť	-			-	7			1										
Table								- Ĥ				1										
									1													
1 Comparison of water su	urfa	се	pro	ofile	es f	٥٢ v	/ari	ious	;													
bucket designs		-	•	•			•	• •													5	
					.,																	
5.				~ .																		
·······		LI	รเ	OF	- 1	=IG	UF	RES														
Figure																						
1 APa Mong Dam	_				_		_						_								7	
2 Pa Mong Dam					-				-	Č		1		Ţ	-			·	•	•	<u>q</u>	
3 Initial design bucket	•	•	•	·	•	•	•	• •	•	•	·	·	·	·		•	•	•	•	•	11	
4 15 meter radius solid b	urde urde	ot ·		h. r:	ihe	۰ ماد	vit	• •	•	•	•	•	•	•	•	•	•	•	•	•	••	
$\Omega = 15000\mathrm{cm}\mathrm{m/sec}$	UUK	C L	W W W W W W W W W W		101																12	
E 18-meter radius solid b	unk		i+	• h t	•		iat	 	• •	•	•	•	•	•	•	•	•	•	•	•	12	
$\Omega = 15000\mathrm{cm}\mathrm{m}/\mathrm{cm}$	uun	er.	4411	11 14	any	em	101	GAI	L					:							12	
6 19 - 19,000 cu m/sec	ماحد.	•			•	•				•	•	•	•	•	•	·	•	٠	•	•	15	
	uçk	er	WIL	กแ	ang	leur	.Idi	exi	Ĺ												1.4	
	•					• _1 ~	•	• •	•	•	•	•	·	•	•	•	·	•	•	•.	14	
/ Zo-meter radius solid b	UCK	et	wit	nR	adı	ai e	xit														4-	
± Q = 15,000 cu m/sec	•	. •	•		•	٠	•	• •	•	٠	•	•	•	•	٠	٠	•	-	•	•	15	
8 Various spillway solid i	ouc	ket	ex	its		٠	-	•	• •	•	•	•	·	•	•	•	٠	•	-	•	16	
9 🐀 15-meter radius solid b	uck	et	•	•	٠	·	·	•	•	•	-		•	•	•	•	·	٠	•	•	17	
10 Slotted bucket design			•		•	•	•		-				•			•		•	•	•	<u>୍</u> 18	1

CONTENTS-Continued

Figure						F	Page
11	Various tooth width—spacing ratios for 13.5-meter radius slotted bucket						19
12	Various tooth width—spacing ratios for 13.5-meter						
	slotted bucket, $\Omega = 30,000$ cu m/sec, existing tailwater						20
13	Air slot modification detail						21
14	Light slit indicating solid jet at bucket wall						
	Q = 30,000 cu m/sec proposed tailwater						22
15	Various downstream bed configurations						23
	Conversion factors-British to metric units of measure						

ં

PURPOSE

The purpose of this investigation was to test various spillway bucket energy dissipators to determine the most efficient and economical means of dissipating the energy at the toe of Pa Mong Dam spillway. This investigation was a preliminary study related to the feasibility design for Pa Mong Dam.

INTRODUCTION

The Pa Mong Project area lies on both sides of the Mekong River, where the river forms the boundaries between northeast Theiland and northwest Laos (Figures 1 and 2). Pa Mong damsite is located about 20 kilometers upstream from Vientiane, Laos, and about 1,600 kilometers above the mouth of the Mekong. One abutment will be in Laos and the other in Thailand.

The Pa Mong Project will include a concrete dam on the Mekong River, plus two additional major dams with a number of dikes on the adjacent watersheds to the north and south which form a large, single reservoir for multipurpose development, plus associated power and irrigation facilities. The reservoir will impound 100 billion cubic meters.

The main hydraulic structure consists of a gated, ogee-crest spillway section 375 meters long (including piers) and a maximum pool height of 110 meters above the bucket invert and 90 meters above the existing riverbed (Figure 2). The spillway is designed to carry a maximum discharge of $39,750 \text{ m}^3$ /sec (cubic meters per second), including 3,600 m³/sec release from the powerplant. The stilling basin is designed to still a flow of 30,000 m³/sec. Dissipation of the high energy flow is achieved by the use of a submerged bucket. Flood routing criteria call for an annual regulated maximum discharge of 17,000 m³/sec.

RESULTS

1. The various solid bucket designs proved to be unacceptable for the tailwater conditions at the Pa Mong damsite. Boil height above tailwater was excessive; pulsating surges occurred at degraded tailwater conditions; and ground roller action caused severe erosion.

2. The 13.5-meter slotted bucket dissipated the energy very well. The boil height above tailwater was less than 5 meters at design spillway discharge. The bed erosion was negligible (Figure 12B).

3. The 1.69-meter tooth width and 0.48-meter spacing yielded the smoothest bucket performance. However, a tooth width of 4.25- and 1.00-meter spacing resulted in approximately the same bucket performance with half the number of teeth and twice as wide a spacing (Figure 12B). Therefore, the 13.5-meter-radius slotted bucket with 4.25-meter tooth width and 1.00-meter spacing is recommended.

4. A 21-meter-long apron at lip elevation with 2- by 1-meter sloping end sill resulted in the optimum apron design. The ground roller extended horizontally approximately 80 meters downstream from the end sill; therefore, the bed should extend horizontally a distance of 80 meters and then rise at a 6:1 slope to the existing riverbed.

5. One to 3-ton riprap will be needed for a distance of 5 meters immediately downstream of the apron. Smaller riprap will be required for a distance of 30 meters downstream of the large riprap.

6. Due to the size and uniqueness of Pa Mong Dam, more thorough studies will be required for the final design.

An investigation of pressures on the teeth and apron lip immediately downstream of the teeth should be included in these studies.

APPLICATION

The material in this report applies primarily to the specific structure under investigation. This report confirms the conclusions of Monograph No. 25 with regard to the improved performance of the slotted bucket over the solid bucket for lower ranges of tailwater depths.

THE MODEL

The model was a 1:55.117 scale sectional model of the overflow spillway. It included 2 of the 18 bays, 1 full intermediate pier, 2 half-piers, a detachable bucket assembly, 200 meters of the reservoir, and 400 meters of the downstream channel, Figure 3A. The radial gates were not included in the model. The model was built of wood with a galvanized sheet metal spillway and a plexiglass wall on one side. The test flume was 10.97 meters long and 76.20 centimeters wide. The head bay was 2.29 meters deep and the tail bay was 0.76 meter deep. The downstream channel consisted of various combinations of false floors (representing concrete

aprons) followed by pea gravel. Flow was supplied to the flume through a 12-inch centrifugal pump and was measured by one of a bank of venturi meters permanently installed in the laboratory. The tailwater elevation was controlled by an adjustable gate.

THE INVESTIGATION

An efficient method of dissipating the tremendous amount of energy generated by the vertical drop at Pa Mong was required. It was felt that a bucket energy dissipator would yield a more economical design than a hydraulic jump stilling basin.

In considering the general performance of a bucket dissipator, there are generally two critical zones of energy dissipation, namely: the surface boil and the ground roller. Generally speaking, energy dissipation in one zone can be reduced resulting in an increase of energy dissipation in the other zone. The criterion for a good bucket design is therefore based on arriving at an equilibrium of energy dissipation in the two zones or a design favoring one zone where more protection is assured.

Several bucket designs were tested. The effectiveness of each design was based on the efficiency of energy dissipation. Visual observation as well as data taken of the water surface profile were used to evaluate the energy dissipation in the two zones. Four spillway discharges were tested for each bucket design; 15,000, 20,000, 25,000, and 30,000 m³/sec. Degradation of 6 to 10 meters is expected in the downstream channel. Therefore, two tailwater conditions, existing and degraded, were tested for each spillway discharge. The degraded tailwater was 6 meters lower than the existing.

Solid Bucket Investigations

Initial Solid Bucket Design.—The initial bucket design was a 13.5-meter-radius solid bucket with an invert elevation of 144.5 meters. The bucket had a 45° tangent exit similar to the Grand Coulee bucket. This bucket provided inadequate energy dissipation. Figure 3B illustrates the general performance with 15,000 m³/sec and existing tailwater conditions. The surface boil was too high resulting in a large scour hole downstream from the bucket where the flow impinged on the pea gravel bed.

Other Solid Bucket Designs.—The short radius of the 13.5-meter bucket turned the spillway flow too sharply (Figure 3B), therefore a 15-meter radius solid bucket

¹Numbers refer to items in bibliography.

was constructed with the invert at elevation 140.00 meters (Figure 4). The invert was placed as low as possible in the flume to increase the tailwater depth at degraded tailwater conditions. Although there was still a large ground roller in the channel bed, the surface boil and wave action looked fairly good at existing tailwater conditions (Figure 4A). When the degraded tailwater conditions were tested, the surface boil began to pulsate in an upstream-downstream orientation (Figure 4B). At the 30,000 m³/sec discharge, the pulsating action became quite intense resulting in 7-meter-high waves 400 meters downstream from the bucket.

Some investigators¹ have suggested that a pulsating surge will appear when the h1/R ratio exceeds a specific value related to the parameter $q/[\sqrt{g(h_1)^{3/2}}]$ where h_1 is defined as the difference in elevation between the maximum reservoir elevation and the bucket invert elevation and R is the bucket radius. A range in h1/R values of 3 to 6 was suggested for the $q/[\sqrt{g(h_1)}^{3/2}]$ parameters associated with this investigation. The 13.5 and 15-meter radius buckets had h₁/R values exceeding 6. Eighteen and 28-meter-radius buckets were tested having h₁/R values of 6.1 and 3.9, respectively. These large radius buckets with h₁/R ratios within or near the suggested limits pulsated in the same manner as the smaller radius buckets (Figures 5B, 6B, and 7B). The 13.5- and 15-meter-radius buckets were as stable, if not more stable, than the 18- and 28-meter-radius buckets. The 15-meter-radius bucket produced the best general performance of the solid buckets.

Tailwater Considerations .- Since at least 6 meters of degradation is expected downstream of Pa Mong Dam. the range of tailwater conditions for a given spillway discharge is fairly broad. The solid buckets tested were placed as low as possible in the test flume. 140.00-meter invert elevation, which is 20 meters below the existing channel bed, With the invert elevation at 140.00 meters, most of the solid buckets tested had just enough tailwater to dampen the tendency for a pulsating surge at existing tailwater. At the degraded tailwater, the surge pulsated in an upstream-downstream orientation creating large waves in the channel downstream from the bucket (Figures 4B, 5B, 6B, and 7B). With sufficient tailwater the pulsating surge was completely eliminated. To achieve more efficient dissipation of energy in the bucket as well as eliminating the pulsating surge, an invert elevation of 130 meters would be required.

It is interesting to note the occurrence of a similar phenomena in the model testing of the Grand Coulee bucket². A transverse wave action occurred in the bucket, and it was effectively eliminated by lowering the bucket invert 20 feet. Although the lower elevation resulted in a negligible increase in excavation in the Grand Coulee design, the bucket invert elevation required for Pa Mong Dam would result in a considerable increase in excavation since the existing riverbed elevation is 160 meters.

Various Exit Designs.—Tests were conducted to determine the effect of various bucket exit configurations on the flow pattern. The 15-meter-radius bucket was used for these tests. The first exit configuration was a radial exit, the bucket curve terminated at the 45^o slope (Figure 8). The second and third configurations consisted of tangent exits extending out from the radial exit on a 45^o slope. The lip elevation was raised to 0.6R and 0.8R above the invert, respectively (Figure 8).

Water surface data are recorded in Table 1 for all three exit designs. The radial exit and 0.6R tangent exit water surface data had essentially the same boil height and water depth in the bucket for corresponding spillway discharge and tailwater conditions. The 0.8R tangent exit yielded a higher boil elevation and lower water depth in the bucket than the radial or 0.6R tangent exits (Figures 4B and 9).

The various solid bucket investigations did not produce a satisfactory energy dissipator for the proposed Pa Mong Dam. Investigations conducted by the Bureau of Reclamation³ have shown that a slotted bucket is an improvement over the solid bucket for low ranges of tailwater depth; therefore, the tests were continued using slotted buckets.

Slotted Bucket (Recommended)

Initial Slotted Bucket Design.-A 13.5-meter slotted bucket (Figure 10) was designed using the design criteria presented in Monograph No. 25^3 . The bucket invert was placed at elevation 140 meters. The tooth width was 1.69 meters with a 0.48-meter space between teeth.

The slotted bucket performance showed quite an improvement over the solid bucket design. The maximum boil height above the tailwater elevation was approximately 5 meters whereas a 12-meter boil height was recorded for the 15-meter solid bucket. The maximum height for the surface waves downstream of the bucket was 4 meters, relatively tranquil compared to the 9-meter waves in the solid bucket tests. A false floor representing a concrete apron was placed at lip elevation and extended downstream 110 meters. This

produced flow currents along the apron for some distance before rising to the surface (Figure 11A).

There were two major areas of concern with the slotted bucket: The problem of cavitation damage on the teeth and apron lip behind the teeth, and the proper design of a concrete apron downstream from the bucket.

Tooth Modifications.-Subsequent protective work on the teeth could be substantially economized by increased tooth width and spacing which would reduce the surface area exposed to low pressures and possible cavitation damage. While retaining the tooth profile, a tooth width-to-spacing ratio of approximately 2:1 was tested using a 2.75-meter tooth width with a 1.40-meter spacing.

Although a smooth surface resulted, there was considerable agitation of the bed downstream of the apron (Figure 11C).

A tooth width to spacing ratio of 3.2:1 was next tested using a 4-meter-width tooth and 1.25-meter spacing. There was a notable improvement in the bucket performance (Figure 12A). The jet flowing along the apron was somewhat unstable at the end sill when lower spillway discharges were tested (15,000 and 20,000 m³/sec). This instability at times pulled pea gravel over the end sill and onto the apron.

A tooth width-to-spacing ratio of 4.25:1 was tested using a 4.25-meter tooth width and 1.00-meter spacing. This tooth configuration yielded almost as good a general performance as the initial small teeth (Figures 11B and 12B), with the added advantage of half the number of teeth with twice the spacing. Data for buckets with an invert elevation of 140.0 meters are presented in Table 1.

Spillway Offset.—In an effort to entrain air in the jet impinging on the teeth, a 1.27-cm offset was constructed on the spillway face above maximum water level in the bucket (Figure 13). The high velocity jet flowing over the offset created a reduced pressure and drew air under the jet immediately downstream from the offset. The difference in the width of the light strip next to the spillway surface in Figures 14A and 14B illustrates the air entrainment produced by the offset. This test indicated that it might be advantageous to include an offset in the spillway design.

Downstream Apron.—The second area of concern was the required length of the apron downstream of the bucket. Since the geological conditions at the Pa Mong damsite require the use of a concrete apron, various lengths were tested to see which would be less exposed to the abrasive action of riprap. Flow leaving the bucket had a tendency to concentrate near the apron surface and cause a backflow along the apron, when it was placed at lip elevation, as shown in Figure 15B. The apron shown in Figure 11A was 110 meters long and as can be seen in the figure, pea gravel was drawn upstream on the apron where it circulated and tended to abrade the apron, downstream of where the flow rose off the apron.

Various lengths of apron were tested for 15,000 and 30,000 m³/sec spillway discharges. A 21-meter-long apron with a 2- by 1-meter sloping end sill proved to be the optimum length for the various discharges. At the 30,000 m³/sec spillway discharge, no bed material was drawn back on the apron and there was no severe erosion of the channel bed downstream of the end sill (Figure 12B). The surface boil rose about 1 meter higher than it had with the initial tooth design due to the end sill. Flow patterns for three bed configurations are illustrated in Figure 15.

Riprap Protection.—The ground roller extends horizontally approximately 80 meters downstream

from the end sill at the $30,000 \text{ m}^3/\text{sec}$ spillway discharge and proposed tailwater. The channel bed should therefore extend 80 meters horizontally from the end sill and then rise at a 6:1 slope to the existing riverbed. One- to 3-ton riprap should be placed for a distance of 5 meters downstream from the end sill to withstand the lifting force exerted on the bed by the jet leaving the end sill. Smaller riprap should be placed for an additional 30 meters immediately downstream from the large riprap.

BIBLIOGRAPHY

1. McPherson, M. D. and Karr, J. M., A Study of Bucket-type Energy Dissipator Characteristics, ASCE Proceedings, 83, HY3, No. 1266, June 1957

2. Warnock, J. E., Experiments Aid in Design at Grand Coulee, Civil Engineering, Vol. 6, 1936, p. 737

3. Hydraulic Design of Stilling Basins and Energy Dissipators, Engineering Monograph No. 25, U.S. Department of the Interior, Bureau of Reclamation, Denver, Colorado, 1963, pp 91-125 Table 1

COMPARISON OF WATER SURFACE PROFILES FOR VARIOUS BUCKET DESIGNS

þ

											-			
	÷.			Tooth			2		Disch	arae		000	000	
Bucket type	m Mađius	Exit type	Bed configura- tion and elevation	upm E	*MT		A*	*0	 [80	MT		A HONO		В
Solid	12	Radial	Conc. Mat. 138.5	1	173.0 167.0	67.2 51.6	182.5 178.0	19.7 16.8	168.2 163.5	179.0 173.0	71.7 72.6	192.0 186.7	29.7 30.6	173.5 167.1
Solid	15	0.6R Tan.	Conc. Mat. 138.5	. 1	173.0 167.0	53.3 50.4	182.5 178.1	23.9 23.0	170.4 164.0	179.0 173.0	11	192.0 186.7	E I	173.5 167.1
Solid	ារ	0.8R Tan.	Conc. Mat. 138.5	Ι	173.0 167.0	54.9 58.3	183.5 179.8	24.7 24.7	169.9 161.7	179.0 173.0	73.4	194.6 191.7	31.4 34.8 	173.3 165.8
Solid	58	Radial	Pea Gravel	I	173.0 167.0	57.1 55.5	181.1 178.1	28.6 26.9	169.8 166.3	179.0 173.0	79.0 -	191.9 187.5	33.6 _	175.0 172.0
Slotted	13.5	12 A	Pea Gravel	1.69	173.0 167.0	45.4 // 45.4	176.3 170.0	28.6 26.9	170.0 163.5	179.0 173.0	87.0 87.0	184.0 177.6	38.6 38.6	173.7 165.5
Slotted	13.5		110 m Conc. Mat. 143.24	1.69	173.0 167.0	67.1 67.1	176.3 169.2	33.6 33.6	170.0 163.0	179.0 173.0	105.5 105.5	181.1 175.3	60.1 57.6	172.7 164.8
Slotted	13.5	د ا ا	21 m Conc. Mat. 143.24	1.69	173.0 167.0	80.6 73.9	173.4 169.1	42.0 36.6	169.7 163.5	179.0 173.0	102.5 101.0	182.1 176.4	48.7 49.5	172.4 165.3
Slotted	13.5	l	21 m Conc. Mat. 143.24	2.75	173.0 167.0	11	174.2 167.4	61.8 56.7	169.2 161.6	179.0 173.0	11	180.8 174.6	84.0 81.0	171.7 165.7
Slotted	13.5	· · · · · · · · · · · · · · · · · · ·	21 m Conc. Mat. 143.24	4,00	173.0 167.0	81.0 81.0	174.6 168.7	45.8 45.0	169.5 163.2	179.0 173.0	106.2 106.2	182.6 177.3	52.5 52.5	172.2 165.5
Slotted	13.5	I	21 m Conc. Mat. 143.24	4.25	173.0 167.0	91.3 91.3	175.6 169.7	49.2 47.6	170.4 163.3	179.0 173.0	107.5 107.5	183.3 177.9	51.8 52.2	173.4 165.2
*All dimensi TW-Tailwatt A-Surface b B-Elevation C-Horizonta D-Horizonta	ons in me er elevatio oil elevati of water il distance	ters on ion in bucket i from bucke	t invert to normal ta tinvert to normal ta	illwater d 1 surface	ownstrea boil eleva	m of surf ation	ace boil							

21 E 9 G

5

A. Spillway with 13.5 m radius solid bucket, invert elevation 144.50. Photo POA28-D-66383

B. Flow in initial design bucket, Q = 15,000 cu m/sec existing tailwater elevation. Photo POA28-D-66384

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

Initial Design Bucket

A. Existing tailwater. Photo POA28-D-66385

B. Degraded tailwater. Photo POA28-D-66386

ò

Invert elevation 140.0 m, apron elevation 138.5 m

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

15 Meter Radius Solid Bucket with Radial Exit, Q = 15,000 cu m/sec

A. Existing tailwater. Photo POA28-D-66387

B. Degraded tailwater. Photo POA28-D-66388

Invert elevation 140.0 m, apron elevation 138.5 m

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

18 Meter Radius Bucket with Tangential Exit, Q = 15,000 cu m/sec

A. Existing tailwater. Photo POA28-D-66389

B. Degraded tailwater. Photo POA28-D-66390

Invert elevation 140.0 m Pea gravel bed at bucket lip elevation

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

13 Meter Radius Solid Bucket with Tangential Exit, $\Omega = 15,000$ cu m/sec

A. Existing tailwater. Photo POA28-D-66391

B. Degraded tailwater, Photo POA28-D-66392

Invert elevation 140.0 m Pea gravel bed at bucket lip elevation

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

28 Meter Radius Solid Bucket with Radial Exit, Q = 15,000 cu m/sec

 \dot{Q} = 15,000 cu m/sec, 0.8R tangent exit, degraded tailwater. Photo POA28-D-66393

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

e de la compañía de

15 Meter Radius Solid Bucket

17 🧋

 \sim

.0

A. Tooth width 1.69 m, spacing 0.48 m, 110-m-long apron at bucket lip elevation, Q = 15,000 cu m/secdegraded tailwater. Photo POA28-D-66394

Figure 11

B. Tooth width 1.69 m, spacing 0.48 m, 21-m-long apron, Q = 30,000 cu m/sec existing tailwater. Photo POA28-D-66395

C. Tooth width 2.75 m, spacing 1.40 m, 50-m-long apron, Q = 30,000 cu m/sec, existing tailwater. Photo

POA28-D-66396

 \sim

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

Various Tooth Width-Spacing Ratios for 13.5 Meter Radius Slotted Bucket

1

<u>,</u>

A. Tooth width 4 m, spacing 1.25 m, 21-m-long apron. Photo POA28-D-66397

B. Tooth width 4.25 m, spacing 1.0 m, 21-m-long apron. Photo POA28-D-66398

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

Various Tooth Width-Spacing Ratios for 13.5 Meter Slotted Bucket Q = 30,000 cu m/sec, Existing Tailwater

÷.

A. Without air slot. Photo POA28-D-66399

B. With air slot. Photo POA28-D-66400

Pa Mong Dam Spillway Bucket Energy Dissipator

1:55.12 Scale Model

Light Slit Indicating Solid Jet at 8ucket Wall, Q = 30,000 cu m/sec Proposed Tailwater

7-1750 (1-70) Bureau of Reclamation

CONVERSION FACTORS -- BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "international System of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giergi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 9.80665 m/sec/sec, the standard acceleration of free fall toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the term "kilogram" (or derived mass unit) has been used in this guide instead of "kilogram-force" in expressing the conversion factors for forces. The newton unit of force will find increasing use, and is essential in SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I

QUAN	TITLES AND UNITS OF SPA	<u>CE</u>
Multiply	Ву	To obtain
	LENGTH	
Mil	25.4 (exactly). 25.4 (exactly). 2.54 (exactly). 0.3048 (exactly). 0.3048 (exactly). 0.0003048 (exactly). 0.9144 (exactly). 1.609344 (exactly).	Micron Millimeters Centimeters Meters Kilometers Meters Meters Kilometers Kilometers Kilometers
	AREA	
Square inches	6. 4516 (exactly) 929. 03*. 0. 092903 0. 836127 0. 40469* 4. 046. 9* 0. 0040469* 2. 58999	
	VOLUME	
Cubic inches	16.3871 0.0283168 0.764555	Cubic centimeters Cubic meters <u>Cubic meters</u>
	CAPACITY	
Fluid ounces (U.S.)	29.5737 29.5729 0.473179 0.473166 946.358* 0.946331* 3,785.43* 3,785.43*	Cubic centimeters Milliliters Cubic decimeters Liters Cubic centimeters Liters Cubic centimeters Cubic centimeters Cubic centimeters
Gallons (U.K.)	3, 78533. 0, 00378543*. 4, 54609 4, 54596 28, 3160 764, 55* 1, 233, 5* 1, 233, 5* 1, 233, 5*	Cubic meters Cubic meters Cubic decimeters Liters Liters Liters Cubic meters

II eldeT

601

•		*******	****	-

Aug. 1 10 1 1 1	

QUANTITIES AND

			_		_
١Ň	AHO3	ΞŴ.	OF	STIV	au a

Multiply

	San In 11 ³ Perme Santres	ernatO Metric Metric	•	:	:	:			:	:	:	:	:	92 998 1	9'1 9'0 1'0) I	•		:	:	:	1 (2:	uu ođ	Q B EV	19 (= (=	367) 1501 1902 1902 1902 1902 1902 1902 1902 19	2 (i 1) 2 1) 2 2 (i	itse 129 139 139 139 139 139 139 139 139 139 13	มา=เ d) ธะ ณารเ น/รเ	Lend Lend Ren Ren Ren
			••••			NC	215	SI	W	N.	АЯ	IT,	RC)d t	۶A	ਸਤ.	ΓĄ	Ŵ.												
	118WIUIm ² mo 0 C 0 Eob ma	M Cal/dr 1/d de Ded C			•	•	•						08 11 8	260 892 000 991 192							<u>{</u> ^	سع ادرا ال	re ap: Jiv	זבן. ו גו וו	າມ 198 ' ອີ	ייי יי יי	שע ס) וווו	(10) 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E	nti 7 tetat de de de de di (t)	E/g\] B/ft\] B/ft\] Los Los Dod]
	atts/cm deg C اللہ یہ deg C بیاریہ سک deg C بیاریہ سک deg C کام D	Kg cal, Kg cal, Kg cal, Milliw: Kg cal,	•	•	•		•	•	•	•	•	•	0	2 89 9 91 139 137	1.9 1.0 1.0		•	•		•		Len	119	۲۲ (۲۰ (۲۰	יי אוו ב	eg F ((la ep npu s	ייכו ק קפ נוק נוק נוק נוק	יו גני גערי ע/יי ע/יי	1 ma 1 ma 1 ma 1 ma 1 ma
	·····				•••				Я;	33	SŃ	ivi	ΤĿ	T.	731	HT.					~~									
<u></u>		elleW elleW elleW	:	•		•	:	•	:		•	.1	28 20	999 563 500	1 0	<u>ا</u> با		:	:		:	;	:		108	s i	əđ	19 ont spi	inod c u y vođa	StoH 1 vi8 1001
										-	Я	ΥE	10	ď						_										
	per grann	Vilogre Joules Joules Seinol			÷	•	•	:	: : :	(Å)	i,s	ex	* 38 38	999 928 928 98 593	1	90 *	:	:	•	•	•	:			511	 un .	'p IEn	spi uno use	inda d 19 di 19	1118 1 118 1 118

<u>____</u>

<u>III aldaT</u>

STINU ONA SALTITUAUO RAHTO

To obtain										λę	Ξ													- Ki	σητ	nM		
		·					_			_																		
the request of the second states and states and the second states and the second states and states	'	•	•	•	•	'	•	1	•	•	•	-1	8 . V	30	•	•	ľ	•	Jê	d 1	001	. 91	inau Inau	bs (ade bet	1555 165	n) An 1 D10	ip in D
Totaus sharps tog brooss metpoliti	•	•	•	•	Ē	•	•		•	•	• •	38	8.6		•	•	1	· '	100	т =	 	, bs			22 1710	.1150 0.299	0051. - D111	sj Ind
bicoss red . Tolont enable		'	•	,	1	1		1	1	÷ E(38	23(0.0		•	1	1	(٨)	120	sel	v) I	puc) 29	S J	eq 3	asi	91£	IDS
Celsius or Kelvin dogrees (change)*	•	•	•	•	٠	•	٠	•	X	nə	ВX	a (3/5		•	•			°.	(əÉ	սպ	(C)	SÐ	91P	ap 1	119Al	19 TL	re I
Khovolts per millimeter		•		٠	٠	,	٠	•		•	68	38C	o •o		•		٠	,	-1	501	10			•	1100	19	1 s1	io y
Lumens per square meter	•	•		•	•	•	•		•	•		-9	. 0	T	•	'	•	•	۰.						· ·	(83) - (83)	րու	/ə 1910
Ohn-square millimeters per meter	•	•	•	-	•	•	•	*	•	25	99	τŌ	o'd		•	•		•	•	10	n ic	ed	Sį	ţШ	វថា	1943	ə-u	чС
Millicuries per cubic meter	•	٠	•	٠	•	٠	٠	٠	•	-	LF.	īε	.9¢.		•	•	•		•	•	looj	i aj	jqn	3 J.	əd s	រងរុច	noti	٦ľ
Williamps per square meter	•	٠	•	٠	•	•	•	,	•	ŧ	3E	ēī.	٠òı		•	•	٠	•	•	• 1	oòt	ə,	um:	ba .	req	ទជប	ner).	πē
ructs bet square meter	٠	•		٠	٠	•	•			лĽ	30 21	żç	٠ <u>+</u>		•	•		•	•	•	• p4	ъs	e,	ent	s i	ad s	nior	201
Kilograms per centimeter			•	•	•	•	•		•	- B	99	41	.0		.,	•		•		•	• •	•		чэ	ալյ	ted i	spu	n

6 PO 830+798

ntaido o'f

Source the second secon	+ 4192 × 10-2+ + 4192 × 10-2+	· · · · · · · · · · · · · · · · · · ·
	70104	
	120104	
 Cubic meters per second Liters per second Liters per second 	0174-0 0174-0 010-02009	[eet] Cubic test per minute Gallons (U, S,) per minute .
• • • • •	···· -	Cubic feet per second (second
	FLOW	
Meters per second ²	*0°30'99'	Feet per second?
	*NOITARAJAOOA	
min the state of t	·····	
Kliometers per hour	1, 609344 (exactly)	Miles per hour
brobes red arelenting)	0' 566693 × 10-6*	Feet per year.
Centimeters per second Meters per second	(VI)25X9) 80.00	Feet per second.
· · · · · · · · · · · · · · · · · · ·	<u>VELOCITY</u>	
	800 GA	Foot-pounds per inch
Centimeter-dynes	1-322883 × 101' · · · ·	• • • • • • • • • • • • • • • • • • • •
smargaita-retent	0 138592	strung-1007
Centimeter-drag	901 × 12882 1	spunod-upuj
Presence ind		····
	BENDING WOMENT OF TOROUE	
เกม เอส รับสมา .	87.4 '88	Pounds per qaiton (U. K.)
Tell Teq Email	· · · · · · · · · · · · · · · · · · ·	Pounds per gallon (U. S.)
Telli Teq analo	6, 2362	Ounces per gallon (U.K.)
Grams per liter	2686-7	Caulty notion regression
	YTTDAGAD\22AM	
Crapts per cubic centmeter	1.32894	Tons (long) per cubic vard
telemines stor cubic centimeter	0100182	· · · ·
Kijourano cunic tel subic	9810 91 AG62/ T	Ources per cubic that
releasing pidup and parcel		
	(YTISNED) ENULOV/SBAM	
Newtons per square meter	1086.74	
Kilograms per square meter	1' 89243	 four strugg rad spring
Mewions per square continues	921689 U	Pounds per square inch
Notomitinos energias and amanolis		
	ANRANNON	
Kilodrams	1'016'05'	(di 045.S) anoi pro l
SUBTIOUA .	991 408	(dl 000 (S) and rand
Kilograms	0.46360237 (exactly).	Counds (avdp).
Crams	9616 BZ	(dbve) segun
ansiguma Grans	31 1035 (exactly)	(di 000,7\i) ania10
	SSAM	•••
		A I OLIVION
UTBIOD O.I.	AH .	wintering

ABSTRACT

Model studies were made to determine the most efficient means of energy dissipation for the Pa Mong Dam spillway. The spillway has a design discharge of 36,150 cu m/sec. Solid and slotted buckets were tested. The slotted bucket design resulted in excellent energy dissipation with minimum surface wave action and bed erosion. Various tooth width-to-spacing ratios were tested in an attempt to achieve as large a tooth width and spacing as possible. Several lengths of apron placed at bucket lip elevation were tested to determine optimum length. Tests of an offset on the spillway surface indicated a method of entraining air in the high-velocity flow entering the bucket energy dissipator.

لركن

ABSTRACT

Model studies were made to determine the most efficient means of energy dissipation for the Pa Mong Dam spillway. The spillway has a design discharge of 36,150 cu m/sec. Solid and slotted buckets were tested. The slotted bucket design resulted in excellent energy dissipation with minimum surface wave action and bed erosion. Various tooth width-to-spacing ratios were tested in an attempt to achieve as large a tooth width and spacing as possible. Several lengths of apron placed at bucket lip elevation were tested to determine optimum length. Tests of an offset on the spillway surface indicated a method of entraining air in the high-velocity flow entering the bucket energy dissipator.

ABSTRACT

Model studies were made to determine the most efficient means of energy dissipation for the Pa Mong Dam spillway. The spillway has a design discharge of 36,150 cu m/sec. Solid and slotted buckets were tested. The slotted bucket design resulted in excellent energy dissipation with minimum sufface wave action and bed erosion. Various tooth width to spacing ratios were tested in an attempt to achieve as large a tooth width and spacing as possible. Several lengths of apron placed at bucket lip elevation were tested to determine optimum length. Tests of an offset on the spillway surface indicated a method of entraining air in the high-velocity flow entering the bucket energy dissipator.

ABSTRACT

Model studies were made to determine the most efficient means of energy dissipation for the Pa Mong Dam spillway. The spillway has a design discharge of 36,150 cu m/sec. Solid and slotted buckats were tested. The slotted bucket design resulted in excellent energy dissipation with minimum surface wave action and bed erosion. Various tooth width-to-spacing ratios were tested in an atternpt to achieve as large a tooth width and spacing as possible. Several lengths of apron placed at bucket lip elevation were tested to determine optimum length. Tests of an offset on the spillway surface indicated a method of entraining air in the high-velocity flow entering the bucket energy dissipator.

REC-OCE-70-17

Burgi, P H

HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM, PA MONG PROJECT, LAOS AND THAILAND

Bur Reclam Lab Rep REC-OCE 70-17, Hydraul Br, May 1970. Bureau of Reclamation, Denver, 23 p, 15 fig, 4 tab, 3 ref

DESCRIPTORS-/ *hydraulic models/ *energy dissipation/ *buckets/ aprons/ spillways/ *erosion/ laboratory tests/ riprap/ discharges/ velocity/ air entrainment/ offsets/ hydraulic structures/ waves (water)/ *pulsating flow IDENTIFIERS-/ *slotted buckets/ Pa Mong Dam/ Pa Mong Project REC-OCE-70-17

Burgi, P H

HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM, PA MONG PROJECT, LAOS AND THAILAND

Bur Reclam Lab Rep REC-OCE-70-17, Hydraul Br, May 1970. Bureau of Reclamation, Denver, 23 p, 15 fig, 4 tab, 3 ref

DESCRIPTORS-/ *hydraulic models/ *energy dissipation/ *buckets/ aprons/ spillways/ *erosion/ laboratory tests/ riprap/ discharges/ velocity/ air entrainment/ offsets/ hydraulic structures/ waves (water)/ *pulsating flow

IDENTIFIERS-/ *stotted buckets/ Pa Mong Dam/ Pa Mong Project

REC-OCE-70-17

Burgi, P H

HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM, PA MONG PROJECT, LAOS AND THAILAND Bur Reclam Lab Rep REC-OCE-70-17, Hydraul Br, May 1970. Bureau of Reclamation, Denver, 23 p, 15 fig, 4 tab, 3 ref

DESCRIPTORS-/ "hydraulic models/ "energy dissipation/ "buckets/ aprons/ spillways/ "erosion/ laboratory tests/ riprap/ discharges/ velocity/ air entrainment/ offsets/ hydraulic structures/ waves (water)/ "pulsating flow

IDENTIFIERS-/ *slotted buckets/ Pa Mong Dam/ Pa Mong Project

REC-OCE-70-17 Burgi, P H HYDRAULIC MODEL STUDIES OF THE SPILLWAY BUCKET ENERGY DISSIPATOR, PA MONG DAM, PA MONG PROJECT, LAOS AND THAILAND Bur Reclam Lab Rep REC-OCE-70-17, Hydraul Br, May 1970. Bureau of Reclamation, Denver, 23 p, 15 fig, 4 tab, 3 ref

DESCRIPTORS-/ "hydraulic models/ "energy dissipation/ "buckets/ aprons/ spillways/ "erosion/ laboratory tests/ riprap/ discharges/ velocity/ air entrainment/ offsets/ hydraulic structures/ waves (water)/ "pulsating flow IDENTIFIERS-/ "slotted buckets/ Pa Mong Dam/ Pa Mong Project