HYPRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE
2.5 MGD UNIVERSAL DESALINATION PLANT - OFFICE OF SALINE WATER
G. I. Beichley

Division of Research Office of Chief Engineer Bureau of Reclamation

May 1970

Prepared for OFFICE OF SALINE WATER Washington, D. C. 20240

TECHEICAL REFOPIP STANDARD TTMLE PAGE

REC-OCE-70-16	2. Government hecession No	3. Kecipient's	s Catalog No.		
4. Title and Subtitle		$\begin{aligned} & \text { 5. Report Date } \\ & \text { May } 1970 \end{aligned}$			
Hydraulic Model Studies of Interstage Module Piping in the 2.5 MGD Universal Desalination Plant - Office of Saline Water		6. Performing OrganizationCode			
7. Author (b) G. L. Beichley		8. Performing Organization Report No.			
```9. Performing Organization Name and Address Divisiou of Research Office of Chief Engineer Bureau of Reclamation Denver, Colorado }8022```		10. Work Unit No.			
		11. Contract or Grant No.			
		13. Type of Report and Period Covere3			
12. Sponsoring Agency Name and Address Office of Saline Water Washington, D.C. 20240					
		14. Sponsoring Agency Code			
15. Supplementary Notes					
16. Abstract   A $1: 2.33$ scale model was used to determine the head loss for 118 deg $F$ ( 47.77 deg C ) salt water brine flowing through the interstage piping between 2 of the modules in the 2.5 MGD Universal Desalination Plant. Head loss coefficient curves for the system with and without a control valve were established for Reynolds numbers ranging from 170,000 to $1,200,000$. Total head loss in the prototype system was 0.53 ft ( 16.15 cm ) without a control valve in the system and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $100 \%$ open at the downtream end of the system.					
17. Key Words DESCRIPTORS--/ *Regnolds number/ *Froude number/ *head loss/ turbulence/ vortices/ butterfly valves/ pipelines/ hydraulic models/ density/ piping (mechanical)/ *viscosity/ desalination plants/ brines/model tests IDENTIFIERS--/ modules/ salt solutions/ plenum chambers					
18. Distribution Statement No 1imitation					
19. Security Classif. (of this report)   None	$\left[\begin{array}{c}\text { 20. Security Classif. } \\ \text { (of this poge) } \\ \text { None }\end{array}\right.$	1. Nos. of Pages 13	22. Price		

# HYDRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE 2.5 MGD UNIVERSAL DESALINATION PLANT - OFFICE OF SALINE WATER 

## by

G. L. Beichley

May 1970

Hydraulics Branch
Division of Research
Office of Chief Engineer
Denver, Colorado

## ACKNOWLEDGMENT

The studies were conducted by the author and reviewed by T. J. Rhone under the supervision of the Structures and Equipment Section head, W. E. Wagner. The final plans evolved from these studies were developed through the cooperation of the Office of Saline Water, Distillation Division, and the Bureau of Reclamation, Hydraulics Branch of the Research Division in the Office of Chief Engineer during the period June 1967 through October 1967.

## CONTENTS

Page
Purpose ..... 1
Conclusions ..... 1
Applications ..... 1
Introduction ..... 1
The Model ..... 1
The Investigation ..... 2
Without Control Valve ..... 2
With Control Valve ..... 2
Appendix A ..... 3
LIST OF FIGURES
Figure
1 Plant Schematic and Tabulation Sheet ..... 5
2 Module Assembly-Heat Recovery Below $180^{\circ} \mathrm{F}$ ..... 6
3 Module End-RH-Heat Recovery Below $180^{\circ} \mathrm{F}$ ..... 7
4 Module End-LH-Below $180^{\circ} \mathrm{F}$ ..... 8
5 Model Layout of Intermodule Piping ..... 9
6 Model Views ..... 10
7 Head Loss Between Modules M6-M7 ..... 11
8 Flow Conditions at Entrance and Exit Plenums ..... 12
$9 \quad$ Butterfly Valve Installation ..... 13
Conversion Factors-British to Metric Units
of Measurement

## PURPOSE

The purpose of the study was to determine the head losses incurred with the discharge of a given quantity of $118^{\circ} \mathrm{F}\left(47.77^{\circ} \mathrm{C}\right) 5$ percent salt-saturated brine through the most critical of the interstage module piping.

## CONCLUSIONS

1. Head loss coefficient curves for the system with or without the control valve were determined for Reynolds numbers ranging from 170,000 to $1,200,000$, Figure 7.
2. The total head losses for the required flow with and without a control valve were 0.53 and 0.56 feet ( 16.15 and 17.07 cm ), respectively. Thus, the differential head between modules must be increased to provide the desired flow.

## APPLICATIONS

This study was conducted primarily on a Reynolds number model relationship to determine the head loss incurred by $118^{\circ} \mathrm{F}\left(47.77^{\circ} \mathrm{C}\right) 5$ percent salt-saturated brine frowing between modules in a desalination plant. The results can be compared with two methods of computing the losses shown in the appendix and thus the best method for computing the losses in installations of similar design can be determined.

## INTRODUCTION

The Office of Saline Water requested the Chief Engineer's Office of the Bureau of Reclamation to design, construct, and test a model of the interstage piping between modules at the most critical location with respect to driving force (or head) required and the driving force available in the 2.5 MGD $\left(9.46 \times 10^{6}\right.$ L/Di Universal Desalination Plant, Figures 1, 2, 3, and 4. The outside pipeline between the last two modules, M6 and M7, provided the most critical flow conditions. The available driving force between these two modules will be the minimum in the system, and the outside line will offer more resistance to the flow than the shorter inside line.

The flashing brine in these last two modules will be 5 percent salt saturated at $118^{\circ} \mathrm{F}\left(47.77^{\circ} \mathrm{C}\right)$ flowing at a rate of nearly $5,965,000$ pounds $(2,705,724 \mathrm{~kg})$ per hour. The brine is assumed to be equally divided between the inside and outside passages, each of which
has an inside diameter of 2.33 feet $\{71.1 \mathrm{~cm})$. For these considerations, the brine will have a density of $63.7 \mathrm{lbs} / \mathrm{ft}^{3}\left(1,020.39 \mathrm{~kg} / \mathrm{m}^{3}\right)$, and a dynamic viscosity of $4.06 \times 10^{-4} \mathrm{lbs} / \mathrm{ft} \mathrm{sec}(0.56 \mathrm{~kg} / \mathrm{m} \mathrm{sec})$ from which the Reynolds number was computed to be approximately $1.17 \times 10^{6}$.

The available driving force between M6 and M7 was computed to be approximately 0.25 foot ( 7.74 cm ) of water with the two modules at the same elevation. Head losses computed for the design flow by the velocity head loss method and the equivalent length loss method (Appendix A) were determined to be approximately 0.5 and 0.4 foot ( 15 and 20 cm ) of water, respectively, for the design configuration. Thus, some adjustment in relative elevation of the modules is necessary based on these computations. Because of limitations on the elevation of the modules, the hydraulic model study was undertaken to more accurately determine the losses. In addition, there was a need to deiermine the added loss created when using an interstage control valve in the line to match the pressure drop to the driving force for appropriate brine levels in the stages adjacent to the ends of the modules.

## THE MODEL

The configuration of the outside pipeline to convey the brine from Module M6 to M7, including the entrance and exit from and into the pipeline, Figures 1, 3, and 4 , was modeled to a scale of 1 to 2.33 , Figures 5 and 6. An open box represented each of the two modules. The left side of each module was represented so that the right side of each box is on the centerline of the module. The reverse is true in the prototype layout in Figure 1.

The 28 -inch- ( 71.12 -cm-) inside-diameter steel pipe in the prototype was represented with a 12 -inch ( $30.48-\mathrm{cm}$ ) steel pipe in the model. The roughness coefficient " f " in the model was estimated at 0.013 for the Reynolds number at which the prototype is expected to operate. This roughness coefficient compares favorably with estimates for the proiotype pipe. Water at $67.5^{\circ} \mathrm{F}\left(19.72^{\circ} \mathrm{C}\right)$ represented the $118^{\circ} \mathrm{F}\left(47.77^{\circ} \mathrm{C}\right)$ brine ir, the prototype.

In the second phase of the investigation, a butterfly valve in the full-open position was installed in the pipeline to represent the control valve. For Peynolds number similarity, the model was operated such that the prototype discharge of $2,982,500$ pounds $(1,352,862 \mathrm{~kg})$ per hour per pipe [13.4 cfs ( 0.38 cms )] was represented by approximately $9.00 \mathrm{cfs}(0.255 \mathrm{cms})$
in the model. The prototype velocity of approximately 3.05 feet ( 0.91 m ) per second in the pipe was represented by a velocity of about 11.50 feet ( 3.51 m ) per second in the model. A prototype head loss of 0.4 foot ( 0.12 m ) would be represented by approximately 5.5 feet ( 1.68 m ) of water in the model.

For Froude number similarity, the model was operated such that the prototype discharge of $13.4 \mathrm{cfs}(0.38$ cms ) was represented by $1.56 \mathrm{cfs}(0.04 \mathrm{cms})$ in the model, and the pipeline velocity was approximately 2.0 feet $(0.66 \mathrm{~m})$ per second in the model.

## THE INVESTIGATION

In the first phase of the investigation, the overall head loss between Modules M6 and M7 of the 2.5 MGD ( $9.46 \times 10^{6}$ L/D) Universal Desalination Plant, Figures 1 through 4, was determined for a range of Reynolds numbers up to and inclusding $1.117 \times 10^{6}$ without a control valve.

In the second phase, the head loss measurements were to be repeated but with a butterfly control valve 100 percent open placed near the downstream end of the intermodule piping.

## Phase I Without Control Valve

The inverts of the two boxes representing Modules M6 and M7 were set at the same elevation. The water surface piezometers shown in Figure 5 were used to measure the depth of flow for model discharges ranging from 1.5 to over 9 cfs ( 0.042 to 0.255 cms ). The head loss in the system between the two modules was the
difference in flow depths plus the velocity head differential. This head loss was then related to the interstage pipeline velocity head to obtain the loss coefficient $K$ shown plotted versus Reynolds number in Figure 7. By appiying the total head loss coefficient of 3.65 at the anticipated Reynolds number of $1.117 \times$ $10^{6}$ in Figure 7 to the prototype velocity head in the pipeline between modules, the head loss is determined to be 0.53 foot ( 16.15 cm ). This corresponds closely with the maximum computed head loss (see Appendix).

To observe the plenum entrance and exit flow conditions which were drowned out by the large model depths necessary for a Reynoids number relationship, the model was operated on a Froudian relationship. Vortices appeared in the entrance plenum and a considerable turbulence was present in the exit plenum, Figure 8. However, due to the lack of model similarity in representing the $118^{\circ} \mathrm{F}\left(47.77^{\circ} \mathrm{C}\right)$ brine in the prototype, it was not clear as to how these flow conditions using the Froudian relationship represented the prototype.

## Phase II With Control Valve

A butterfly valve was installed near the downstream end of the interstage piping, Figures 5 and 9, to determine its effect on the head loss when the valve is fully open. The same tests performed without the valve were repeated and the results plotted in Figure 7. The head loss coefficient was increased to about 3.86 at the anticipated prototype Reynolds number of $1.117 \times$ $10^{6}$, equivalent to a total head loss to about 0.56 foot $(17.07 \mathrm{~cm})$.

## APPENDIX A

HEAD LOSS CALCULATIONS BETWEEN VESSELS M6 TO M7


Flow rate per pipe is $2,982,500$ pounds $(1,352,862 \mathrm{~kg})$ per hour
Velocity Head Loss Method

## Entrance and Exit Losses

Entrance loss from Stage $n$ to plenum	$K=0.5$
Exit loss from plenum to Stage $n+1$	$K=1.0$
	$K=1.5$

$h_{L}=K \frac{V^{2}}{2 g}$ where $V=1.00 \mathrm{ft} / \mathrm{sec}(30.48 \mathrm{~cm} / \mathrm{sec})$ $=0.023$ foot $(0.70 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$
$\begin{array}{ll}\text { Entrance loss from plenum to pipe } & K=0.5 \\ \text { Exit loss from pipe to plenum } & K=1.0 \\ \text { Total } & K=1.5\end{array}$

$$
\begin{aligned}
h_{L} & =K \frac{V^{2}}{2 g} \text { where } V=3.05 \mathrm{ft} / \mathrm{sec}(92.96 \mathrm{~cm} / \mathrm{sec}) \\
& =0.217 \text { foot }(6.61 \mathrm{~cm}) \text { of } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## Bend Losses

Four $45^{\circ}$ miter bends $-K=0.45$ per bend

$$
\begin{aligned}
\mathrm{h}_{\mathrm{L}} & =\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}} \text { where } V=3.05 \mathrm{ft} / \mathrm{sec}(92.96 \mathrm{~cm} / \mathrm{sec}) \\
& =0.260 \text { foot }(7.92 \mathrm{~cm}) \text { of } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Pipe Loss
Reynolds Number " $\mathrm{R}_{\mathrm{e}}$ " $=\frac{\mathrm{VD} \rho}{\mu}$ where $\mathrm{D}=2.33$ feet $(71.02 \mathrm{~cm})$

$$
\begin{aligned}
& V=3.05 \mathrm{ft} / \mathrm{sec}(92.96 \mathrm{~cm} / \mathrm{sec}) \\
& \rho=63.7 \mathrm{lb} / \mathrm{ft}^{3}\left(1,020.38 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \mu=4.06 \times 10^{-4} \mathrm{lb} / \mathrm{ft} \mathrm{sec}(0.60 \text { centipoise })
\end{aligned}
$$

(Reference: "Saline Water Conservation Data Book"-OSW 12.90)
$R_{e}=1.117 \times 10^{6}$
then $f=0.013$ (Reference: Crane T.P. No. 409, page 6)
$h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g}$ where $L=33$ feet $(10.06 \mathrm{~m})=0.026$ foot $(0.79 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$

Total losses, $H_{L}=0.023+0.217+0.260+0.026=0.526$ foot $(16.03 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$

## Equivalent Length Loss Method

## Entrance and Exit Losses

Same as for Velocity Head Loss Method.

## Bend and Pipe Losses

$L$ (for $45^{\circ}$ miter) $=15^{\circ}$ per bend $)$
Total equivalent $L=33+(4 \times 15 \times 2.33)=173$ feet $(52.73 \mathrm{~m})$
$h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g}=0.013 \times \frac{173}{2.33} \times \frac{3.05^{2}}{2 g}$
$=0.139$ foot $(4.24 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$

Total losses $H_{L}=0.023+0.217+0.139=0.379$ foot $(11.55 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$

## AVAILABLE DRIVING FORCE

Vapor mressure in M6 ( $\mathrm{PV} \mathrm{V}_{\mathrm{n}}$ ) - vapor pressure in $\mathrm{M} 7\left(\mathrm{PV} \mathrm{n}_{\mathrm{n}+1}\right)=0.25$ feet $(7.74 \mathrm{~cm})$ of $\mathrm{H}_{2} \mathrm{O}$

FIGURE 1


FIGURE 2


FIGURE 3


FIGURE 4


FIGURE 5


FIGURE 6

A. Interstage pipe!ine from module M6 on the right to module M7 on the left. Photo P800-D-66407

B. Plenum entrance to pipeline in M6. Photo P800-D-66408

C. Plenum exit from pipeline into M7. Photo P800-D-66409
2.5 MGD UNIVERSAL DESALINATION PLANT

INTERSTAGE PIPING MODEL.
1:2.33 SCALE MODEL

$K=2 g\left(H_{L} / V^{2}\right)$ and $R_{e}=V D / v$
Where:
$H_{L}=$ Total Head Loss between modules.
$V=$ Velocity in the Pipe between modules.
$D=$ Inside diometer of Pipe.
$\nu=$ Kinematic Viscosity.
$g=$ Acceleration of Gravity

> 2.5 MGD UNIVERSAL DESALINATION PLANT HEADLOSS BETWEEN MODULESMGANO M7 1:2.333 SCALE MODEL

FIGURE 8

A. Vortices at plenum entrance in module M6. Photo P800-D-66410

B. Turbulence at plenum exit in module M7. Photo P800-D-66411

### 2.5 MGD UNIVEFSAL DESALINATION PLANT <br> FLOW CONDITIONS AT THE ENTRANCE AND EXIT PLENUMS

1:2.33 SCALE MODEL

A. Butterfly valve at entrance to module M6. Photo P800-D-66412

B. Gate leaf in open position. Photo P800-D-66413

### 2.5 MGD UNIVERSAL DESALINATION PLANT

 BUTTERFLY VALVE INSTALLATION1:2.33 SCALE MODEL

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Praztice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "International System of Units" (designated SI for Sysieme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) System. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg , gives it an acceleration of $9.80665 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$, the standard acceleration of free fail toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton ( N ), which is defined as that force which, when applied to a body heving a mass of 1 kg , gives it an acceleration of $1 \mathrm{~m} / \mathrm{sea} / \mathrm{sec}$. These units must be distinguished from the (inzonstant) local weight of a body having a mass of 1 kg ; that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force, " the term "kilogram" (or derived mass unit) has been used in this quide instead of "kilogramforce" in expressing the conversion factors for forces. The newton unit of force will find increasing use, and is essential in SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I
QUANTITIES AND UNITS OF SPACE


Table II
QUANTTTIES AND UNITIB OF MECHANICS

Multiply	By	To obtaln
MASS		
FORCE/AREA		
MASSNOLUME (DENSTTY)		
MASS/CAPACITX		
BENDING MOMENT OR TOROUE		
VELOCITY		
ACCELERATION*		
Feet per serond ${ }^{2}$. . . . . . . . . + 0, 30484 . . . . . . . . . . Meters per second ${ }^{2}$		
FLOW		
FORCE*		
Pounds.	$\begin{aligned} & 0.453682 * \\ & 4.4482 * \\ & 4.4482 \times 10^{-5 *} \\ & \hline \end{aligned}$	Kilograms Newtons Dynes

## ABSTRACT

A $1: 2.33$ scale model was used to determine the head loss for $118 \mathrm{deg} \mathrm{F}(47.77 \mathrm{deg} \mathrm{C})$ salt water brine flowing through the interstage piping between 2 of the modules in the 2.5 MGD Universal Desalination Plant. Head loss coefficient curves for the system with and without a control valve were established for Reynolds numbers ranging from 170,000 to $1,200,000$. Total head loss in the prototype system was $0.53 \mathrm{ft}(16.15 \mathrm{~cm})$ without a control valve in the system and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $100 \%$ open at the downstream end of the system.

## ABSTRACT

A 1:2.33 scale model was used to determine the head loss for $118 \mathrm{deg} \mathrm{F}(47.77 \mathrm{deg} C)$ salt water brine flowing through the interstage piping between 2 of the modules in the 2.5 MGD Universal Desalination Plant. Head loss coefficient curves for the system with and without a control valve were established for Reynolds numbers ranging from 170,000 to $1,200,000$. Tota head loss in the prototype system was $0.53 \mathrm{ft}(16.15 \mathrm{~cm})$ without a control valve in the system and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $\mathbf{1 0 0 \%}$ open at the downstream end of the system.

## ABSTRACT

A 1:2.33 scale model was used to datermine the head loss for $118 \operatorname{deg} F(47.77 \mathrm{deg} C)$ salt water brine flowing through the interstage piping between 2 of the modules in the 2.5 MGD Universal Desalination Plant. Head loss coefficient curves for the system with and without a Universal Desalination Plant. Head loss coefficient curves for the system with and without a
control valve were established for Reynoids nombers ranging from 170,000 to $1,200,000$. Total control valve were established for Reynolds nombers ranging from 170,000 to $1,200,000$. Total
head loss in the prototype system was $0.53 \mathrm{ft}(16.15 \mathrm{~cm})$ without a control valve in the system head loss in the prototype system was $0.53 \mathrm{ft}(16.15 \mathrm{~cm})$ without a control valve in the system
and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $100 \%$ open at the downstream end of the and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $100 \%$ open at the downstream end of the system.

## ABSTRACT

A 1:2.33 scale model was used to determine the head loss for $118 \mathrm{deg} \mathrm{F}(47.77 \mathrm{deg} \mathrm{C}$ ) salt water brine flowing through the interstage piping between 2 of the modules in the 2.5 MGD Universal Desalination Plant. Head loss coefficient curves for the system with and without a control valve were established for Reynolds numbers ranging from 170,000 to 1,200,000. Total head loss in the prototype system was $0.53 \mathrm{ft}(16.15 \mathrm{~cm})$ without a control valve in the system and $0.56 \mathrm{ft}(17.07 \mathrm{~cm})$ with a butterfly control valve $100 \%$ open at the downstream end of the system.

REC-OCE-70-16
Beichley, GL
HYDRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE 2.5 MGD UNIVERSAL DESALINATION PLANT-OFFICE OF SALINE WATER.
Bur Reclam Lab Rep REC-OCE-70-16, Hydraul Br, May 1970. Bureau of Reclamation, Denver, 13 p, 9 fig, 3 tab, append

DESCRIPTORS-/ *Reynolds number/ *Froude number/ "head loss/ turbulence/vortices/ butterffy valves/ pipelines/ hydraulic models/ density/ piping (mechanical// "viscosity/ desalination plants/brines/model tests
IDENTIFIERS-/ modules/salt solutions/ plenum chambers

## REC-OCE-70-16

Beichley, GL
HYDRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE 2.5 MGD UNIVERSAL DESALINATION PLANT-OFFICE OF SALINE WATER.
Bur Reclam Lab Rep REC-OCE-70-16. Hydraul Br, May 1970. Bureau of Reclamation, Denver, 13 p, 9 fig, 3 tab, append

DESCRIPTORS-/ *Reynolds number/ "Froude number/ "head loss/ turbulence/ vortices/ butterfly valves/ pipelines/ hydraulic models/ density/ piping (mechanical)/ *viscosity/ desalination plants/brines/ model tests
IDENTIFIERS-/ modules/salt solutions/ plenum chambers

## REC-OCE-70-16

Beichley, G L
HYDRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE 2.5 MGD UNIVERSAL DESALINATION PLANT-OFFICE OF SALINE WATER
Bur Reclam Lab Rep REC-OCE-70-16. Hydraul Br, May 1970. Bureau of Reclamation, Denver, 13 p. 9 fig, 3 tab, append

DESCRIPTORS-/ *Reynolds number/ *Froude number/ "head loss/ turbulence/ vortices/ butterfly valves/ pipelines/ hydraulic models/ density/ piping (mechanical// "viscosity/ desalination plants/ brines/ model tests
IDENTIFIERS-/ modules/ salt solutions/ uienum chambers

## REC-OCE-70-16

Beichley, G L
HYDRAULIC MODEL STUDIES OF INTERSTAGE MODULE PIPING IN THE 2.5 MGD UNIVERSAL DESALINATION PLANT-DFFICE OF SALINE WATER.
Bur Reclam Lab Rep REC-OCE--70-76. Hydraul Br. May 1970. Bureau of Reclamation, Denver, 13 p, 9 fig, 3 tab, append

DESCRIPTORS-/ *Reynalds number/ "Froude number/ "head loss/ turbulence/ vortices/ butterfly valves/ pipelines/ hydraulic models/ density/ piping (mechan/cail)/ *viscosity/ desalination plants/brines/ model tests
IDENTIFIERS-/ modules/salt solutions/ plenum chambers

