TUNNELS:
 MACHINE EXCAVATIONRATE OF PROGRESS MACHINE DATA

July 1986

Engineering and Research Center

1" S. Department of the Interior au of Reclamation

1. REPORT NO. REC-ERC-86-8	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE Tunnels: Machine Excavation-Rate of Progress-Machine Data	5. REPORT DATE July 1986
	6. PERFORMING ORGANIZATION CODE D-271
7. AUTHOR(S) R.S.Sinha	8. PERFORMING ORGANIZATION REPORT NO. REC-ERC-86-8
9. PERFORMING ORGANIZATION NAME AND ADDRESS Engineering and Research Center Bureau of Reclamation Denver CO 80225	10. WORK UNIT NO.
	11. CONTRACT OR GRANT NO.
	13. TYPE OF REPORT AND PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS Same	
	14. SPONSORING AGENCY CODE DIBR

Microfiche and/or hardcopy available at E\&R Center, Denver, Colorado

16. ABSTRACT

Information on 20 machine-bored water tunnels constructed by the Bureau of Reclamation is presented graphically and pictorially. Machine data, rates of progress, tunnel profiles, and rock types and strengths are given for each tunnel. The bored diameters of these tunnels varied from 9 to 21 feet. Rocks encountered in boring were: shale, sandstone, conglomerate, quartzite, limestone, siltstone, granite porphyry, granite gneiss, gneissic granodiorite, rhyolite, rhyodacite, and agglomerate. The compressive strengths of these rocks were 300 to 38,000 psi. The boring rates of the machines used varied from 17 to 107 feet for the average calendar day. The maximum progress was 403 feet in 1 three-shift day. This rate was attained in 17.3 hours of machine time while boring an 8 -foot 7 -inch finished-diameter tunnel through shale having a maximum compressive strength of $6,000 \mathrm{psi}$. Contract and miscellaneous data are also given for each of the tunnels.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS-- / *water tunnels (conveyance)/ tunneling/*tunneling machines/ *tunnel construction/ *boring machines/ rapid excavation/ rock excavation/ rock properties/ compressive strength/ *project summaries/ progress reports/*tunnels
b. IDENTIFIERS--
c. COSATIField/Group 13C COWRR: 1303

SRIM:
18. DISTRIBUTION STATEMENT
Available from the National Technical Information Service. Operations
$\left.\left.\left\lvert\, \begin{array}{c|c|}\text { 19. SECURITYCCLASS } \\ \text { THIS REPORT) } \\ \text { UNCLASSIFIED }\end{array}\right.\right] \begin{array}{l}\text { 21. NO. OF PAGES } \\ 37 \\ \hline \text { 20. SEURITY CLASS } \\ \text { THIS PAGE) } \\ \text { UNCLASSIFIED }\end{array}\right]$

REC-ERC-86-8

TUNNELS: MACHINE EXCAVATIONRATE OF PROGRESS - MACHINE DATA

by
R.S. Sinha

July 1986

Water Conveyance Branch
Division of Dam and Waterway Design
Engineering and Research Center
Denver, Colorado

Abstract

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildilife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

PREFACE

The "art" of underground tunnel construction has been a relatively slow, laborious, and cyclic process. The introduction of Tunnel Boring Machines (TBM), or "moles" has been an effort to speed up this process. In 1972, the Bureau of Reclamation published REC-ERC-72-9, "Tunnels: Machine Excavation-Rate of ProgressMachine Data," which readily provided pertinent data on the seven, machine-bored tunnels the Bureau had constructed to that time. The tunnels included in the 1972 report are:

Azotea Tunnel-San Juan-Chama Project, New Mexico
Blanco Tunnel-San Juan-Chama Project, Colorado
Oso Tunnel-San Juan-Chama Project, Colorado
River Mountains Tunnel-Robert B. Griffith (Southern Nevada) Water Project, Nevada
Starvation Tunnel-Central Utah Project, Utah
Tunnel No. 1-Navajo Indian Irrigation Project, New Mexico
Water Hollow Tunnel-Central Utah Project, Utah

In 1974, the Bureau published REC-ERC-74-7, "Tunnels: Machine Excavation-Rate of Progress-Machine Data," which included five additional tunnels. They are:

Currant Tunnel-Central Utah Project, Utah
Layout Tunnel-Central Utah Project, Utah
Nast Tunnel-Fryingpan-Arkansas Project, Colorado
Tunnel No. 3-Navajo Indian Irrigation Project, New Mexico
Tunnel No. 3A-Navajo Indian Irrigation Project, New Mexico
Since 1974, the data on eight additional tunnels has been prepared. They include:

Buckskin Mountains Tunnel-Central Arizona Project, Arizona
Dolores Tunnel-Dolores Project, Colorado
Hades and Rhodes Tunnels-Central Utah Project, Utah
Santa Clara Tunnel-Central Valley Project, California
Stillwater Tunnel-Central Utah Project, Utah
Strawberry Tunnel Inlet Rehabilitation-Central Utah Project, Utah
Tunnel No. 5-Navajo Indian Irrigation Project, New Mexico
Vat Tunnel-Central Utah Project, Utah

This report includes all 20 tunnels.

CONTENTS

Tunnel Name, Project, and State Page
Azotea, San Juan-Chama, New Mexico 1
Blanco, San Juan-Chama, Colorado 3
Buckskin Mountains, Central Arizona Project, Arizona 5
Currant, Central Utah, Utah 7
Dolores, Dolores, Colorado 9
Hades and Rhodes, Central Utah, Utah 11
Layout, Central Utah, Utah 13
Nast, Fryingpan-Arkansas, Colorado 15
Oso, San Juan-Chama, Colorado 17
River Mountains, Robert W. Griffith Water Project (So. Nevada), Nevada 19
Santa Clara, Central Valley, Utah 21
Starvation, Central Utah, Utah 23
Stillwater, Central Utah, Utah 25
Strawberry Tunnel Inlet Rehabilitation, Central Utah, Utah 27
Tunnel No. 1, Navajo Indian Irrigation Project, New Mexico 29
Tunnel No. 3, Navajo Indian Irrigation Project, New Mexico 31
Tunnel No. 3A, Navajo Indian Irrigation Project, New Mexico 31
Tunnel No. 5, Navajo Indian Irrigation Project, New Mexico 33
Vat, Central Utah, Utah 35
Water Hollow, Central Utah, Utah 37

AZOTEATUNNEL
 SAN JUAN CHAMA PROJECT
 COLORADO-NEW MEXICO

$$
\begin{aligned}
& \text { AVERAGE } 55 \text { FT. PER CALENDAR DAY } \\
& \text { AVERAGE IN SHALE } \\
& \text { vera ---153 FT. PER WORKING DA } \\
& \text { AVERAGE IN SANDSTONE } \\
& 72 \text { FT. PER WORKING DAY }
\end{aligned}
$$

*MAXIMUM CAPABI

$$
1965
$$

CONTRACT DATA

 CONTRACTOR-AZOTEA CONTRACTORS JOINT VENTURE, GIBBONS \& REEO GOLES BROS. DRILING Co;\&DUGAN PECIFICATIONBID $\$ 13,791,000-$ INCLUDES APPURTENANI STRUCTURES

LASER GUN USED FOR GUIDANCE CONTROL

MISCELLANEOUS DATA

 TRACK GAGE -.......-30" \& 24 VOLTAGE SUPPIY INTO TINNE VOLTAGE SUPPLY INTO TUNNEL No. OF MEN TO OPERATE MACHINE AMBIENT TEMPERATURES SHIF AMBIENT TEMPERATURES AT CUTEER HEAD $-\cdots-\cdots--90^{\circ}-100^{\circ} \mathrm{F}$ROCK TEMPERATURES... $65^{\circ}-78^{\circ} \mathrm{F}$

READY FOR LINING

holing through-note concentric traces of cutter discs

ASSEMBLING BORING MACHINE

COMPLETED CONCRETE LINED SECTION

BLANCO TUNNEL
 SAN JUAN CHAMA PROJECT
 COIORADO-NEW MEXICO

TUNNEL PROFILE

MACHINE DATA
MANUFACTURED BY ROBBINS LENGTH MOM MODEL 104-120 *THRUST ...372,000 LBS *TORQUE I75,000 FT LBS CUTERS 22.I"DISC,
ITRICONE IN CENTER ITRICONE IN CENTER
HEAD ROTATED BY 4.75 HP; 3 PHASE 440 VOLT MOTORS
LASER BEAM LAEER EEAM GUUDANCE
WASTE BISPOSAL

* MAXIMUM CAPABILITY

TIME- DATE AND DAYS
TUNNEL MACHINE-PROGRESS CHART

(1)-OUTLET PORTAL_._Surface left by machine supported with rock bolts ε steel mat (2).FALLOUT._Area resupported (3)-Trailing dust collection ε muck conveyor system (4)-Left side of machine (5) Cutter head

3

date and days
TUNNEL MACHINE-PROGRESS CHART

CONTRACT DATA CONTRACTOR-J.F SHEA A CO., INC. SPECIFICATION No DC-7096 SID (TUNNEL ONLY) $\$ 48,042,278$
TOTAL COST TO CONSTRUCT TUNNEL 53,483,355 (\$1489/FT.)

MISCELLANEOUS DATA

 TRACK GAGE--1.-.-.-.-36" VOLTAGE SUPPLY INTO TUNNEL FOR TBM 4160 VOLTS No. OF SHIFTS PER DAY ROCK TEMPERATURE- ${ }^{-3}$ SHIFTS ROCK TEMPERATURE-LASER BEAM GUIDANCE WASTE DISPOSAL TRAILING CONVEYOR a TRAIN

TBM HOLED THROUGH
 MUCK CONVEYOR
AND SEGMENTS BEING INSTALLED

COMPLETED TUNNEL, IILITIES REMOVED LATE

BACKUP EQUIPMENT FOR TBM MUCK CONVEYOR-TOP MIDDL VENTILATION PIPES-UPPER LEFT AND RIGHT

TUNNEL BORING MACHINE NOTE: GRIPPER PAD AT RIGHT

CURRANT TUNNEL
 CENTRAL UTAH PROJECT

BONNEVILLE UNIT-UTAH
TUNNEL PROFILE

HYDRAULIC PROPERTIES
4

CONTRACT DATA CONTRACTOR - .- - S.A. HEALY CO SPECIFICATIONS No. . . . - DC-6855 BID FOR 9 I3I FEET OF FINISHED TUNNEL $\$ 3,223,243$ ($\$ 353$ PER FT.) NOTE: CURRANT \& LAYOUT TUNNELS THE SAME CONTRACT

MISCELLANEOUS DATA

VENTLLATION LINE
VOLTAGE SUPPLY INTO TUNNEL VOLTAGE SUPPLY INTO TUNNEL_T200
ROCK TEMPERATURE ROCK TEMPERATURE $--1--55^{\circ} \pm$
AMBIENT TEMPERATURE NEAR CUTTER HEAD_-.-.-.-.-65 \pm WATER FLOWS _- - SEEPS TO IIO G.P.M DUST CONTROL - WATER SPRAYS AT
CUTTER HEAD MOL THROAT AND MATERIAL TRANSFER POINTS TRACK GAGE..............-24

LOADING MUCK CARS AT START OF MACHINE OPERATIONS

OVERHAULING TUNNELING MACHINE AND
BACKUP EQUIPMENT AT OUTLET PORTAL

DOLORES TUNNEL

DOLORES PROJECT
COLORADO

TUNNEL PROFILE

TUNNEL MACHINE-PROGRESS CHART

IN HOPPERS FOR TUNNEL

MITSUI MIIKE ROAD HEADER TUNNELING MACHINE

CONTRACT DATA CONTRACTOR-OHBAYASHI-GUMI LTD.
SPECIFICATION No. $4 D-C 7496$ SELIFCATMN No. 4D-C7496
BID (UNNEL OLIY) $\$ 5,229,172$ COMPLETION COST (TUNNEL ONLY) $\$ 4,860,000$

MISCELLANEOUS DATA

$$
\begin{aligned}
& \text { TRAC GAGE - } \\
& \text { VENTLATION LINE } \\
& \text { VOLTAGE SUPPLY INTO TUNNEL }
\end{aligned}
$$ VOLTAGE SUPPLY INTO TUNNEL ROCK TEMPERATURE LASER BEAM GUDANCE WASTE DISPOSAL-GATHERING CONVEYOR AND ELECTRIC TRAIN

HOLED THROUGH REACH B MARCH I6, 1983

DRILL Jumbo in reach b

HADES \& RHODES TUNNELS

TUNNEL PROFILE

dates and months
TUNNEL MACHINE-PROGRESS CHART

MAXIMUM ADVANCE
average advance

CONTRACT DATA CONTRACTOR-HARRISONSPECIFICATION NO. DC-7421

moran car ready to haul cement TO TUNNEL FOR BACKFILL GROUTING

88 HP PUMP installed to pump WATER FROM SPRING IN THE INVERT WATER TROMMLET OF HADES TUNNEL

SIDE VIEW OF ROBBINS MOLE MODEL \#10Il-98

FRONT VIEW OF ROBBINS TBM MODEL \# $1011-98$

water in tunnel

LAYOUT TUNNEL
 CENTRAL UTAH PROJECT BONNEVILLE UNIT-UTAH

CONTRACT DATA

 CONTRACTOR-..- S.A.HEALY CO. SPECIFICATIONS No.-. DC-6855 BID FOR 17,355 FEET OF FINISHEDTUNNEL $\$ 6,126,315(\$ 353$ PER FT.)

MISCELLANEOUS DATA

 VENTILATION LINE-. 36 VOLTAGE SUPPLY INTO TUNNEL ROCK TEMPERATURE $\quad . \quad=55^{\circ} \mathrm{F}+$ AMBIENT TEMPERATURE AT CUTIER AMBIENT TEMPERATURE AT CUTIERHEAD WATER FLOWS-SEEPS TO 100 G.P.M DUST CONTROL-WATER SPRAYS A CUTTER HEAD, MOLE THROAT AND MATERIAL THIS MACHINE USED IN CURRAN TUNNEL NEARBY
TRACK GAGE .-.......-24

RACK OF REBUILT DISC CUTTERS

REPLACING MAIN BEARING

MACHINE ASSEMBLY

WORN TRI-DISC CENTER CUTTER

Cutter head at hole through

time-date and days
tunnel machine-PROGRESS CHART

OSO TUNNEL
 SAN JUAN CHAMA PROJECT
 COLORADO-NEW MEXICO

TUNNEL PROFILE

time-date and days
TUNNEL MACHINE - PROGRESS CHART

-PROGRESS
AVE-----70.4 FT PER CALENOAR DAY AVERAGE (EXCLUDING TIME IN BAD GROUND) MAXIMUM (173 HRS MACHINE TME) MAXIM

MISCELLANEOUS DATA TRACK GAGE --_-.-.-.-.-. 24
VENTILATION LINE VOLTAGE SUPPLY INTO TUNNELNo. OF MEN TO OPERATE MACHIS No. OF MEN TO OPERATE MACHINE AMBIENT TEMPERATURES AT CUTTER HEAD_------------100 ROCK TEMPERATURE _-_-- $74^{\circ} \mathrm{F}$
AFTER COMPLETING THE EXCAVATION AFTER COMPLETING THE EXCAVATION IN OSO TUNNEL THIS MACHINE WAS I2'-8" DIA. THEN PUT INOUTLET END of AZOTEA TUNNEL

MUCK TRAIN AT DISPOSAL AREA

OUTLET PORTAL

NOTE CHANNEL SPILING AND BREAST BOARDS REOUIRED IN UNSTABLE MATERIAL

WASTE HANDLING CONVEYOR AND LOADING SYSTEMS

RIVER MOUNTAINS TUNNEL
 southern nevada water project

NEVADA

OVERALL VIEW-OUTLET PORTAL WORK AREA

LASER BEAM GUN MOUNTED ON TUNNEL WALL

CHANGING CUTTERS-LASER TARGETS IN UPPER QUADRANT

CONTRACT DATA

UTAH CONSTRUCTION AND MINING DURING CONTRACT PERIOD CHANGED TO FLUOR UTAH ENGINEERS AND
CONSTRUCTORS INC SPECIFICATION NO. DC-6595
BID (TUNNELPORTION) $\$ 3,572,128$

MISCELLANEOUS DATA

TRACK GAGE -------------.-. $24{ }^{\prime \prime}$
VENTILATION LINE -------------34" VOLTAGE SUPPLY INTO TUNNEL.-... No. OF MEN TO OPERATE MACHINE AMBIENT TEMPERATU -4 PER SHIF

VIEW OF JARVA MACHINE DURINGASSEMBLY

BREAK THROUGH

WASTE DISPOSAL-ROTARY CAR dUMP IN OPERATION

ASSEMBLING MACHINE-NOTE CONVEYOR WITH VENTILATION SYSTEM ON TOP

TUNNEL MACHINE - PROGRESS CHART

SANTA CLARA TUNNEL

CENTRAL VALLEY PROJECT
SAN FELIPE DIVISION, CALIFORNIA

Caldwell tbm after tunneling through

assembling steel forms USED FOR CONCRETE LINING

installing rock reinforcement bars at OUTLET PORTAL PRIOR TO HOLING THROUGH

BULKHEAD IN PLACE BEFORE CONCRETE LINING OF TUNNEL

LOADING MORAN CONCRETE RAIL CARS

STARVATION TUNNEL

CENTRAL UTAH PROJECT
BONNEVILLE UNIT-UTAH

TUNNEL PROFILE

time-date and dars
TUNNEL MACHINE-PROGRESS CHART

PARTIALLY ASSEMBLED MACHINE AT PORTAL NOTE SPECIALLY CONSTRUCTED CONCRETE

MACHINE AT HEADING. NOTE LASER BEAM TARGET

SANDSTONE \& SHALE SECTION. THE SHALE DETERIORATES RAPIDLY

MACHINE HOLED THROUGH AT INLET PORTAL

beginning to deteriorate

STILLWATER TUNNEL
 STRAWBERRY AQUEDUCT
 CENTRAL UTAH PROJECT
 BONNEVILLE UNIT-UTAH

TUNNEL PROFILE

dates and months
TUNNEL MACHINE-PROGRESS CHART
 CONTRACT DATA
INITIAL CONTRACTTR-HARASON-
WESTERN WESTERN CORP, JOHN W COWPER
CORP. (JV) SPECIFICATION DCT246 COMPLETION CONTRACTORTRAYLOR BROTHERS, INC. \&
FRUIN-COLNON CONSTRUCTION FRUIN-COLNON CONSTRUCTION
COMPNY SPELIICATON No 40 C2035
INITIAL CONTRACT COST $\$ 19,552,549$ INITIAL CONTRACT COST $\$ 19,552,549$
BID COMPLETION CONTRACT
$\$ 41,000,900$

placing pea gravel behind steel plate LINERS USING THE SHOTCRETE MACHINE

MISCELLANEOUS DATA TRACK GAGE - - ----30"/24 VENTILATION LINE
VOLTAGE SUPPLY INTO TUNNEI DIA VOLTAGE SUPPLY INTO TUNNEL No. OF SHIFTS PER DAYROCK TEMPERATURE WATER INFLOWS WASTE DISPOSAL-MUCK CARS EMPTIED BY ROTARY CAR DUMP

COMPLETED INTERIOR, UTILITIES REMOVED LATER

CONTRACT ATBM 92-192-29.0 LIN FT.
HANE ECAVATION-
DRILL

TBM 92-192 MOOIIIED-30 LIN F
TBM 92-192 MODIFIED-30 LIN F
TBM $93-203-135$ LIN FT. MAXIMUM PER CALENDAR DAY
CONTRACT -1
CONTRACT
-2
$93-202$ MODIFIED $92-192=103 \mathrm{FT} / \mathrm{DAY}$

TВМ 92 -192

VIEW OF TBM 92 -192 (m) WITH NIN OF THE TWELVE GRIPPER BLADES INSTALLED

STRAWBERRY TUNNEL INLET REHABILITATION

CENTRAL UTAH PROJECT

ROAD HEADER MRH-5-125-22

TUNNEL PROFILE
 VENTILATION LINE -.-12-24
VOLTAGE SUPPLY INTO TUNEL ELECTRIC REQUIREMENT -480 VOLTS - 415 V AT 50 CYCLES ROCK TEMPERATURE -- $32^{\circ} \mathrm{F}$ WATER FLOWS (MAXAWASTE DISPOSAL-GATHERING ARMS, CONVEYOR SYSTEMS
AND ELECTRIC TRAIN SYSTEMS

ying reinforcing steel IN WYE "A" CONNECTION

View of concrete being conveyed to THE PUMP AFTER BEING
DISCHARGED FROM MORAN CARS

CONCRETE MIXER AND DISCHARGER

WYe "A" branches to the right OF NEW INLET TUNNEL AND CONNECT TO EXISIING STRAWBERRY TUNNEL

TUNNEL NO.I
 NAVAJO INDIAN IRRIGATION PROJECT
 NEW MEXICO

TUNNEL PROFILE

CONTRACT DATA

$$
\begin{aligned}
& \begin{array}{l}
\text { MAX FOR ONE DAY RESS } \\
\text { UNSUPPORTED } \\
\text { \&97FT IN A }
\end{array} \\
& \text { SUPPORTED SECTION } \\
& \text { AVERAGE } \\
& \text { 37.IFTPER CALENDAR DAY }
\end{aligned}
$$

time-date and days
TUNNEL MACHINE-PROGRESS CHART

PORTION OF MACHINE ARRIVING AT JOB SITE FROM DALLAS TEXAS

ASSEMBLING MACHINE NEAR TUNNEL PORTAL

RESULT OF PINNING SUPPORTS IN SHALE

FINAL ADJUSTMENT PRIOR TO ENTERING PORTAL

CAR IN LOADING POSITION NOTE HALF CIRCLE SUPPORTS PINNED AT SPRINGLINE IN SANDSTONE

TUNNELS NO. $3 \in 3 \mathrm{~A}$

NAVAJO INDIAN IRRIGATION PROJECT

TUNNEL PROFILES

CONTRACTOR-FLUOR UTAH ENGINEERS AND CONTRACTOR-FLUOR UTAH ENGINEER
CONSTRUCTORS INC.
SPECIFICATION NO DC-6849 SPECIFICATION NO. DC- 6849
BID- $\$ 6,783,456$ TUNNEL NO 3
 MISCELLANEOUS DATA VENTILATION LINE
VOWER SUPPLYINTO TUNNE ES---4IGO VOUTS POWER SUPPLYINTO TUNNELS_-4160 VOLTS
AMBIENT TEMPERATURE AT CUTTER HEAD ROCK TEMPERATURE-_ $60^{\circ} \mathrm{F}$ TO $100^{\circ} \mathrm{F}$ ROCK TEMPERATURE---61 $\quad 6$ TO $70^{\circ} \mathrm{F}$
PRIMARY SUPPORT_RESIN ANCHORED ROCK BOLTS PRIMARY SUPPORT_-RESIN ANCHORED ROCK BOLTS
AVERAGE PER CALENDAR DAY_-_39FT_-_66FT MINOR WATER-CAUSED ROCK DETERIORATIN NO. OF MEN TO OPERATE MACHINE.- 3 PERSHIFT

TUNNEL MACHINE-PROGRESS CHART
 ENCOUNTERED IN TUNNELS NO. $3 \& 3 A$

TUNNEL NUMBER 5

mole "scott excavator"

COMPLETED TUNNEL, UTILITIES REMOVED LATER

MOLE TEST RUN

CONCRETE BEING PUMPED

LASER, SUPPORTS AND VENT PIPE

VAT TUNNEL

CENTRAL UTAH PROJECT
BONNEVILLE UNIT, UTAH

dates and months TUNNEL MACHINE-PROGRESS CHART

MaChine tunneling transitioning
TO CONVENTIONAL TUNNELING

> CONTRACT DATA CONTRACTOR-J.F. SHEA \&CO., IN SPECIFCATIN No. OC-7150 BID $\$ 26,992,662$, TOTAL COST $\$ 55,107,787.55$

MAXIMUM ADVANCE
AVERAGE ADVANCE
DAY 160 FT.
DAY 50 FT.

MISCELLANEOUS DATA TRACK GAGE--INE VOLTAGE SUPPLY - 480 VOLTS No. OF SHIF TS PER DAY SHIFTS ROCK TEMP-RATURE (AVE) 440
WATER FLOWS- $622-2563$ GPM WATER LOWS G22-2563
WASER BEAM GUIDANCE ASER BEAM GUIDANCE
WASTE DISPOSAL TRAILING CONVEYOR \& TRAIN

FORMS FOR CONCRETING

CUTTER HEAD ON TUNNEL BORING MACHINE

Cutter head being moved NTO POSITION FOR ASSEMBLY

operation of hydraulic jumbo WHILE SETTING CONCRETE FORMS (NOTE, EXPANDED RIB TUNNEL SUPPORT)

WATER HOLLOW TUNNEL
 CENTRAL UTAH PROJECT
 BONNEVILLE UNIT-UTAH

TUNNEL PROFILE

*MAXIMUM CAPABILITY

time-date and days
TUNNEL MACHINE-PROGRESS CHART

GAPIN CUT AND COVER SECTION AT PORTAL FOR INSTALLATION OF MACHINE CUTTER HEAD

WATER FLOWING AROUND MACHINE

OWERING CUTTER HEAD INTO GAP TO NSTALL ON MACHINE BODY WHICH WAS NSTALL ON MACHINE BODY WHICH WAS

BORING THROUGH ZONE OF WE INCOMPETENT ROCK

SUBINVERT CONCRETE PLACED TO PROTECT INVERT ROCK

