HYORAUIG MODEL STUDIES OF SILVER JACK DAM SPILLWAY STHELNG BASIN, BOSTWICK
PARK PROJECT, COLORADO

T. J. Rhone Division of Research Office of Chief Engineer Bureau of Reclamation

January 1970

TECHIICAL REPORT STANDARD TITLE PAGE

1. Report No. REC-OCE-70-3	2. Government Accession No.	\%. 13.	Catalog No.		
4. Title and Subtitle Hydraulic Model Studies of Silver Jack Dam Spillway Stilling Basin, Bostwick Park Project, Colorado		5. Report Date January 1970			
		6. Performing Organization Code			
7. Author (g) T. J. Rhone		8. Performing Organization Peport No.			
9. Performing Organization Name and Address Division of Research Office of Chief Engineer Bureau of Reclamation Denver, Colorado 80225		10. Work Unit N			
		11. Contract or Grant No.			
		13. Type of Report and Period Covered			
12. Sponsoring Agency Name and Address					
		14. Sponsoring Agency Code			
15. Supplementary N					
16. Abstract A massive landslide destroyed the nearly completed spillway stilling basin at Silver Jack Dam in Colorajo. A circular curve in an inclined plane was used to connect the undamaged approach conduit and the relocated stilling basin. Hydraulic model studies were performed to assure satisfactory flow conditions in the conduit and stilling basin under limited tailwater conditions and with unsymmetrical approach flow resulting from a circular curve in the upstream conduit. A deflector vane was installed in the crown of the tunnel downstream from the curve to prevent the flow from crossing over the top and sealing the portal. Vanes were developed for the stilling basin approach chute to improve flow distribution in the basin. Unique baffle blocks were developed to provide good energy distribution in a basin that had insufficient tailwater depth to form a conventional hydraulic jump. Pressure measurements were made on the conduit bend, conduit vane, chute vanes, and baffle blocks.					
17. Key Words DESCRIPTORS--/ *model tests/ *hydraulic models/ * stilling hasins/ conduits/ pipe bends/ piezometers/measurement/Colorado/ Eir demand/ *energy dissipation/ hydraulies/ spillways/ laboratory tests/ hydraulic design IDENTIFIERS--/ Silver Jack Dam, Colo/ Bostwick Park Project, Colo/ deflectors/ baffle blocks					
718. Distribution Statement No limitation					
	\|ccurity Classif. $\begin{gathered}\text { 20. Secur this page) } \\ \text { (of } \\ \text { None }\end{gathered}$	21. No. uf Pages ${ }^{\text {22. Price }}=$			

REC-OCE-70-3

HYDRAULIC MODEL STUDIES OF
 SILVER JACK DAM SPILLWAY
 STILLING BASIN, BOSTWICK
 PARK PROJECT, COLORADO

by
T. J. Rhone

January 1970

HYDRAULICS BRANCH
DIVISION OF RESEARCH

UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION Office of Chief Engineer. Denver, Colorado

ACKNOWLEDGEMENTS

The studies were conducted by the author and supervised by Mr. W. E. Wagner, Head of the Applied Hydraulics Section. The testing program was materially aided by the cooperation of the Spillway and Outlet Works Section, Dams Branch, Division of Design.

The information contained in this report regarding commercial products may not be used for advertising of promotional purposes and is not to be constrised as an endorsement of any product by the Bureau of Reclamation.

CONTENTS

Page
Purpose 1
Results 1
Applications 2
Introduction 2
The Modei 2
The investigation 2
Conduit Bend 2
Open Channel Chute 3
Stilling Basin 4
Figure
1 Location Map 5
2 Spillway Plan and Sections 7
3 Flow in Conduit Chute, and Stilling
Basin-Preliminary Design 9
4 Deflector Vane in Conduit 10
5 Stilling Basin Performance-Preliminary Design 11
6 Chute Guide Vanes 13
7 Stilling Basin Performance-Recommended Vanes in Conduit and Chute-Preliminary Eaffle Block Arrangement 15
8 Pressures at Chute Deflector Vanes 16
9. Stilling Basin Baffles 17
10 Stilling Basin Performance-Recommended Design 19 11
Pressures on Baffle Blocks 20

PURPOSE

These studies were madz to develop a satisfactory stilling basin uncier limited tailwater conditions and with unsymmetrical approach flow resulting from a circular curve in the upstream conduit.

RESULTS

1. The centrifugal force of the high-velocity flow in circular curve caused the flow to rise over the top of the conduit at maximum discharge. The flow appeared to fill the conduit at the portal, apparently sealing off the air to the conduit.
2. A guide vane suspended normal to the conduit roof and $28-1 / 2^{\circ}$ to right of center, Figure 4 , prevented the flow from crossing over the conduit crown. Pressures measured along the vane indicated nominal impact forces.
3. Flow entered the stilling basin approach chute at an angle, resulting in very uneven flow distribution in the stilling basin. Deflector vanes developed and placed in the chute greatly improved the flow distribution in the basin.
4. Pressure measurements and air demand tests indicaied that air vents should be placed on the lee side of the deflector vanes in the chute and the vanes should be clad with steel plates for protection.
5. The location of the basin and the need to minimize the amount of excavation resulted in a basin limited in length and with insufficient tailwater depth for standard hydraulic jump basin design. Large baffle blocks with concave upstream faces were developed that provided excellent energy dissipation. The location, spacing, and size of the blocks were developed by trial and error methods specifically for the unusual flow conditions in this basin.
6. Pressure measurements on critical areas of the blocks indicated that in some locations pressures as high as 75 feet (22.85 m) of water above atmospheric and as low as 19 feet $(5.79 \mathrm{~m})$ of water below atmospheric could be expected.
7. Because of the large range in pressures and the turbulence in the flow, the blocks should be armored with steel plates.

APPLICATION

The results of these studies are generally appiicable only to structures having flow conditions and construction limitations similar to those found at Silver Jack Dam.

INTRODUCTION

Silver Jack Dam, a feature of the Bostwick Park Project in western Colorado, is located on Cimarron Creek about 25 miles (40.25 km) southeast of Montrose, Figure 1. The earthfill dam has a height of 150 feet $(45.7 \mathrm{~m})$ above the creekbed, a length of 1,070 feet (326.2 m) at the crest, and a fill volume of $1,260,000$ cubic yards ($963,500 \mathrm{cu} . \mathrm{m}$). The principal hydrualic features are a spillway and an outlet works. The spillway is the subject of this report.

The spillway is a 41 -foot-diameter (12.48 m) morning glory with its crest at elevation $8925.60,136$ feet $(41.50 \mathrm{~m})$ above the creek channel, Figure 2. Flow from the spillway crest falls about 44 feet (13.4 m) into a 16.5 -foot-diameter (5.03 m) circular conduit. The circular conduit is about 563 feet (171.5 m) long and terminates in an open channel chute leading to the stilling basin. The conduit flares and connects to a diverging chute leading to the stilling basin. The stilling basin floor is about 147 feet (44.8 m) below the spillway crest.

In the spring of 1969, the morning glory crest and circular conduit had been completed down to Station 7+26. A massive landstide engulfed and destroyed parts of the nearly completed stilling basin and chute, and cracked about 38 feet (11.6 m) of the completed circular conduit. A new site for the stilling basin was selected to the left of the initial location, adjacent to and parallel to the outlet works stilling basin, Figure 2. A conduit bend having a 165 -foot (50.4 m) radius and a deflection angle of $17-1 / 2^{\circ}$ to connect the existing undamaged conduit with the relocated stilling basin. The floor of the relocated stilling basin is 16.5 feet (5.04 m) higher than the original basin floor.

Because of the curved approach conduit and the very shallow basin, hydraulic model studies were initiated to thoroughly investigate the flow conditions in the curved conduit and basin.

THE MODEL

To conserve time, some readily available 11.5 -inch (29.2 cm) inside-diameter, clear plastic tubing was selected to represent the 16.5 -foot-diameter (5.03 m) prototype conduit, resulting in a model scale ratio of 1:17.22. The maximum discharge of $6,280 \mathrm{cfs}$ (177.8 cms) was represented in the model by 5.10 cfs (0.14 cms).

The model included a 5 -foot (1.52 m) length of circular conduit approaching the conduit bend, the
bend, the circular-to-horseshoe transition, the open-channel chute, the stifling basin, and a section of the excavated channel downstream from the stilling basin. The correct flow depth and velocity in the circular conduit were obtained by regulating the flow with a slide gate at the upstream end of the circular conduit.

THE INVESTIGATION

Conduit Bend

The theoretical flow velocity at the start of the vertical curve is expected to be about $74 \mathrm{fps}(22.55 \mathrm{mps}), 77$ $\mathrm{fps}(23.46 \mathrm{mps})$, and $80 \mathrm{fps}(24.38 \mathrm{mps})$ for the three test discharges of $1,650 \mathrm{cfs}(46,75 \mathrm{cms}), 3.140 \mathrm{cfs}$ $(89.0 \mathrm{cms})$, and $6,280 \mathrm{cfs}(177.8 \mathrm{cms})$. The $1,650 \mathrm{cfs}$ is the discharge resulting from routing the computed 100 -year flood through the reservoir, spillway and outiet works. The $6,280 \mathrm{cfs}$ is the discharge resulting from routing tifemputed inflow design flood.

For the inflow design flood, the flow climbed the outside of the conduit bend starting a short distance downstream from the P.C. The flow crossed over the top of the conduit in the transition and seemed to completely fill the conduit at the portal, Figure 3. The flow appearance was similar for discharges of 1,650 cfs $(46.75 \mathrm{cms})$ and $3.140 \mathrm{cfs}(89.0 \mathrm{cms})$, but did not cross over the top.

Severai deflectors were tried to prevent the flow from crossing over the top of the conduit. The first trial was a deflector normal to the side of the conduit along the spring line. The deflector extended from about the midpoint of the bend downstream to a point about 10 feet $(3.05 \mathrm{~m})$ beyond the end of the bend. This deflector did not intercept a sufficient amount of the flow so it was lengthened about 5 feet $(1.52 \mathrm{~m})$ in the upstream direction. The deflector still was ineffective and a further increase in length would result in an impractical structure from the construction viewpoint.

A narrow wall suspended from the conduit crown was next installed. The initial deflector wall was 1 foot 1.3 $\mathrm{m})$ wide, 6 feet $(1.83 \mathrm{~m})$ high and extended from the P.T. of the bend downstream to the end of the transition. The wall prevented the flow from crossing over the crown of the conduit. However, it deflected the flow vertically downward into the part of the flow moving along the conduit invert and the merging of the two high-velocity flows resulted in an excessive amount of splashing and spray downstream from the conduit portal.

To prevent the direct impingement of the deflected flows, the wall was moved to the right of the crown. Three trials were made with the wall off center 15° $28-1 / 2^{\circ}$ and 45° from vertical. All of the off-center locations reduced the splash and spray, but the 28-1/2 ${ }^{\circ}$ location, Figure 4, caused the minimum amount of disturbance and also improved the flow distribution at the tunnel portal.

Moving the deflector to the off-center position also required that it be extended upstream 7.5 feet 2.25 m) into the curved portion of the conduit to intercept all of the flow crossing over the top of the tunnel. Tests were made to determine the minimum slant height for the deflector wall. These tests showed that the slart height could be reduced to 4 feet (1.22 m) without reducing the wall's effectiveness.

Six piezometers were placed along the right side of the deflector wall near the roof. Pressure measurements at the maximum discharge indicated that at the upstream end where the wall intercepted most of the flow, the pressure would be equivalent to about 14 feet (4.27 m) of water, Figure 4. All of the other piezometers indicated pressures near atmospheric.

One piezometer was placed on the outside of the bend near the spring line about 20 feet (6.1 m) upstream from the P.T. of the bend. This piezometer was used to determine if excessive pressures due to the centrifugal force of the water should be considered in the structural design of the bend. Pressure measurements showed that the pressures in this area were about hydrostatic at all discharges. At $1,650 \mathrm{cfs}(46.75 \mathrm{cms})$ the pressure was atmospheric, at $3,140 \mathrm{cfs}(89.0 \mathrm{cms})$ the pressure was about 1 foot (0.3 m) of water above atmospheric, and at $6,280 \mathrm{cfs}$ (177.8 cms) the pressure was about 8 feet (2.44 m) of water above atmospheric.

Open Channel Chute

Flow entering the diverging chute leading to the stilling basin was very unsymmetrical and the unequal distribution carried into the stilling basin. In the preliminary design, the flow was concentrated on the left side of the basin with the $1,650 \mathrm{cfs}(46.75 \mathrm{cms})$ and $6,280 \mathrm{cfs}(177.8 \mathrm{cms})$ discharges, but with the $3,140 \mathrm{cfs}$ (89.0 cms) discharge the flow was more concentrated on the right side, Figure 5. The deflector wall in the conduit did not affect the flow at the two low test discharges; at the maximum discharge, the deflector wall slightly improved the flow distribution, but the flow still tended to concentrate along the left side.

Longitudinal guide vanes dividing the chute in thirds were developed to provide symmetrical distribution of the flow entering the stilling basin. Both vanes are 2 feet (.61 m) wide and extend between Station 7+99.50 and Station $8+50.00$. The height of each vane and the configuration at the upstream end were developed by cut and fit until the optimum distribution of the flow entering the stilling basin and the minimum amount of disturbance near the upstream end of the vane were obtained for all three test discharges. The configurations of the vanes are shown on Figure 6 and the flow appearance in the basin is shown on Figure 7.

Piezometers were installed in the floor on both sides of each vane and two air vents were placed on the left side of each vane. The location of the piezometers and air vents is shown on Figure 8. The general direction of the flow at the upstream end of the chute was diagonally from right to left. The piezometers on the right side of the vanes were to determine the magnitude of the impact forces, the piezometers on the left side of the vanes were to detect any potential subatmospheric pressure areas and to determine the pressure differential across each vane. The air vents were to determine if air was demanded on the lee side of the vanes and, if so, the effect that supplying air would have on the pressures.

The lowest pressure occurred on the left side at the upstream end of the right vane, Figure 8. The pressure, equivalent to about 11 feet (3.35 m) of water below atmospheric, was measured at the maximum discharge. The lowest pressure at the left vane was about 8 feet (2.44 m) of water below atmospheric, also measured at the maximum discharge. The greatest pressure differential was measured at the upstream ends of the vanes during the maximum discharge. On the left vane, the differential was equivalent to about 19 feet (5.79 m) of water, and on the right vane, the differential was about 22 feet (6.71 m) of water.

The upstream air vents supplied air at all discharges. However, occasionally the downstream vents would fill with water and once filled, they would not voluntarily empty and start drawing air agaiii. There was no significant difference in the piezometer readings with the air vents open or closed.

The air vents were connected to water manometers to determine the pressure on the side of the vanes. At the maximum discharge, the upstream vent on the lee side of the right vane indicated a pressure equivalent to vapor pressure when both vents were closed; when the downstream vent was opened, the pressure at the
upstream vent was about 10 feet (3.05 m) of water below atmospheric. The downstream vent in the left vane indicated a pressure of about 4 feet (1.22 m) of water below atmospheric when no air was supplied; when air was supplied through the upstream vent, the pressure at the downstream vent was about 2 feet $\{.61$ m) of water below atmospheric. The results of the pressure measurements have been tabulated on Figure 8.

Based on these studies, it was recommended that air vents be provided on the left side of both vanes and that the vanes be steelclad as shown on Figure 6.
Stilling 5 sin
The theoretical flow velocity and depth at the toe of the chute are 90 feet (27.43 m) per second and 1.99 feet (.61 m), respectively. These values assume uniform flow distribution on the chute and a Manning's roughness coefficient $n=0.008$. Idealiy, for these entrance conditions, a Type 11^{1} stilling basin should be 128 feet (39 m) long with a tailwater depth of 29.5 feet (8.99 m) and a Type Ill stilling basin should be 70 feet (21.32 m) long with a tailwater depth of 25 feet $(7.63 \mathrm{~m})$. Due to the landslide on the right side and the space limitations caused by the proximity of the outlet works stilling basin and discharge channel, the basin length was restricted to 84.50 feet $\{25.75 \mathrm{~m}$) and to a tailwater depth of only 19 feet (5.29 m).

To compensate for the inadequate tailwater depth, large baffle blocks with concave upstream faces were installed in the basin. These blocks were patterned after blocks that had been used successfully in another structure where sufficient tailwater depth was not available. ${ }^{2}$

In the initial arrangement, two rows of blocks were installed, The first row contained three 3 -foot-wide $(.91 \mathrm{~m})$ and two 2 foot-wide $(.61 \mathrm{~m})$ blocks with their upstream faces about 10 feet (3.05 m) downstream from the toe of the slope. The second row contained four 3 -foot-wide blocks 14 feet (4.27 m) downstream from the first row. All blocks were 7 feet (2.13 m) high.

This arrangement provided unsatisfactory stilling action in the basin. The lack of energy dissipation was evident whether or not the deflector vanes were installed on the approach chute, Figures 5 and 7. A similar block arrangement was tried with 5 -foot-high $(1.52 \mathrm{~m})$ blocks in both rows and with 5 -foot-high
blocks in the first row and 7-foot-high $\{2.13 \mathrm{~m}$ j blocks in the second row. There was very little impiovement in the energy dissipation with any of these symmetrical arrangements of blocks.

The flow entering the basin was not tru'y symmetrical and the flow concentration changed from the left side to the right side and then back to the left side as the discharge increased. These flow conditions indicated that an unsymmetrical block arrangement might be necessary to obtain adequate energy dissipation. On this premise, the tests were continued on- $2=$ trial and error" basis to develop an effective block arrangement. The location of the rows and the spacing and location of individual blocks were adjusted and changed many times in arriving at the recommended arrangement with three rows of blocks as shown in Figure 9. The flow appearance with the recommended arrangement for the stilling basin is shown on Figure 10. The excellent flow conditions were prevalent for all discharges and the tailwater could be lowered about 3 feet $\{0.92 \mathrm{~m}$ \} at which point the model channel became the control, without adversely affecting the basin efficiency.

Eleven piezometers were installed in critical locations in one block to determine if dangerous subatmospheric pressures or exceptionally high impact pressures could be detected, Figure 11. Pressures were measured with the block in each of the four positions in the first two rows and in the centerline position of the third row.

The highest pressure was measured with the block in the two first row positions on the left second-row position. These pressures, located in the center of the concave face, were equivalent to 70 to 75 feet (21.3 to 22.8 r) of water. The lowest observed pressure was equivalent to about 19 feet (5.79 m) of water below atmospheric. The low pressures occurred on the sides of the block near the top, with the block in the left second-row position. The pressure readings have been tabulated on Figure 11.

Dynamic pressure readings were not taken; however, due to the turbulence of the hydraulic jump and the low :pressures that were measured with water manometer, it was recommended that the blocks be protected with steel plates/as shown on Figure 9.

K
${ }^{1}$ USBR Engineering Monograph No. 25 "Hydraulic Design of Stilling Basins and Energy Dissipators."
${ }^{2}$ Beichley, G. L., Report HYD-394; "Hydraulic Model Studies of the Outlet Works at Carter Lake Reservoir Dam No. 1 Joining the St. Vrain Canal."

Figure 1
Report REC-OCE-70-3

P860-D-65948

Discharge $=1650 \mathrm{cfs}$ Photo P860-D-65951

P860-D-65949

Discharge $=3140 \mathrm{cfs}$
Photo P860-D-65952

P860-D-65S50

Discharge $=6280 \mathrm{cfs}$ Photo P860-D-65953

SILVER JACK DAM Hydraulic Model Studies 1:17.25 Scale Model Flow in Conduit, Chute and Stilling Basin-Preliminary Design

Figure 4
Report REC-OCE-7C-3

Figure 5
Report REC-OCE-70-3

Discinarge $=1650 \mathrm{cf5}$
T. W. Elev. $=8792.6$

Photo P860-D-65954

Discharge $=6280 \mathrm{cfs}$
T. W. Elev. $=8795.3$

Photo P860-D-65956

SILVER: IACK DAM
Hydraulic Model Studies 1:17.25 Scale Model
Stilling Basin Perforinance Preliminary Design

$$
D
$$

Figure 7
Report REC-OCE-70-3

Photo P860-D-65957

Photo P860-D-65958

Photo P860-D-65959

Discharge $=1650$ cfs
T. W. Elev. $=8792.6$

Photo P860-D-65960

Discharge $=3140 \mathrm{cfs}$ T. W. Elev. $=8793.8$ Photo 860-D-65961

Discharge $=6280 \mathrm{cfs}$
T. W. Elev. $=8795.3$

Photo P860-D-65962

SILVER JACK DAM
Hydraulic Madel Studies
1:17.25 Scale Model
Stilling 8asin Performance
Recommended Vanes in Conduit and Chute-Preliminary
Baffle Block Arrangement

Figure 8
Report REC-OCE-70-3

иб！！eの рәриәшшоэәу

 se！pnis ןopow ग！ןneıphth W甘ロ XO甘ก 女ヨヘ7IS：

89699－0ti98d oloud $9 \cdot G 6 \angle 8=$＇${ }^{\prime}$ 키 $\cdot M$ • 1

$t 9699-0-098 d$ 0104d

E9659－0－098d 020ud
99699－0－098d 070ч
 syo 099 $=26$ лечэs！ 0

ع－0L－ヨ00－0ヨy นodәy
OL aノnø！

Figure 11
Report REC-OCE-70-3

 eraential in öt yriter.
保

Table I
QUAFUTITIES AND UNITS OF SPACE

$\because \because \therefore$

 awin

J.DVMLSEV

5y20|4 ajreq pue souen atnup 'aven tinpuos

L9VYLSAV
'syoolq ai\#eq pue 'sauen aınчэ 'eura tinpuos

MEC.OCE.70.3
Thone, T J
HYDRAULIC MODEL STUDIES OF SILVER JACK DAM SPILLWAY STILLING BASIN BOSTWICK PARK PROJECT, COLORADO
Bur Reclam Lab Rep REC-OCE-70-3, Hydraul Br, Jan 1970. Burean of Reclamation, Denver, 20 p, $11 \mathrm{fig}, 3$ tab, 2 ref

DESCRIPTORS-/ "model tests/ "hydraulic models/ "stilling basins/ conduits/ pipe bends/ piezomaters/ measurement/ Colorado/ air demand/ *energy dissipation/ hydraulics/ spillways/ aboratory tests/hydraulia design
IDEMTIFIERS-/ Silver Jack Dam, Colo/ Bostwick Park Project, Colo/baffle blocks/deflectors

REC.OCE. 70.3

Rflone, TJ
HYORAULIC MODEL STUDIES OF SILVER JACK DAM SPILLWAY STILLING BASIN EOSTWICK PARK PROJECT, COLORADO
Bur Reclam Lab Rep REC-OCE-70-3, Hydraul Br. Jan 1970. Buroau of Reclamation, Denver, 20 p, 11 tig, 3 tab, 2 ref

DESCRIPTORS-/ *modal tests," "hyciraulic models/ "stilling basins/ conduits/ pipe bends/ plezometers/ measusement/ Colorado/ air demand/ *energy dissipation/ hydraulics/ spillways/ laboratory tests/ hydraulic design
IDENTIFIERS-/ Silver Jack Dam, Colo/ Bustwick Park Project, Colo/ baffle blocks/ deflectors

REC-OCE-70-3

Rhone. TJ
HYDRAULIC MODEL STUDIES CF SILVER JACK DAM SPILLWAY STILLING BASIN BOSTWICK PARK PROJECT, COLORADO
Bur Reclam Lab Rep REC-OCE-70.3. Hydraul Br. Jan 1970. Bureau of Reclamation, Denver, 20 p. 11 fig. 3 tab, 2 ref

DESCRIPTORS-/ *model tests/ "hydraulic models/ "stilling basins/ conduits/ pipe bends/ piezometers/ measurement/ Colorado/ air demand/ 'energy dissipation/ hydraulics/spillways/ laboratory tests/ hydraulic design
IDENTIFIERS-/ Silver Jack Dam, Colo/Bostwjek Park Project, Colo/baffle blocks/deflectors

REC.OCE. 70.3

Rhone. TJ
hYDRAULIC MODEL STUDIES OF SILVER JACK DAM SPILLWAY STILLING BASIN, BOSTWICK PARK PROJECT; COLORADO
Bur Reclam Lab Rep REC.OCE-70.3. Hydraul Br, Jan 1970: Bureau of Reclamation, Denver, 20 p , 11 fig, 3 tab, 2 ref

DESCRIPTORS-/ "model tests/ "hydraulic models/ "stilling basins/ conduits/pipe bends/ plezomaters/ measurement/ Colorado/ air demand/ "energy dissipation/ hydraulcs/ spiliways/
laboratory tests/ hydraulic design
IDENTIFIERS-/ Silver Jack Dam, Colo/ Bosiwick Park Project, Colo/baffle blocks/deflectors

