SEEPAGE ANALYSIS USING THE BOUNDARY ELEMENT METHOD

May 1984

Engineering and Research Center
U. S. Department of the Interior Bureau of Reclamation

SEEPAGE ANALYSIS USING THE
 BOUNDARY ELEMENT METHOD

by

Ashok K. Chugh

and

Henry T. Falvey

May 1984

Dams Branch - Division of Design
Hydraulics Branch - Division of Research and Laboratory Services
Engineering and Research Center
Denver, Colorado

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

Page
Letter symbols and quantities v
Introduction 1
Conclusions 1
Theory 2
Introduction 2
Basic formulation 2
Anisotropic soil 4
Nonhomogeneous soil 4
Solution procedure 5
Phreatic line location 5
Computer implementation 6
Program description 6
Interzonal connectivity 6
Input requirements 6
General considerations 6
Description of card types 7
Computer output 8
Program messages 8
Sample problems 8
Problems with known analytical and/or numerical solutions 8
Examples 1 and 2 8
Examples 3 and 4 8
Example 5 9
Example 6 9
Problem with measured response 9
Example 7 9
Future developments 10
Bibliography 10
APPENDIX - Source listing of the computer program BIE2DCP. 37
TABLES
1 Input data field format for the computer program BIE2DCP 11
2 Annotated input data file for the sample problem No. 4 12
3 Computer ouput for the sample problem No. 4 15
FIGURES
1 General description of a typical free-surface seepage problem 22
2 Two-dimensional domain D surrounded by the boundary curve S 23
3 Point P on the boundary 23
4 Boundary conditions at interface between zoned anistropic regions 24
5 Different types of boundary elements 25

CONTENTS - Continued

Page
6 Element numbering and ordering sequence of nodes for interface elements 26
7 Sample problem No. 1 - Comparison of boundary element solution with the known analytic solution 27
8 Sample problem No. 2 - Comparison of boundary element solution with the known analytic solution 28
9 Sample problem No. 3 - Pressure head distribution under sheet pile wall 29
10 Sample problem No. 4 - Pressure head distribution under a concrete spillway 30
11 Sample problem No. 5 - Pressure head distribution in an embankment dam 31
12 Sample problem No. 6-Steady-state seepage through an embankment dam and its foundation zones 32
13 Sample problem No. 7 - Laboratory model of a drain 33
with gravel envelope
with gravel envelope
34
34
14 Pressure head distribution for sample problem No. 7
14 Pressure head distribution for sample problem No. 7 35
15 Macroflow diagram

LETTER SYMBOLS AND QUANTITIES

b Constant
d Distance from a base point to a field point
$g \quad$ Hydraulic gradient
h Total head
i Hydraulic gradient
i, i, k Orthogonal directions for unit vectors
$k_{x} \quad$ Permeability in x direction
$k_{y} \quad$ Permeability in y direction
$\boldsymbol{k}_{\boldsymbol{z}} \quad$ Permeability in z direction
$m \quad$ Number of interface boundary elements
$n \quad$ Direction normal to the boundary of the flow domain
q Boundary flux: rate of seepage flow
r Radial index from center of drain envelope
$u \quad$ Piezometric head or potential head
v Any differentiable vector
x, y, z Orthogonal coordinates
A Coefficient matrix
$\boldsymbol{A}_{\boldsymbol{s}} \quad$ Cross sectional area
B Vector of knowns
$B_{1} \quad$ Prescribed head boundary
$B_{2} \quad$ Prescribed gradient boundary
C Circumferential path
D Flow domain
F_{1} Free surface boundary
F_{2} Seepage face boundary

- G, H Matrices obtained through integration of equation (27)
I Interface boundary element
M Number of zones
$N \quad$ Number of node points
$P \quad$ Singular point or "base point"
Q Point on the boundary or "field point"
R Radial line
S Surface surrounding the domain
U, \dot{V} General functions which satisfy Laplace equation $\nabla^{2} U=\nabla^{2} V=0$
$X \quad$ Vector of unknowns
Y Elevation head
2 Elevation of free surface
$\alpha \quad$ Angle between boundary segments, alpha
δ Dirac delta function, delta
$\epsilon \quad$ Radius of circle, epsilon
$\pi \quad 3.141592$ 65, pi
τ Vọlume, tau
D. Vector operator $\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k$
∇^{2} Laplace operator $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
θ Angle index of radial line with vertical

Subscripts

1,2 Zone number
i) Second order tensor
i, j Dummy indices
x, y, z Orthogonal coordinate directions
T Transformed coordinates
In Natural logarithm
\sim Vector notation
$\}$ Vector notation
[] Matrix notation
$\Omega \quad$ Boundary of the flow domain

- Dot product

Superscript
e Boundary element

INTRODUCTION

The boundary element method for solving boundary value problems in engineering sciences is gaining acceptance by the practicing engineers because of simplicity, effectiveness, and accuracy offered by the method as compared with other numerical methods. This popularity and acceptance of the boundary element method is evidenced by the publication of several books and research papers on the subject $[1,2,3,4,5,6,7,8]^{1}$. Listings of several computer programs to solve simple engineering problems illustrate the simplicity of computer implementation of the boundary element method [2, 3]. Availability of computer programs for solving relatively more complex problems is limited.

The boundary element method is especially well adapted in applications in which the Laplace equation needs to be solved in an irregular region but results are needed primarily on the boundary. One class of problems which is described by the Laplace equation is the phenomenon of steady flow in isotropic (same permeability in all directions) and homogeneous (same permeability at all points) soil. This problem is mathematically described by:

$$
\begin{equation*}
\nabla^{2} u=0 \tag{1}
\end{equation*}
$$

where
∇^{2} is the Laplace operator
In three dimensions,

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

In two dimensions,

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

u is the potential head.
The governing differential equation for steady flow in an anistropic, homogeneous soil is:

$$
\begin{equation*}
k_{x} \frac{\partial^{2} u}{\partial x^{2}}+k_{y} \frac{\partial^{2} u}{\partial y^{2}}+k_{z} \frac{\partial^{2} u}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

in three dimensions, and

$$
\begin{equation*}
k_{x} \frac{\partial^{2} u}{\partial x^{2}}+k_{y} \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{3}
\end{equation*}
$$

in two dimensions

[^0]
where

k_{x}, k_{y}, and k_{z} are the soil permeabilities in orthogonal directions x, y, and z.

A few practical examples of flow in porous media are:

- Steady-confined seepage through the foundation zones of an impervious dam,
- Steady-unconfined seepage through a pervious earth dam on an impervious foundation, and
- The combined case of seepage through a pervious earth dam on a pervious foundation.

The potential and the gradient on interface boundary, the potential or the gradient on exterior boundary, and the potential on specified set of interior points are generally desired.

The objectives of this report are to:

- Present a simple and effective extension of the available boundary element method for solving the Laplace's equation ($\nabla^{2} u=0$) in a bounded region to study seepage problems in zoned anisotropic soil deposits.
- Present a computer program listing in FORTRAN IV and a set of user's instructions.
- Illustrate the use of the computer program and accuracy of numerical results with sample problems.

CONCLUSIONS

1. An effective extension of existing procedures was devised to use the boundary element method for the solution of seepage problems in a piecewise homogeneous (zoned) anisotropic medium. An iterative procedure was developed to locate the phreatic path through the body of an embankment dam subjected to a reservoir head on the upstream face and to a tailwater head on the downstream face.
2. A computer procedure was modified to solve planar seepage problems under confined and (or) unconfined steady-state flow conditions through a zoned anisotropic medium. The method uses constant boundary elements.
3. The computer procedure included here not only reproduces the results of known analytic solutions but it also gives results which compare favorably with the measured response.
4. Use of the boundary element method provides an effective and efficient numerical procedure for performing seepage studies in zoned anisotropic mediums. The
greater savings lie in data preparation for the boundary element analyses as compared with the conventional finite element analyses. The savings in total computational cost can also be appreciable.
5. The boundary element method also avoids a number of difficulties-that plague the finite element methodin relation to adjustment of mesh size and shape during iteration for unconfined flow problems.

THEORY

Introduction

In the boundary element method, use is made of approximating functions that satisfy the governing equations in the domain but not the boundary conditions. The approximating functions can be the fundamental solution to the governing equation or other simple functions that satisfy the governing equation. These functions have some unknown coefficients which then are determined by enforcing the boundary conditions at a number of points on the boundary.

The boundary element method-through its formulation strategy-reduces the dimensionality of the problem by one. Thus, a two-dimensional problem, in effect, is treated as if it were one dimensional; that is, two-dimensional problems are solved by integration over a line. All problem data required for a complete solution pertain to the boundary of the numerical model. The results at any point(s) within the domain can be obtained by identifying its location.

As an example, consider a typical two-dimensional, freesurface problem of flow through an earth dam as shown on figure 1. Neglecting the capillary and surface tension, the flow domain D has the following types of boundaries [5]:

- A prescribed head boundary, B_{1}
- A prescribed gradient boundary, \boldsymbol{B}_{2}
- A free-surface, F_{1}
- A seepage face, F_{2}

This boundary value problem can be described by the following set of equations:

$$
\begin{array}{ll}
\frac{\partial}{\partial x_{i}}\left(k_{i j} \frac{\partial u}{\partial x_{j}}\right)=0 & \text { on } D \\
u=h & \text { on } B_{1} \\
k_{i j} \frac{\partial u}{\partial x_{j}} n_{i}=-b & \text { on } B_{2} \tag{6}
\end{array}
$$

$$
\left.\begin{array}{rlr}
u & =Z \tag{7}\\
k_{i j} \frac{\partial u}{\partial x_{j}} n_{i}=0
\end{array}\right\} \quad \begin{aligned}
& \text { on } F_{1} \\
& u=Y
\end{aligned} \quad \begin{array}{ll}
\text { on } F_{2}
\end{array}
$$

where
u is the piezometric or the potential head ${ }^{2}$
$k_{i j}$ is the permeability tensor
Z is the elevation of the free surface above the horizontal datum from which head is measured.

Differential equation (4) can be transformed into an integral equation by means of the fundatmental Green's functions and Green's second formula [9]. A brief description of the procedure is included here and is based on references $[5,10,11,12]$.

Basic Formulation

An expression of continuity in a volume is the divergence theorem. It states that the volume integral of the divergence of a vector field, taken throughout a bounded domain. D. equals the surface integral of the normal component of the vector field taken over the boundary of D. The mathematical description of the divergence theorem is [10, 11, 12]:

$$
\begin{equation*}
\int_{D}(\nabla \cdot v) d \tau=\int_{\Omega} \stackrel{v}{\sim} \cdot \underset{\sim}{\sim} d S \tag{10}
\end{equation*}
$$

in which
$\underset{\sim}{\nabla}$ is the vector operator $\frac{\partial}{\partial x} \underset{\sim}{i}+\frac{\partial}{\partial y} \underset{\sim}{j}+\frac{\partial}{\partial z} \stackrel{k}{\sim}$
$\underset{\sim}{\boldsymbol{\sim}} \quad$ is arty dffferentiable vector
D is the domain of integration, a volume in three dimensions, an area in two dimensions
$d \tau$ is the element of volume
$\Omega \quad$ is the boundary of D
$\underset{\sim}{n} \quad$ is the unit outward vector normal to D on Ω
$d S$ - is the element of surface-area

[^1]First, \boldsymbol{v} is defined as $U \nabla V$, where U and V are any two functions, twice differentiable in D.

Thus

$$
\begin{align*}
\stackrel{\sim}{\sim} \cdot \underset{\sim}{v}= & \underset{\sim}{\nabla} \cdot u \underset{\sim}{\nabla} V \\
= & {\left[\frac{\partial}{\partial x} \underset{\sim}{i}+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} \underset{\sim}{k}\right] } \\
& {\left[U \frac{\partial V}{\partial x} \underset{\sim}{i}+u \frac{\partial V}{\partial y} j+u \frac{\partial V}{\partial z} \underset{\sim}{k}\right] } \\
= & \frac{\partial U}{\partial x} \frac{\partial V}{\partial x}+\frac{\partial U}{\partial y} \frac{\partial V}{\partial y}+\frac{\partial U}{\partial z} \frac{\partial V}{\partial z} \\
& +u \frac{\partial^{2} V}{\partial x^{2}}+u \frac{\partial^{2} V}{\partial y^{2}}+u \frac{\partial^{2} V}{\partial z^{2}} \\
= & \underset{\sim}{\nabla} U \cdot \underset{\sim}{\nabla} V+U \nabla^{2} V \tag{11}
\end{align*}
$$

and equation (10) becomes:

$$
\begin{equation*}
\int_{D}\left(\underset{\sim}{\nabla} U \cdot \underset{\sim}{\nabla} V+U \nabla^{2} V\right) d \tau=\int_{\Omega} U \underset{\sim}{\nabla} V \cdot \underset{\sim}{\sim} d S \tag{12}
\end{equation*}
$$

Secondly, $\underset{\sim}{\mathcal{L}}$ is defined as $V \underset{\sim}{\nabla} U$, so that

$$
\begin{equation*}
\underset{\sim}{\nabla} \cdot \underset{\sim}{v}=\underset{\sim}{\nabla} v \cdot \underset{\sim}{\nabla} u+V \nabla^{2} u \tag{13}
\end{equation*}
$$

and equation (10) becomes:

$$
\begin{equation*}
\int_{D}\left(\underset{\sim}{\nabla} v \cdot \underset{\sim}{\nabla} u+V \nabla^{2} u\right) d \tau=\int_{\Omega} v \underset{\sim}{\nabla} u \cdot \underset{\sim}{n} d S \tag{14}
\end{equation*}
$$

Substracting equation (14) from equation (12) yields:

$$
\begin{align*}
& \int_{D}\left(u \nabla^{2} v-v \nabla^{2} u\right) d \tau \\
& =\int_{\Omega}(u \underset{\sim}{\nabla} v-v \underset{\sim}{\nabla} u) \cdot \underset{\sim}{n} d S \tag{15}
\end{align*}
$$

Equations (12) and (14) are known as the first form of Green's identity. Equation (15) is known as the second form of Green's identity [11].

Using the following notation for the normal component of a gradient with respect to the boundary:

$$
\begin{align*}
& \underset{\sim}{\nabla} V \cdot \underset{\sim}{n}=\frac{\partial V}{\partial n} \tag{16}\\
& \underset{\sim}{\nabla} U \cdot \underset{\sim}{n}=\frac{\partial U}{\partial n} \tag{17}
\end{align*}
$$

the Green's second identity, equation (15), becomes:

$$
\int_{D}\left(U \nabla^{2} V-V \nabla^{2} U\right) d \tau=\int_{\Omega}\left(U \frac{\partial V}{\partial n}-V \frac{\partial U}{\partial n}\right) d S \text { (18) }
$$

If U and V are both chosen such that they satisfy the Laplace equation, $\nabla^{2} U=\nabla^{2} V=0$, then equation (18) becomes:

$$
\begin{equation*}
\int_{\Omega}\left(U \frac{\partial V}{\partial n}-V \frac{\partial U}{\partial n}\right) d S=0 \tag{19}
\end{equation*}
$$

The present application makes direct use of equation (19) in which U is chosen as a variable potential head u, and V is chosen as a fundamental solution (also called free-space Green function [10]), which satisfies the Laplace equation in an infinite space except at the source point P, then:

$$
\begin{equation*}
\nabla^{2} V=\delta(P) \quad \text { in } D \tag{20}
\end{equation*}
$$

where $\delta(P)$ is a Dirac delta function representing a unit source at point P and equal to zero everywhere else. The fundamental solution V has different forms for twodimensional and three-dimensional problems. For a twodimensional problem: ${ }^{3}$

$$
\begin{equation*}
v=\ln (d) \tag{21}
\end{equation*}
$$

where d denotes the distance from an arbitrary but singular point P (where $d=0$) to another point Q on the boundary of the two-dimensional domain.

In applying equation (19), it is essential to exclude the point P by a small circle of radius ϵ as shown on figure 2. Equation (19) can then be expressed as two terms integrated along the outer boundary S and the pole circle. Thus, equation (19) becomes:

$$
\begin{align*}
& \int_{S}\left[u \frac{\partial}{\partial n}(\ln d)-\ln d \frac{\partial u}{\partial n}\right] d S \\
& +\operatorname{Limit}_{\epsilon \rightarrow 0} \int_{S_{\epsilon}}\left[u \frac{\partial}{\partial n}(\ln d)-\ln d \frac{\partial u}{\partial n}\right] d S_{\epsilon}=0
\end{align*}
$$

in which S is the boundary contour of D, and S_{ϵ} is a small circle of radius ϵ around P (fig. 2). The portions of the integral along the two lines connecting the circle to S will cancel and, thus, they do not appear in equation (22).

[^2]On the circle S_{ϵ}, the outward normal from D points inward toward P, thus:

$$
\begin{equation*}
\frac{\partial}{\partial n}(\ln d)=\frac{1}{d} \frac{\partial d}{\partial n}=\frac{1}{d}(\underset{\sim}{D} \cdot n)=\frac{-1}{d} \tag{23}
\end{equation*}
$$

and the integral around the circle becomes:

$$
\begin{equation*}
\operatorname{Limit}_{\epsilon \rightarrow 0} \int_{\theta=0}^{2 \pi}\left[u\left(\frac{-1}{\epsilon}\right)-\ln \epsilon \frac{\partial u}{\partial n}\right] \epsilon d \theta=-2 \pi u(P) \tag{24}
\end{equation*}
$$

The potential at any point P is defined in terms of the boundary integral:

$$
\begin{equation*}
2 \pi u(P)=\int_{S}\left[u(Q) \frac{\partial}{\partial n}(\ln d)-\ln d \frac{\partial}{\partial n} u(0)\right] d \tag{25}
\end{equation*}
$$

If u and $\partial \dot{u} / \partial n$ are known every where on the boundary S, the solution for \dot{u} at any interior point can be found by a line integration indicated in equation (25). In general, u and $\partial u / \partial n$ are not known on S. In a well-posed problem, either u or $\partial u / \partial n$ or a relation between them is known at all points on the boundary. The integral equation can be used to find $\partial u / \partial n$ or u on the boundary.

To complete the boundary data, the point P can be moved to the boundary as shown in figure 3. It is still excluded from D by a circular arc. The same considerations hold as before except that the integration indicated in equation (24) takes place over an angle which is less than 2π. For the case (fig. 3a), in which P is on a smooth part of the boundary:

$$
\begin{equation*}
\pi u(P)=\int_{S}\left[\frac{u(O)}{d} \frac{\partial d}{\partial n}-\ln d \frac{\partial u(Q)}{\partial n}\right] d S \tag{26}
\end{equation*}
$$

and (fig. 3b) in the general case:

$$
\begin{equation*}
a u(P)=\int_{S}\left[\frac{u(O)}{d} \frac{\partial d}{\partial n}-\ln d \frac{\partial u(O)}{\partial n}\right] d S \tag{27}
\end{equation*}
$$

in which α is the angle between the boundary segments at P. Equation (27) can be discretized and solved numerically to obtain the "missing data" on the boundary. A subsequent use of equation (25) gives the potential u at any specified interior point.

This development assumes that the flow is through a homogeneous and isotropic soil medium and described by Laplace equation. If the soil is anisotropic or nonhomogeneous, the describing equations must be transformed or zoned. These cases are considered separately.

Anisotropic Soil

The Laplace equation for a two-dimensional flow through anisotropic soil with permeabilities k_{x} and k_{y} in the orthogonal directions x and y is:

$$
\begin{equation*}
k_{x} \frac{\partial^{2} u}{\partial x^{2}}+k y \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{28}
\end{equation*}
$$

Equation (28) can be written [13] for a transformed section with $x_{T}=\sqrt{\frac{k_{y}}{k_{X}}} \times$ and $\gamma_{T}=y$ as:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x_{T}^{2}}+\frac{\partial^{2} u}{\partial y_{T}^{2}}=0 \tag{29}
\end{equation*}
$$

Nonhomogeneous Soil

A nonhomogeneaus soil medium can often be divided into a series of subregions or zones each having homogeneous soil; that is, soil properties in each zone are the same from point-to-point-horizontally or vertically-but may differ in different zones. By treating each zone separately, it becomes possible to study seepage through a single homogeneous, anisotropic material. The boundary element method can be applied to each zone of a nonhomogeneous soil medium. The individual zones can be coupled by adding the appropriate compatibility and equilibrium equations on the interfaces between zones to the algebraic equations created for the uncoupled zones. These boundary conditions shown on figure 4 at the interface for flow conditions are:

$$
\begin{equation*}
\text { - Compatibility: } u_{I_{1}}=u_{I_{2}} \tag{30}
\end{equation*}
$$

where
${ }^{U^{\prime}} I_{1}$ is the potential at node I considering it belongs to zone 1 .
${ }^{{ }^{U}} \mathrm{I}_{2}$ is the potential at node I considering it belongs to zone 2.

$$
\begin{equation*}
\text { - Equilibrium: } a_{I_{1}}=-a_{I_{2}} \tag{31}
\end{equation*}
$$

where
$\mathrm{q}_{I_{1}}$ is the rate of seepage flow out of zone 1 at node I
${ }^{Q^{2}} I_{2}$ is the rate of seepage flow out of zone 2
The rate of seepage flow by the Darcy's law is $q=k i A_{s}$ where k is the soil permeability in the direction of flow, i is the hydraulic gradient in the direction of flow, and A_{s} is the cross-sectional area through which flow occurs.

The geometric transformation used between equation (28) and equation (29) gives an effective isotropic permeability of $\left(k_{x} k_{y}\right)^{1 / 2}$ for each zone in the transformed space. Applying Darcy's law for flow rate across the interface element between two zones (fig. 4), equation (31), becomes:

$$
\begin{equation*}
\left[\sqrt{k_{x_{1}} k_{y_{1}}} \frac{\partial u}{\partial n}\right]_{I_{1}}=-\left[\sqrt{k_{x_{2}}{ }^{k_{y_{2}}} \frac{\partial \mu_{1}}{\partial n}}\right]_{I_{2}} \tag{32}
\end{equation*}
$$

where n is the direction of seepage flow assumed normal to the interface.

Application of equations (30) and (32) to the interface boundary elements gives the necessary equations to couple the heretofore uncoupled zones in the transformed space.

Solution Procedure

By using Green's second identity, the differential equation (4)-assuming $k_{i j}$ constant-has been transformed into the boundary integral equation (27) which involves only the variables on the boundary. Equation (27) can be solved numerically by discretizing the boundary into a finite number of straight line segments or elements as shown on figure 5. The points where the unknown values are considered or "nodes" are taken to be in the middle of each segment (fig. 5a), or at the intersection between two elements (fig. 5b). The boundary could be discretized by the use of curved elements \langle fig. 5 c).

The procedure described in this paper uses constant elements. With this procedure, the values of u and $\partial u / \partial n$ are assumed to be constant on each element and equal to the value at the midnode of the element. Letting $\{u\}{ }^{e}$ and $\{\partial u / \partial n\} e^{e}$ denote the values of the variables u and $\partial u / \partial n$ on the boundary elements and locating the arbitrary point P at each of the N nodal points, a set of simultaneous equations can be formed from equation (27) as follows:

$$
\begin{equation*}
\{0\}=[H]\{u\}-[G]\left\{\frac{\partial u}{\partial n}\right\} \tag{33}
\end{equation*}
$$

where $[H$] and [G] are two matrices obtained through integration of equation (27). Equation (33) may be rewritten

$$
\begin{equation*}
[H]\{u\}=[G]\{a\} \tag{34}
\end{equation*}
$$

where q represents $\partial u / \partial n$:
Equation (34) relates the value of u at midpoint i (called node i) of each boundary element with the values of u and q at all the nodes on the boundary, including i. There is one equation for each boundary element. If there are N_{1} values of u and N_{2} values of q prescribed on an exterior boundary ($N=N_{1}+N_{2}$), a set of N unknowns exists in equation (34): Rearranging the equations in such a way
that all the unknowns are on the left-hand side, equation (34) can be written as:

$$
\begin{equation*}
[A]\{x\}=\{B\} \tag{35}
\end{equation*}
$$

where $\{x\}$ contains all the unknowns u and q for the boundary elements.

The above development is for flow through a homogeneous region with isotropic permeability.

For a nonhomogeneous material body, zones of piecewise homogeneity are identified-each zone is geometrically scaled to obtain an equivalent isotropic zone and the above procedure applied to each transformed zone. This produces sets of linear algebraic equations, one set per zone, which are submatrices of $[H]$ and $[G]$ in equation (34). These sets of equations are coupled by imposing constraint equations (30) and (32) for the interface boundary elements (fig. 4). If these constraint equations are appended at the end of matrices $[H$] and [G], the number of equations becomes $N+2 m$ where m is the number of interface boundary elements. Alternatively, the interface constraint equations could be enforced by judiciously positioning the entries in $[H]$ and $[G]$ matrices for the interface boundary elements [14]. This way, the order of [G] and $[H]$ matrices equals N.

$$
\text { For a multizone material body, } N=\sum_{j=1}^{M} N_{j} \text { where } M \text { is }
$$

the number of zones, $\boldsymbol{N}_{\boldsymbol{j}}$ is the number of boundary elements in the zone j.

The above developments imply that the boundary was specified a priori and remains fixed. However, with a phreatic line (the free-water surface) in an embankment, the location of the free-water surface is not known. Therefore, this case must be considered separately.

Phreatic Line Location

The location of the phreatic line of seepage through an embankment dam is determined in the following steps [15, 16]:

1. Assume a path for the phreatic line. This path is used as a boundary for discretization of the problem into boundary elements. The embankment cross section above the assumed phreatic line is of no consequence and therefore is not included in the problem definition.
2. The boundary condition along the phreatic line is specified to be $\partial u / \partial n=0$.
3. Calculate the potential head for the boundary elements including the elements representing the phreatic line.
4. Because the pressure head along the phreatic line is zero, the calculated potential head in step 3 in effect, provides the calculated estimate for the location of phreatic line element by element.
5. Using this revised estimate for the phreatic line location, calculations for the step 3 are repeated. When the difference between phreatic line locations in two consecutive calculations is within a specified tolerance, the solution is assumed to have converged.

The preceding step-by-step procedure is effective in adjusting the path for the phreatic line within the embankment section. The entry point on the phreatic line on the upstream face of the dam is defined by the headwater elevation and is assumed fixed in the iterative procedure. All other points on the phreatic line including the exit point on the downstream face of the dam are adjusted at the end of each iteration cycle.

The boundary conditions along the downstream face of the dam, above the tailwater elevation, are in terms of the total potential (being equal to the elevation head) and nonzero gradient; that is $\partial u / \partial n \neq 0$. The procedure in step 3 provides calculated potentials or gradients for all of the exterior boundary elements. If the gradient(s) for the boundary elements on the downstream face of the dam imply flow into the dam rather than out of the dam, these boundary elements on the downstream face of the dam should be considered part of the phreatic line definition.

COMPUTER IMPLEMENTATION

Program Description

The computer program in appendix 1 named BIE2DCP (Boundary Integral Equation, 2-Dimensions, Constant Potential) was developed in FORTRAN IV for the CDC CYBER $170-730$ computational system. The program implements the ideas presented in the Theory section to perform seepage studies in two-dimensional zoned anisotropic mediums. In its present form, the program can be used to analyze seepage problems for up to 10 zones. The total number of boundary elements cannot exceed 200. If more elements are needed, it is only necessary to change the size of the array in the DIMENSION statement of the main program. All subroutines are designed to be dimensionally compatible with the main program. The program is self-complete; however, it uses some of the online functions available on the computational system.

The numbering of the boundary elements for each zone, and connectivity between zones through the interface boundary elements follow a fixed convention as shown on figure 6. For the exterior boundary of the numerical model, either the potential or its derivative normal to the boundary (but not both) are prescribed. At least one value of gradient $\partial u / \partial n$ or one value of potential u must be
given along with the rest of the boundary conditions data for the set of equations (35) to have a unique solution [16]. For the interface boundary elements, neither the potential nor its gradient is defined. The constraint equations (30) and (32) for the interface elements are enforced automatically by the computer program to ensure completeness of the numerical model. These constraint equations are implemented in the computer program by judiciously positioning the entries in $[H]$ and [G] matrices for the interface boundary elements. Thus, the order of $[G]$ and $[H]$ matrices in equation (34) equals the total number of boundary elements used to discretize piecewise homogeneous zones of an anisotropic material body.

Interzonal Connectivity

Each zone in a multizone body is given a numerical ID (identity) number. The ID numbers begin with 1, and are incremented by 1 for the complete problem. The relationship of each zone with all other zones in a multizone body is identified by specifying the ID number of other zones and giving the serial numbers of the interface boundary elements (fig. 6). This procedure allows for accountability of general planar distributions of materials and the resulting interfaces between material zones.

It is necessary to divide a material deposit into zones when the material is nonhomogeneous. It is desirable to divide a material deposit into zones when the aspect ratio of the body is large-that is, long but thin seams of material generally encountered in foundation zones of dams-to avoid numerical inaccuracies. In general, the ratio of the longest to shortest dimension should not exceed ten.

Input Requirements

General Considerations-All control and input data, with the exception of the identification card, must be in either integer or floating point numerical format. Each card is divided into 16 fields of 5 columns each which end with columns $5,10,15, \ldots 80$. Integers must be right justified in their fields and all fields may contain no more characters than the number of columns in each field. Right justified means that all numbers must end at rightmost character position (i.e., in columns 5, 10, 15, . . . etc.) in the field. All real numbers must carry an explicit decimal point and may appear anywhere in their fields. A blank field implies zero for its variable, real or integer. Thus, leading zeros may be suppressed.

In the following, an expression starting with $/, J, K, L, M$, or N and containing any alphanumeric characters indicates an integer field. All others are real fields.

For convenience in checking a problem, all input data are printed in a convenient format with appropriate identifications so the information used by the program can be verified. This is especially useful when the results are apparently or
obviously in error; the input can be scanned quickly to see if faulty input data must be corrected.

The input data must follow a specified format as shown in table 1. There are 13 different types of input cards to the program. The card type number is created for the convenience of the user in coding data for a problem. It is not made a part of the data and must not appear in the data file to be used by the computer program. A description of the variable names used for the input definition follows. The input for an array of variables may require more than one card depending on the size of the array.

Description of Card Types - The input data may be in either the inch-pound or SI system.

1. * Job identification name. This card is necessary for all problems, one card per problem.
2. N : Number of boundary elements (equal to the number of nodes in this case of constant elements).

NRGNS: Number of regions. One region can have only one set of permeability values in the plane of the problem.
3. For $l=1$ to NRGNS, the following information:

NL (I): Number of internal points in region /, where the potential u need to be calculated.
4. For $J=1$ to $N L$ (/), the following information:

CX (I, J) : The x coordinate for internal point J in region / where the value of u is required.

CY ($/, J$): The V coordinate for internal point J in region / where the value of u is required.
5. For $/=1$ to N, the following information:
$X(I)$: The x coordinate of the extreme point of boundary element $/$.
$Y(/)$: The y coordinate of the extreme point of boundary element $/$.
6. For $I=1$ to N, the following information:

KODE(/): Code for the boundary conditions at the element nodes.
$\operatorname{KODE}(1)=0$ implies that potential u for the element node $/$ is known and specified in the data set.
$\operatorname{KODE}(/)=1$ implies that the derivative of the potential $\partial u / \partial n$ for the element node $/$ is known and specified in the data set.
$\operatorname{KODE}(l)=2$ implies that the element node I is on an interface and neither the potential nor the derivative of the potential is known.

FI(/): Prescribed value of the boundary condition for element node / corresponding to the value of KODE (/). For. KODE (/) $=2, \mathrm{FI}(/)$ must be left blank or specified a value of 0.0 .
7. For $l=1$ to NRGNS, the following information:

PERMX (1): Permeability in the x direction for region /.
PERMY ($/$): Permeability in the y direction for region $/$.
8. ISTART(/): Starting node number for the bound: ary elements for region $/$.

IEND(1): Ending node number for the boundary elements for region 1 .
9. NINTF(/,J): Number of boundary elements on interface between regions / and J.
10. ID (I, J, K) : Node number of interface boundary element K between regions / and J.
11. NPHREL: Number of boundary elements used to define the phreatic line.

ITRMAX: Maximum number of iterations permitted to seek the phreatic line to a desired accuracy.

ACC: Accuracy desired for the location of the phreatic line. If the difference between the calculated elevation of phreatic line in two consecutive iteration cycles is less than ACC, the desired convergence is assumed to have been achieved.

HWE: Headwater elevation.
TWE: Tailwater elevation.
12. IDPHR (I): Node numbers of boundary elements on the phreatic line.
13. IDPPHR: Node number of the boundary element past the exit of the phreatic line.

The card types No. 1 through 13 must be stacked in the above order.

The boundary element numbering convention and the coupling of the interface boundary elements are shown in figure 6 . With this numbering scheme, the inward normal to a boundary element is positive. Thus, a positive gradient implies flow into the region and a negative gradient implies flow out of the region. The numbering for the phreatic line elements must be continuous.

Computer Output

All output has complete headings and should be selfexplanatory. An itemized synopsis of the computer output follows:

1. A listing of the input data in a reformated structure. All blank input items will be output as 0.0 .
2. The total potential and gradient (gradient or potential is input for all exterior boundary elements as in a mixed boundary value problem) and pressure head for all boundary nodes including the interface elements.
3. The total potential and pressure head for the specified interior points.
4. The location of the phreatic line for steady unconfined flow problems.

Program Messages

The computer program BIE2DCP is designed to generate one information message during execution. Additional messages-if any-shall be those caused by the computational system; therefore, a reference should be made to the computational system manuals.

The program generated message is:
"Error Indicators from The Equation Solver = " IER1, IER2
This message is generated to indicate the condition of the system of simultaneous linear algebraic equations. The error IER1 is generated in subroutine FACTR; IER2 is generated in subroutine RSLMC [17].

IER1 $=0$ implies there was no error in the factorization of the matrix $[A]$, equation (35), into a product of a lower triangular matrix and an upper triangular matrix.

IER1 $=3$ implies there was error in factorization of the matrix $[A]$, equation (35), into a product of a lower triangular matrix and an upper triangular matrix.

IER2 $=0$ implies each component of the computed solution vector $\{x\}$, equation (35), meets the precision of 1×10^{-6}.

IER2 $=1$ implies only the norm of the computed solution vector $\{x\}$, equation (35), meets the precision of 1×10^{-6}.

IER2 $=2$ implies the precision in the norm of the computed solution vector $|x|$, equation (35), is lower than 1×10^{-6}.

IER2 $=3$ implies the computed solution vector $\{x\}$, equation (35), has no meaning at all.

IER2 = 4 implies a diagonal term of the upper triangular factor is zero.

IER1 $=0$ and IER2 $=0,1$, or 2 should be interpreted to mean that the set of algebraic equations is well conditioned and its computed solution is stable.

IER1 = 3 and IER2 $=3$ or 4 should be interpreted to mean that the computed results are not good.

User Action: Check input data.
This message will not cause a termination of the program execution. These checks were built into the program during its development, and are being left in the program as they serve useful checks on the program and the problem definition.

SAMPLE PROBLEMS

Two types of sample problems are presented. In one, the sample problems have known analytical or numerical solutions or both. In the other, the sample problem simulates a laboratory model in which the pressures were measured. The objectives are to demonstrate:
(1) the accuracy of the boundary element method with known solutions which use other techniques, and
(2) the usefulness of the boundary element method in predicting the response of physical model studies.

Example problems are described below.
Problems With Known Analytical and/or Numerical Solutions

Examples 1 and 2.-These problems have known analytical solutions [1]. Both problems could be considered as heat flow in a plate.

Problem 1, on figure 7, has a single medium with homogeneous and isotropic thermal conductivity. The exact solution to this problem is $\partial u / \partial n=0.5$ and $u=(6-x) / 2$. The agreement is excellent between the numerical solution from the computer program and the analytical solution (fig. 7).

Problem 2, on figure 8, has two zones with homogeneous and isotropic thermal conductivity for each zone. The exact solution to this problem is a linear distribution from $u=5$ to $u=1$ in the left half zone and from $u=1$ to $u=0$ in the right half zone. The results of analysis of this problem using the computer program and the analytical solution show excellent agreement (fig. 8).

Examples 3 and 4.-These problems have known graphical solutions [13]. Both problems could be considered as confined flow through foundation zones.

Problem 3, on figure 9, has a sheet pile wall driven into a silty soil having a permeability of $10^{-6} \mathrm{ft} / \mathrm{min}\left(0.3 \times 10^{-6}\right.$ $\mathrm{m} / \mathrm{min}$). The sheet pile wall runs for a considerable length in a direction perpendicular to the page as shown on figure 9. The flow underneath the sheet pile wall is two-dimensional. Line be represents an impervious cutoff wall (sheet pile). The water pressure distribution on the sheet pile wall is of interest. This problem provides a comparison of results obtained by the use of the boundary element computer program and the graphical solution. The agreement between the two methods is good (fig. 9).

Problem 4, on figure 10, represents a concrete spillway resting on an isotropic soil [13]. Lines $A B$ and $G H$ represent impervious cutoff walls (sheet piles). The piezometric head along the base of the spillway and around the sheet piles are of interest. This problem provides a comparison of results obtained by the use of the boundary element computer program and the known graphical solution. Again, the agreement between the methods is excellent (fig. 10).

Table 2 shows the input data file listing for this problem. The information in this table has been annotated to relate it to the input variable listing of table 1. The inclusion of details of the input data file for this problem rather than for some other sample problems included in this report is coincidental.

Example 5.-This problem, on figure 11, is an illustration of the use of the boundary element method for steady unconfined flow through a homogeneous and isotropic embankment dam resting on an impervious foundation. The location of the phreatic line is of interest. This problem is taken from reference [1] where a numerical solution is given. The discretization of the problem for the boundary element procedure and the appropriate boundary conditions are shown in figure 11. The iterative procedure used in the computer program BIE2DCP to locate the phreatic line is quite effective in achieving its objective (fig. 11). The comparison of the results obtained by the two numerical procedures is excellent.

Example 6.-This problem, on figure 12, is an illustration of the use of the boundary element method for a combination of confined and unconfined flow through an embankment dam and its foundation materials. The embankment soil and the foundation soils are assumed to be piecewise homogeneous with different permeabilities in two orthogonal directions. This sample problem is a simplified version of Bureau of Reclamation's Foss Dam seepage analysis studies. The results of the analysis obtained through the use of the BIE2DCP computer program are shown on figure 12. The results of this problem are not compared with Foss Dam studies because the simplified configuration was not recomputed using the finite element analysis.

Problem With Measured Response

Example 7.-The objective of this example, on figure 13 , is to compare the results of the numerical model based on the boundary element method with those of a physical model. The laboratory model consists of a subsurface agricultural drain surrounded by an isotropic sand medium [18] . Briefly, the drain was constructed of a 4 -inch-diameter ($100-\mathrm{mm}$) corrugated plastic tubing surrounded by a 4 -inch-thick gravel drain envelope. A symmetrically placed annulus of sand base material having an 86.4 -inch diameter (2195 mm) was installed around the envelope. Unrestricted flow into the sand base was achieved by providing a coarse gravel pack at the periphery of the sand base. The tank containing the drain, envelope, sand base, and gravel pack was 9 feet long, 8 feet high, and 2.5 feet deep (2743 by 2438 by 762 mm). One side was constructed from an acrylic plastic face so that flow lines could be observed and to facilitate pressure measurements. Pressures were measured with one transducer systematically connected to all of the piezometric measurement points. All tests were made at a flow depth of 1 inch (25 mm) in the drain tubing.

The gravel envelope surrounding the drain pipe is about 18 times more permeable than the sand, and flow of water from gravel pocket to drain pipe is caused essentially by a stationary steady-state pool in the gravel envelope. There is a geometric and prescribed boundary conditions symmetry in the physical model about the vertical centerline. Thus, it is only necessary to numerically model one-half of the physical model and to treat the gravel envelope as a freeflow boundary, see figure 13. Results of the numerical model; in terms of water elevation at several interior points compared with those observed in the laboratory test for identical conditions of applied potentials for steadystate conditions, are shown on figure 14. Water elevations in these results are referenced from the steady-state pool elevation of 0.0 in the gravel envelope which is arbitrarily assigned an elevation of 0.0 . The nomenclature for referring to the interior points is $\mathrm{C}_{r}-\mathrm{R}_{\theta}$; where $\mathrm{C}_{r}=$ the circumferential path located at radius r and $R_{\theta}=$ the radial line located at an angle $\dot{\theta}$ with respect to vertical. Specifically, radii r has values of $6.48,8.16,10.32,12.96,16.44,20.76$, $26.16,33.0$, and 41.64 inches ($165,207,262,329,418$, $527,665,838,1058 \mathrm{~mm}$), and angles θ have values of $15,30,45,60,75,90$, and 105 degrees measured counterclockwise from the vertical.

The original gravel envelope diameter in the model was 12.7 .2 inches (323 mm). However, during pretesting operations at high heads, sand material entered the gravel envelope. Therefore, the interface between the sand and the gravel envelope could not be located precisely. The results of the numerical model compared favorably with laboratory measurements when an effective gravel envelope diameter of $\mathbf{1 2 . 8}$ inches (325 mm) was assumed.

FUTURE DEVELOPMENTS

This report presents results of a study that demonstrate the practical application of the boundary element method to steady seepage problems through zoned anisotropic soils. A need exists to extend the method for the analysis of the following flow problems:

- The inclusion of internal sources or sinks within the two-dimensional flow problem
- Two-dimensional transient flow problems in soils
- Three-dimensional steady flow problems in soils
- Three-dimensional transient flow problems in soits

BIBLIOGRAPHY

[1] Baker, R., "Use of Micro-Computers for the Solution of Seepage Problems by the Boundary Element Method," Proceedings: Symposium on Implementation of Computer Procedures and Stress-Strain Laws in Geotechnical Engineering, C. S. Desai and S. K. Saxena, Eds., pp. 463-475, 1981.
[2] Banerjee, P. K. and R. Butterfield, Boundary Element Methods in Engineering Science, McGraw Hill Book Company, 1981.
[3] Brebbia, C. A., The Boundary Element Method for Engineers, Pentech Press, pp. 58-70, 1978.
[4] Brebbia, C. A., and O. V. Chang, 'Boundary Elements Applied to Seepage Problems in Zoned Anisotropic Soils," Advances in Engineering Software, vol. 1, No. 3, pp. 95-105, 1979.
[5] Chang, Ching S., "Boundary Element Method in Seepage Analysis With a Free Surface," Proceedings: Symposium on Implementation of Computer Procedures and Stress-Strain Laws in Geotechnical Engineering, C. S Desai and S. K. Saxena, Eds., pp. 421430, 1981.
[6] Tomlin, G. R., Numerical Analysis of Continuum Problem in Zoned Anisotropic Media, Ph. D. Thesis, Southampton University, 1972.
[7] Banerjee, P. K. aṇd R. Butterfield, "Boundary Element Methods in Geomechanics," ch. 16,: Finite Elements in Geomechanics, G. Gudehus, Ed., John Wiley and Sons, 1976.
[8] Banerjee, P. K., "Nonlinear Problems of Potential Flow," ch. 2.: Developments in Boundary Element Methods, vol. 1, P. K. Banergee and R. Butterfield, Eds., Applied Science Publishers, 1979.
[9] Bear, J., Dynamics of Fluids in Porous Media, American Elsevier, 1972.
[10] Liggett, James A. and Philip L.F. Liu, The Boundary Integral Equation Method for Porous Media Flow, George Allen and Unwin, 1983. .
[11] Pipes, Louis A., Applied Mathematics for Engineers and Physicists, McGraw Hill Book Company, 1958.
[12] Davis, Harry F., Introduction to Vector Analysis, Allyn and Bacon, Inc., 1967.
[13] Lambe, T. W. and R. V. Whitman, Soil Mechanics, John Wiley and Sons, 1969.
[14] Chugh, A. K. and H. T. Falvey, "A Computer Program for Planar Seepage Analysis in a Zoned Anisotropic Medium by the Boundary Element Method," Advances in Engineering Software, vol. 5, No. 4, pp. 196-201, 1983.
[15] Liggett, J., "Location of Free Surface in Porous Media," Journal of the Hydraulics Division, American Society of Civil Engineers, vol. 103, No. HY4, pp. 353-365, 1977.
[16] Chugh, A. K. and H. T. Falvey, "Seepage Analysis in: a Zoned Anisotropic Medium by the Boundary Element Method," International Journal for Numerical and Analytical Methods in Geomechanics, in press:
[17] System/360 Scientific Subroutine Package, Version IIi, 5th ed., International Business Machines, 1970.
[18] Zeigler, E. R. and J. N. Christopher, "Laboratory Test for a Drain With Gravel Envelope, "American Society of Civil Engineers Proceedings of Specialty Con-ference-Water Forum 81, vol. 2, pp. 765-772, 1981.

Table 1.-Input data field format for the computer program BIE2DCP

- 5, 10, 15, 20, etc. Indicate the ending column of a ficld on the data card.
- All input is either in 5- or $\mathbf{1 0}$-column field format.
- The input for an array of variables may require more than one card. depending upon the size of the array.
- All real numbers should carry an explicit decimal point and may appear anywhere in their fields. All integers must be right justified in their orn fields. All user created data must be in explicit real or integer format, except for the identification card which has an alphanumeric format.
- Unused portion of cards should be left blank. A blank field imples zero value for its variabla, real or integar.
- The card type number is created for convenience of reference in this report. It is not to be included in the date set.

Table 2.-Annotated Input data file for the sample problem No. 4

$\begin{array}{cl} \text { SAMPLE PR } \\ 82 & 3 \\ 9 & \end{array}$	- PRESSURE	DISTRIBUTION	UNDER TWO PILED CONCRETE	SPILLWAY
8.0	14.0			
35.0	14.0			
58.0	14.0			
8.0	34.0			
35.0	34.0			
58.0	34.0			
8.0	54.0			
35.0	54.0			
58.0	54.0			
11				
78.0	14.0			
98.0	14.0			
118.0	14.0			
138.0	14.0		Location of interior points	
88.0	34.0		where potentials are deslred.	
108.0	34.0		card types 3 and 4.	
128.0	34.0		card types 3 and 4.	
78.0	54.0			
98.0	54.0			
118.0	54.0			
138.0	54.0	.		
9				
158.0	14.0			
183.0	14.0			
208.0	14.0			
158.0	34.0			
183.0	34.0			
208.0	34.0			
158.0	54.0			
183.0	54.0			
208.0	54.0			
0.0	0.0			
8.0	0.0			
18.0	0.0			
28.0	0.0			
38.0	0.0			
48.0	0.0			
58.0	0.0			
66.0	0.0		,	
66.0	14.0			
66.0	24.0			
66.0	34.0			
66.0	43.0			
66.0	51.5			
66.0	60.0			
66.0	64.0			
58.0	64.0			
48.0	64.0			
38.0	64.0			
28.0	54.0			
18.0	64.0		Location of end points of	
8.0	54.0		boundary elements.	
0.0	64.0		card type 5.	
0.0	54.0			
0.0 .	44.0			
0.0	34.0			
0.0	24.0			
0.0	14.0			
66.0	0.0			
78.0	0.0			
88.0	0.0			
98.0	0.0			
108.0	0.0			
118.0	0.0			
128.0	0.0			
138.0	0.0			
151.0	0.0			
151.0	14.0			
151.0	24.0			
151.0	34.0			

Table 2.-Annotated input data file for the sample problm No. 4 - Continued

150.92	43.0	
150.92	51.5	
150.92	60.0	
138.0	60.0	
128.0	60.0	
118.0	60.0	
108.0	60.0	
98.0	60.0	
88.0	60.0	
78.0	60.0	
66.08	60.0	
66.08	51.5	
66.08	43.0	
66.0	34.0	
66.0	24.0	
66.0	14.0	
151.0	0.0	
158.0	0.0	
168.0	0.0	
178.0	0.0	
188.0	0.0	
198.0	0.0	
208.0	0.0	
217.0	0.0	
217.0	14.0	
217.0	24.0	
217.0	34.0	
217.0	44.0	
217.0	54.0	
217.0	64.0	
208.0	64.0	
198.0	64.0	
188.0	64.0	
178.0	64.0	
168.0	64.0	
158.0	64.0	
151.0	64.0	
151.0	60.0	
151.0	51.5	
151.0	43.0	
151.0	34.0	
151.0	24.0	
151.0	14.0	
1		
1		
1		
1		
1		
1		
2		
2		
2		
1		
94.0		
$\begin{array}{ll}1 \\ 0 & 94.0 \\ 04.0\end{array}$		
0	94.0 94.0	exterior and interface
0	94.0	boundary elements.
0		
0	$\begin{aligned} & 94.0 \\ & 94.0 \end{aligned}$	
1 -		
1		
1 *		
1 (
1		
1		

Table 2.-Annotated input data file for the sample problem No. 4 - Continued

$.1509200 E+03$
$.1509200 E+03$
$1380000 E+03$
$.1280000 E+03$
$.1180000 E+03$
$1080000 E+03$ $9800000 E+02$ $8800000 \mathrm{E}+0$ 780000E + O $.7800000 E+02$
$.6608000 E+02$ $6608000 E+02$
$6608000 E+02$ $6608000 E+02$ $6608000 E+02$ $6600000 E+02$ $6600000 \mathrm{E}+02$ $6600000 \mathrm{E}+02$
$.1510000 E+03$
$1580000 \mathrm{E}+0$
$1580000 \mathrm{C}+0$
$.1780000 \mathrm{E}+03$
$.1880000 \mathrm{E}+03$
$1980000 \mathrm{E}+03$ 2080000E+03 $2170000 \mathrm{E}+03$.2170000E+03 $.2170000 E+03$ $.2170000 \mathrm{E}+03$ $.2170000 \mathrm{E}+03$ $.2170000 \mathrm{E}+03$ 2170000E+03 .2080000E+03

- $1980000 \mathrm{E}+03$
$.1880000 E+03$ $.1780000 E+03$ $.1680000 E+03$ $1580000 E+03$ $.1510000 E+03$ $1510000 E+0$. $1510000 \mathrm{E}+03$ -1510000E+03 . $1510000 E+03$ $1510000 E+03$ $1510000 E+03$
$5150000 E+02$
$6000000 E+02$ $.6000000 \mathrm{E}+02$ $.6000000 \mathrm{E}+02$. $6000000 E+02$. $6000000 \mathrm{E}+02$ $.6000000 \mathrm{E}+02$ $6000000 \mathrm{E}+02$ -6000000E + O2 -- 15000 +02 $.5150000 E+02$ $.4300000 E+02$ $.3400000 E+02$. $2400000 \mathrm{E}+02$. $1400000 \mathrm{E}+02$

0.
1.
2.
3.
4.
5.
6.

$1400000 E+02$
$2400000 E+02$ $3400000 E+02$ $4400000 E+02$ $.5400000 E+02$. $6400000 \mathrm{E}+02$ $.6400000 E+02$ $.6400000 E+02$ $.6400000 \mathrm{E}+02$ 6400000E+02 $6400000 E+02$ $6400000 E+02$ $6400000 E+02$
$6400000 E+02$ $.6400000 E+02$
$6000000 E+02$ $6000000 E+02$ $.5150000 E+02$. $4300000 \mathrm{E}+02$
. $3400000 \mathrm{E}+02$
$.2400000 E+02$
$.1400000 \mathrm{E}+0$ 2

BOUNDARY CONDITIONS

NODE	CODE	PRESCRIBED VALUE	
1	1	0.	
2	1	0.	
3	1	0.	
4	1	0.	
5	1	0.	
6	1	0.	

	.000.000.0.0.0.0.0.0.0.0.00000000000000000

TOTAL NUMBER OF EQUATIONS = 82
ERROR INDICATORS FROM THE EQUATION SOLVER $=00$
㲘

RESULTS
BOUNDARY NODES

NODE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Y
0.
0.
0.
0.
0.
0.
0.
$.7000000 E+01$
$.1900000 E+02$
$.2900000+02$
$.3850000 E+02$
$.4725000 E+02$
$.5575000 E+02$
$.6200000 E+02$
$.6400000 E+02$
$.5900000 E+02$
$.4900000 E+02$
$.3900000 E+02$
$.2900000 E+02$
$.1900000 E+02$
$.7000000 E+01$
0.

6000000E+02

POTENTIAL
POTENTIAL DERIVATIVE
PIEZOMETRIC RISE
NODE
$.9088655 E+02$
$9073832 E+02$. $9040193 \mathrm{~F}+0$ 2 -9040193E+02 $8986830 E+02$ $.8912651 E+02$. B817576E +02 $.8715997 E+02$ $.8671488 E+02$ $.8691162 E+02$ $8719951 E+02$ $8759198 E+02$ $.9056792 E+02$ -9246932E + 02 9246932E+02 $9366061 E+02$ $.9400000 E+02$ $.9400000 E+02$ $.9400000 E+02$ $9400000 E+02$ $9400000 E+02$ $9400000 E+02$ $9400000 E+02$. $9363921 E+02$. $9287888 E+02$. $9219748 \mathrm{E}+02$. $9163254 E+02$ $.9163254 E+02$
$9121452 E+02$ $9093563 E+02$ $8596615 E+02$ $8448887 E+02$. $8312199 E+02$ $8175196 E+02$ $.8038281 E+02$ $.7901297 E+02$ $.7764547 \mathrm{E}+02$ $.7764547 E+02$
$.7609868 E+02$. $7529175 \mathrm{E}+02$. $7508809 E+02$. $7479936 E+02$ $7440669 E+02$ $.7642458 E+02$ $.7712550 E+02$ $.7732592 \mathrm{E}+02$. $7820563 \mathrm{E}+02$ $.7820563 E+02$
$.7928099 E+02$ $.7928099 E+02$
$.8045818 E+02$ $8165982 \mathrm{E}+02$ $8283130 \mathrm{E}+02$ $8388977 E+02$

0 .
$9088655 E+02$
$9073832 \mathrm{~F}+02$
$.9040193 E+02$ $.8986830 E+02$ $8986830 E+02$
$8912651 E+02$ $.8912651 E+02$
$.8817576 E+02$ $8817576 E+02$
$.8715997 E+02$ $.8715997 E+02$
$.7971488 E+02$ $.7971488 E+02$
$6791162 E+02$ $5819951 E+02$ $.4909198 E+02$
$.4331792 E+02$. $3671932 E+02$ $.3671932 E+02$
$.3165061 E+02$. $3000000 \mathrm{E}+02$ $.3000000 E+02$
$.3000000 E+02$. $3000000 E+02$. $3000000 E+02$. $3000000 E+02$
$3000000 \mathrm{~F}+02$
$3000000 \mathrm{E}+02$
$3463921 E+0$ 2 - $4463921 E+02$ $4387888 E+02$ $5319748 \mathrm{E}+02$ $6263254 E+02$ $7221452 E+02$ $8393563 E+02$ $8596615 \mathrm{E}+02$ $8448887 E+02$ $8312199 E+02$ $8175196 E+02$ $8175196 E+02$ $8038281 E+02$ $7901297 E+02$ $7764547 E+02$ $7609868 E+02$ $6829175 E+02$ $5608809 E+02$ $4579936 E+02$ $3590669 E+02$ 2917459E+02 2917458E + 02 $2137550 E+02$ $1732592 E+02$
$1820563 E+02$
. $1928099 E+02$.2045818E+02 2165982E+02 . 2283130E+02 . $2388977 \mathrm{E}+02$

Table 3.-Computer output for the sample problem No. 4 - Continued

49	. $7204000 \mathrm{E}+02$. $6000000 \mathrm{E}+02$. $8469687 E+02$	0.	. $2469687 E+02$	49
50	. $6608000 \mathrm{E}+02$	$.5575000 \mathrm{t}+02$. $8487832 \mathrm{E}+02$	0.	. $2912832 \mathrm{E}+02$	50
51	. $6608000 \mathrm{E}+02$. $4725000 \mathrm{E}+02$. $8557413 \mathrm{E}+02$	0.	. $3832413 E+02$	51
52	. $6604000 \mathrm{E}+02$. $3850000 \mathrm{E}+02$. $8759198 \mathrm{E}+02$	$.3436234 E+00$. $4909198 E+02$	52
53	.6600000E+02	. $2900000 \mathrm{E}+02$. $8719951 \mathrm{E}+02$. $1604466 \mathrm{E}+00$. $5819951 E+02$	53
54	. $66000005+02$	$.1900000 \mathrm{E}+02$. $8691162 \mathrm{E}+02$. $1360755 \mathrm{E}+00$.6791162E+02	54
55	$.6600000 E+02$	$.7000000 E+01$. $8671488 E+02$. $1291348 \mathrm{E}+00$. $7971488 \mathrm{E}+02$	55
56	$.1545000 \mathrm{E}+03$	0.	. $7490398 E+02$	0.	. $7490398 \mathrm{E}+02$	56
57	$.1630000 E+03$	0	. $7393254 E+02$	0.	. $7393254 E+02$	57
58	$.1730000 E+03$	0.	. $7296071 \mathrm{E}+02$	0.	. $7296071 E+02$	58
59	$.1830000 \mathrm{E}+03$	0.	. $7219740 E+02$	0.	. $7219740 \mathrm{E}+02$	59
60	$.1930000 E+03$	0.	. $7164319 E+02$	0 .	. $7164319 E+02$	60
61	. $20300005+03$	0.	. $7128763 E+02$	0.	. $7128763 \mathrm{E}+02$	61
62	. $2125000 \mathrm{E}+03$	0.	. $7111910 E+02$	0.	. $7111910 \mathrm{E}+02$	62
63	. $2170000 \mathrm{E}+03$	$.7000000 E+01$. $7106525 E+02$	0.	. $6406525 \mathrm{E}+02$	63
64	. $2170000 \mathrm{E}+03$	$.1900000 \mathrm{E}+02$. $7078614 \mathrm{E}+02$	0 .	. $5178614 E+02$	64
65	. $2170000 \mathrm{E}+03$. $2900000 \mathrm{E}+02$. $7036814 \mathrm{E}+02$	0.	. $4136814 \mathrm{E}+02$	65
66	. $2170000 \mathrm{E}+03$. $3900000 \mathrm{E}+02$. $6980326 E+02$	0 .	. $3080326 E+02$	66
67	. $2170000 \mathrm{E}+03$. $4900000 \mathrm{E}+02$.6912211E+02	0.	. 2012211E+02	67
68	. $2170000 \mathrm{E}+03$. $5900000 \mathrm{E}+02$. $6836281 E+02$	0.	. $9362814 \mathrm{E}+01$	68
69	. $2125000 E+03$. $6400000 \mathrm{E}+02$. $6800000 \mathrm{t}+02$	-. 8243230E-01	. $4000000 \mathrm{E}+01$	69
70	. $2030000 E+03$. $6400000 \mathrm{E}+02$. $6800000 \mathrm{E}+02$	-. $8083644 \mathrm{E}-01$	$.4000000 \mathrm{E}+01$	70
71	. $1930000 E+03$. $6400000 E+02$. $6800000 \mathrm{E}+02$	-. 9234625E-01	$.4000000 \mathrm{E}+01$	71
72	$.1830000 E+03$. $6400000 E+02$. $6800000 E+02$	-. $1093966 \mathrm{E}+00$	$.4000000 E+01$	72
73	. $1730000 \mathrm{E}+03$. $6400000 E+02$. $6800000 E+02$	-. $1338401 E+00$	$.4000000 E+01$	73
74	. $1630000 \mathrm{E}+03$. $6400000 \mathrm{E}+02$. $68000005+02$	-. $1638532 \mathrm{E}+00$	$.4000000 \mathrm{E}+01$	74
75	. $1545000 E+03$. $6400000 \mathrm{E}+02$. $6800000 \mathrm{E}+02$	-. $1879669 \mathrm{E}+00$	$.4000000 \mathrm{E}+01$	75
76	$.1510000 E+03$. $6200000 \mathrm{E}+02$. $6833780 E+02$	0 .	. $6337796 E+01$	76
77	. $1510000 E+03$. $5575000 \mathrm{E}+02$. $6953007 E+02$	0.	. $1378007 \mathrm{E}+02$	77
78	. $1510000 E+03$. $4725000 \mathrm{E}+02$. $7143137 E+02$	0.	. $2418137 E+02$	78
79	$.1510000 E+03$. $3850000 \mathrm{E}+02$. $7440669 E+02$	$.3435008 \mathrm{E}+00$. $3590669 E+02$	79
80	$.1510000 E+03$	$.2900000 \mathrm{E}+02$. $7479936 E+02$. $1603418 \mathrm{E}+00$. $4579936 \mathrm{E}+02$	80
81	$.1510000 \mathrm{E}+03$	$.1900000 \mathrm{E}+02$. $7508809 \mathrm{E}+02$	$.1359809 E+00$. $5608809 E+02$	81
82	. $1510000 E+03$	$.7000000 E+01$. $7529175 \mathrm{E}+02$. $1293815 \mathrm{E}+00$. $5829175 \mathrm{E}+02$	82

INTERNAL POINTS

REGION NO = 1
$8000000 \mathrm{E}+01$
$3500000 E+02$
$5800000 E+02$ $8000000 E+01$ $3500000 E+02$ $5800000 E+02$ $8000000 E+01$. $3500000 E+02$.5800000E+02
. $1400000 E+02$ $1400000 E+02$ $1400000 E+02$ $34000005+02$ $.3400000 E+02$. $3400000 E+02$ $5400000 E+02$. $5400000 E+02$. $5400000 E+02$
$.9101019 E+02$ $.8994448 \mathrm{E}+02$ $.8780835 E+02$ $.8185572 E+02$. 91002 22E + 02 $8885028 E+02$ 9322642E + 02 9289315E + 02 9222898E + 02
$.7701019 E+02$
$7594448 \mathrm{E}+02$
$7380835 \mathrm{E}+02$
5785572E + 0
570ㄱำ
$.5700222 E+02$
$5485028 E+02$
. $3922642 E+02$
3889315E + 02
. 3822898E + 02

2912832E + 0 2
$.3832413 E+02$ $.4909198 E+02$
$.6819951 E+02$
$.6791162 E+02$
$.7971488 E+02$
$.7490398 \mathrm{E}+02$
$.7393254 E+02$
-7296071E+02
$.7164319 E+02$
$.7128763 E+02$
. $7111910 \mathrm{E}+02$
5178614E + 0 2

- $4136814 \mathrm{E}+02$
. $3080326 E+02$ - 2012211E+02 $4000000 \mathrm{E}+01$ $.4000000 E+01$
-

$4000000 E+01$
$.4000000 \mathrm{E}+01$
$6337796 E+01$ $.1378007 E+02$ $358137 E+02$ $.4579936 E+02$ $5829175 \mathrm{E}+02$

$.1400000 E+02$. $8519423 E+02$. $7119423 E+02$
. $1400000 E+02$. $8243293 E+02$. $6843293 E+02$
. $1400000 \mathrm{E}+02$. $7970131 \mathrm{E}+02$. $6570131 \mathrm{E}+02$
. $1400000 \mathrm{E}+02$. $7694071 \mathrm{E}+02$. $6294071 E+02$
. $3400000 E+02$. $8372176 E+02$. $4972176 E+02$
. $3400000 E+02$. $8106429 E+02$	$.4706429 E+02$
. $3400000 \mathrm{E}+02$. $7841302 E+02$. $4441302 E+02$
. $5400000 \mathrm{E}+02$. $8440132 \mathrm{E}+02$	$.3040132 \mathrm{C}+02$
. $5400000 \mathrm{E}+02$. 8226228E+02	. 2826228E+02
. $5400000 E+02$. $7985457 \mathrm{E}+02$. $2585457 E+02$
. $5400000 \mathrm{E}+02$. $7767969 \mathrm{E}+02$. $2367969 \mathrm{t}+02$
. $1400000 \mathrm{E}+02$. $7431235 E+02$. $6031235 E+02$
. $1400000 \mathrm{E}+02$. $7199062 \mathrm{E}+02$. $5799062 \mathrm{E}+02$
. $1400000 \mathrm{E}+02$. $7100539 E+02$. $5700539 E+02$
. $3400000 \mathrm{E}+02$. $7330633 \mathrm{E}+02$. $3930633 E+02$
. $3400000 \mathrm{E}+02$. $7094329 E+02$	$.3694329 E+02$
. $3400000 E+02$. $7015672 E+02$. $3615672 \mathrm{E}+02$
. $5400000 \mathrm{E}+02$. $6979725 E+02$. $1579725 \mathrm{E}+02$
$.5400000 \mathrm{E}+02$. $6908601 E+02$. $1508601 \mathrm{E}+0$ 2
. $5400000 \mathrm{E}+02$. $6877955 \mathrm{E}+02$. $1477955 \mathrm{E}+02$
*************	************	*********

Figure 1.-Genaral description of a typical free-surface seepage problem.

> The singular point P is separated from D by the circle of radius ϵ. The arrows indicate the direction of integration.

Figure 2.-Two-dimensional domain D surrounded by the boundary curve S .

Figure 3.-Point P on the boundary, (a) at a smooth part of the boundary, (b) where the boundary contour forms an angle.

In the transformed space with $X_{T}=\sqrt{\frac{K_{Y}}{K_{X}}} X_{\text {; }}$ $Y_{T}=Y$, the boundory conditions at the interface are:
I. Compatibility conditions

$$
\begin{aligned}
& u_{I_{1}}=u_{I_{2}} \\
& u_{U_{1}}=u_{J_{2}} \\
& u_{L_{1}}=u_{L_{2}}
\end{aligned}
$$

2. Equilibrium condition

$$
\begin{aligned}
& {\left[\sqrt{k_{X_{1}} K_{Y_{1}}} \frac{\partial u}{\partial n}\right]_{I_{1}}=-\left[\sqrt{K_{X_{2}} K_{Y_{2}}} \frac{\partial u}{\partial n}\right]_{I_{2}}} \\
& {\left[\sqrt{K_{X_{1}} K_{Y_{1}}} \frac{\partial u}{\partial n}\right]_{J_{1}}=-\left[\sqrt{K_{X_{2}}{ }^{K_{Y_{2}}}} \frac{\partial u}{\partial n}\right]_{J_{2}}} \\
& {\left[\sqrt{K_{X_{1}} K_{Y_{1}}} \frac{\partial u}{\partial n}\right]_{L_{1}}=-\left[\sqrt{K_{X_{2}} K_{Y_{2}}} \frac{\partial u}{\partial n}\right]_{L_{2}}}
\end{aligned}
$$

Figure 4.-Boundary conditions at interface between zoned anisotropic regions.

Figure 5.-Differen types of boundary elements. (a) constant elements, (b) linear elements, and (c) quadratic elements.

Element numbering is counterclockwise.
Interface elements for Region (1) with Region (2) are 4, 5, 6 Interface elements for Region (1) with Region (3) are none Interface elements for Region (2) with Region (1) are $13,12,11$ Interface elements for Region (2) with Region (3) are 16,17 Interface elements for Region (3) with Region (1) are none Interface elements for Region (3) with Region (2) are 22,21

Figure 6. Element numbering and ordering sequence of nodes for interface elements.

Figure 7.-Sample problem No. 1 - Comparison of boundary element solution with the known analytic solution.

Figure 8.-Sample problem No. 2 - Comparison of boundary element solution with the known analytic solution.

Figure 9.-Sample problem No. 3 - Pressure head distribution under sheet ple well.

Boundary Eleaent to.	Pressure head ${ }_{i t}{ }^{n} p$	Gradient	$\frac{30}{3 n}$
1	90.88	0	
2	90.74	0	
3	98.40	0	
4	89.87	0	
5	${ }^{89} 8.13$	0	
5	88.18 87.16	0	
8,55	79.71	-0.129	
9.54	57.91	-0.136	
10.53	58.20	-0.150	
11,52	49.09	-0.344	
12	43.32	0	
13	36.72 31.67	0	
15	30.0	0.186	
16	30.0	0.151	
17	30.0	0.131	
18	30.0	0.107	
19	30.0	0.091	
20	30.0	0.079	
21	${ }^{30.0}$	0.085	
22	34.64	0	
23	43.88	0	
24	53.20	0	
26	$\underline{723}$	0	
27	83.94	0	
28	8.9		
29	84. 49	0	
30	${ }^{83} 12.12$	0	
31	81.75		
38	80. 38		
33	79.01		
4	77.65		
${ }^{3} 9$	68.29	-0.129	
37,8i	56.09	-0.136	
38,80	45.80	-0.160	
39,70	55.91	-0.344	
40	29.18	.	
41	21.37	0	
42	17.33	0	
43	18.21	0	
${ }_{45}^{44}$	19.28 20.46	0	
46	21.66	0	
47	${ }^{22.83}$		
48 49	24.70	0	
49 50	29.12	0	
51	38.38	0	
56	74.91	0	
57	73.93	0	
58 59	72.98	0	
59 60	77.60	0	
61	71.23	0	
62	71.12	0	
63	64.06		
64	51.79	0	
65	${ }^{41.37}$	0	
66 67	30.80	0	
68	9.36	0	
69	4.0	-0.088	
70	4.0	-0.081	
71	4.0	-0.092 -0.109	
13	4.0	-0.134	
74	4.0	-0.164	
75 76	6.0	-0.188	
7	13.78	0	
78	24.18	0	

Figure 10.-Sample probiem No. 4 - Pressure head distribution under a concrete spillway.

Figure 11.-Sample problem No. 5 - Pressure head distribution in an embankment dam.

Figure 12.-Sample problem No. 6 - Steady-state seepage through the dam and its foundation zones.

Figure 13.-Sample problem No. 7 - Laboratory model of a drain with gravel envelope.

* Cr-Ag is the intersection of circumferential path r
and radial line e. Radidl lines are spaced at 15 intervals. R1 extends vertically downward from the drain centerline. Circumferential paths are located ot radial distances of $0.54,0.68,0.86,1.08,1.37$, $1.73,2.18,2.75$, and 3.47 feet and are identified as $\mathrm{Ci}, \mathrm{C} 2, \mathrm{C} 3$, . . C 9 respectively.

Figure 14.-Pressure head distribution for sample problem No. 7 (fig. 13).

Figure 15.-Macroflow diagram.

APPENDIX 1. - SOURCE LISTING OF THE COMPUTER PROGRAM BIE2DCP

Introduction

The macroflow diagram for the boundary element computer program is shown on figure 15. The computer program BIE2DCP consists of one main program and nine subroutines. The main program defines the maximum dimensions of the system of equations (or boundary nodes) to 200, maximum number of zones to 10 , and maximum number of interior points in any one zone to 50 . It calls seven of the following nine subroutines.

INPUT: Reads the program input.
FMAT: Forms the two matrices H and G and rearranges them according to the boundary conditions to form the matrix A of equation (35).

INTE: Computes the values of the off-diagonal elements of the H and G matrices by means of numerical integration along the boundary elements.

INLO: Computes the values of the diagonal elements of the \mathbf{G} matrix.

FACTR: Factors the matrix A into a product of a lower triangular matrix and an upper triangular matrix. The lower triangular matrix has unit diagonal which is not stored.

RSLMC: Solves the system of linear equations $A X=B$ when the coofficient matrix A has been factored into a product of two triangular matrices by the subroutine FACTR.

REARR: Reorders the computed solution to correspond to the boundary parameters of each zone.

INTER: Computes the values of the potential at the selected internal points.

OUTPT: Outputs the results.
Subroutines INTE and INLO are called by the subroutine FMAT. Also, subroutine INTER calls the subroutine INTE.

CALL FACTR (G,PER, NEQNS,NX, IER1,NX*NEQNS)
EPSI=1.E-06 BIERDCP
CALL RSLMC(GZ, G, DFI,F,NEQNS,EPSI,IER2,NX,WA,PER,NX*NEQNS) BIEDDCP
BIECDCP
OO $16 \quad 1=1$, NEQNS
BIECDCP
16 CONTINUE
BIERDCP
BIE2DCP
WRITE $(6,21)$ IER1, IER
BIE2DCP
21 FORMAT (1HO, 'ERROR INDICATORS FROM THE EQUATION SOLVER = ',
BIECDCP
1I5,5X, (5)
BIE2DCP
C
C
C
REARRANGE THE SOLUTION VECTOR
BIE LDCP
BIECDCP
CALL REARR(DFI,FID,KODE)
BIE2DCP
C
C
C
COMPUTE THE POTENTIAL VALUES FOR INTERNAL POINTS
BIE DDCP
BIESDCP
C CALL INTER(DFI,KODE, CXT, CYT, XT,YT, SOL)
BIE2DCP
BIE2DCP
OUTPUT
BIE2DCP
BIE2DCP
BIEスDCP
CALL OUTPT (XM, YM, DFI, CX,CY, SOL)
BIE2DCP
BIE2DCP
BIE2DCP
1 FORMAT (1HO $7 \mathrm{OH} * \mathrm{BI}$
1 (1)*****************//)

BIEZDCP
2 FORMAT (1HO, 4 GHPHREATIC LINE ELEMENTS GEOMETRY IS BEING ADJUSTED,
2 FORMAT (1HO,49HPHREATIC LINE ELEMENTS GEOMETRY IS BEING ADJUSTED,
BIERDCP

5 FORMAT (1 HO , 2F 11.3)
MAL IK=0
MAL IK=0
IF (NPHREL.LE.O) GO TO 200
DO $100 \mathrm{I}=1$, NPHREL
J=IDPHR (i)
DIFF=ABS (FI (J)-FIP(J))
IF (DIFF.LE.ACC) GO TO 100
BIE2DCP
BIE $2 D C P$
MALIK=1
100 CONTINUE
ITER=ITER+1
IF (MALIK.LE.O.OR.ITER.GT.ITRMAX) GO TO 200
MALIK=0
WRITE $(6,1)$
WRITE $(6,2)$ ITER
WRITE $(6,2)$
WRITE $(6,1)$
WRITE $(6,3)$
WRITE $(6,3)$
WRITE (6,4)
$\operatorname{SIGN}=Y(\operatorname{IDPHR}(1))-Y(I D P H R(N P H R E L))$
C
C
C
C
IF SIGN.LT.0.; Y(IDPHR(1)) NEEDS TO BE ADJUSTED
IF SIGN.GT.0.; Y(IDPHR(NPHREL)) NEEDS TO BE ADJUSTED
IF (SIGN.LT.O.) GO TO 160
$00 \quad 150 \quad \mathrm{I}=1$, NPHREL
$J=1$ DPHR (I)
$J=10 P 1 R$
$K=J+1$
DIFF=ABS (FI(J)-FIP(J))
YDIFF $=Y(K)-(F I(J)+$ TWE $)(\dot{X})-X(K+1))$
SLOPA $=(Y(K)-Y(K+1)) /(X(K$
IF $(D I F F . G T . A C C)$ MALIK $=1$

BIERDCP
BIE2DCP BIE DDCP BIERDCP BIECDCP BIE2DCP BIE2DCP BIEZDCP BIE2DCP BIECDCP BIE2DCP BIECDCP BIE2DCP BIE DDCP BIE2DCP BIE2DCP BIE2DCP BIECDCP BIE2DCP BIE2DCP BIERDCP BIE2DCP BIE2DCP BIE DDCP BIECDCP BIE2DCP BIE2DCP BIE2DCP BIE2DCP BIERDCP BIERDCP BIE2DCP BIE2DCP BIE2DCP BIECDCP BIEこDCP BIERDCP BIECDCP
BIECDCP
BIE2DCP BIEZDCP BIEZDCP BIE2DCP BIE2DCP BIEटDCP BIE2DCP

109
110
111
112
112
113
114
115
116
117
118
119
120
120
121 121
122
122
123
123
124
124
125
125
126
127
128
129 129
130 131 131
132 132
133 133 134 135 136 137 138 139 139
140 140 141
142 142 143 144 145 146 147 148 149 150

SUBROUTINE INPUT

1
SUBROUTINE INPUT (CX,CY, KODE)
1 NPUT
INPUT
INPUT
INPUT
INPUT
INPUT

CODE OF THE POTETIAL DERI INPUT C $\operatorname{KODE}(J)=2$ IMPLIES THAT

WRITE $(6,800)$
INPUT
800 FORMAT ($/ / 2 X$, 'BOUNDARY CONDITIONS' $/ / 5 X,{ }^{\prime}$ NODE', $5 X,{ }^{\prime}$ CODE' $5 X$, 'PRESCRI INPUT ibed value')

NPU
DO $20 \quad 1=1, N$
INPU
$\operatorname{READ}(5,900) \operatorname{KODE}(1), F I(I)$
I NPUT
900 FORMAT ($15, F 10.4$)
20 WRITE $(5,950)$ I $, \operatorname{KODE}(I), F I(I)$
I NPUT
3,8×, 11, 8× E147)
I NPUT
950 FORMAT(5X,13,8X,11,8X,E14.7) INPUT
000 FORMAT (8110)
INPUT
050 FORMAT (2F 10.2$)$
INPUT
DO $1100 \quad 1=1$, NRGNS
INPUT
READ (5, 1050) PERMX (I), PERMY (I)
I NPUT
READ (5,1000) ISTART (1), IEND (I)
INPUT
DO $1060 \mathrm{~J}=1$, NRGNS
INPUT
IF (J.EQ.I) GO TO 1060
INPUT
READ (5, 1000) NINTF (I, J)
INPUT
NINT=NINTF (I, J)
IF (NINT.LE.O) GO TO 1060
060 CONTINUE
INPUT
INPUT
INPUT
1100 CONTINUE
INPUT

200 FORMAT (1 HO, 1 OHREGION NO.,5X, $17 H S T A R T$ NG ELEM NO., $5 \times$,

INPUT
DO $1250 \quad i=1$, NRGNS
INPUT
WRITE (6, 13010) $1, I S T A R T(1), I E N D(I), \operatorname{PERMX}(I), \operatorname{PERMY}(I)$
INPUT
1250 CONTINUE $3 X, I 3,15 X, I 3,16 X, I 3,9 X, E 10.4,3 X, E 10.4,9(I 3,2 X))$
INPUT
1300 FORMAT ($1 \mathrm{HO}, 3 \mathrm{X}, \mathrm{I} 3,15 \mathrm{X}, \mathrm{I} 3,16 \mathrm{X}, \mathrm{I} 3,9 \mathrm{X}, \mathrm{E} 10.4,3 \mathrm{X}, \mathrm{E} 10.4,9(13,2 X)$ INTERF ACE INPUT
304 FORMAT ($1 \mathrm{HO}, 64 \mathrm{HZONE}$ NO. INTERFACED ZONE NO.
INPUT
1 ELEMENT NOS. / /
INPUT
1305 FORMAT ($1 \mathrm{HO}, \mathrm{I} 5,12 \mathrm{X}, \mathrm{I} 5,15 \mathrm{X}, 16 \mathrm{I} 5 / 37 \mathrm{X}, 16 \mathrm{I} 5)$
1306 FORMAT ($1 \mathrm{HO}, 41 \mathrm{HPHREATIC} \mathrm{LINE} \mathrm{ELEMENTS} \mathrm{IDENTIFICATION} \mathrm{NO.//)} \mathrm{INPT}$
INPUT
1307 FORMAT (1HO,15I5)

| INPUT 98 |
| :--- | :--- |
| $N P U T$ |

1308 FORMAT (2110 8F10.0)
1308 FORMAT $1 H 0,95 H N O$. OF BOUNDARY EL. ON PHREATIC LINE MAX. ITERAINPUT
ITIONS ACCURACY /7) INPUT
1310 FORMAT ($1 \mathrm{HO}, 10 \mathrm{X}, 12,36 \mathrm{X}, \mathrm{I} 2,16 \mathrm{H}, \mathrm{F} 5.2,4(3 \mathrm{X}, \mathrm{FB}, 2) \mathrm{T}$) INE $/ 1)$ INPUT
1311 FORMAT ($1 \mathrm{HO}, 28 \mathrm{H}$ HWE INE $1 /$ INPUT
1312 FORMAT (1HO,05X,8(F8.2,5X)
$1 F$ (NRGNS.LT.2) GO TO $1280 \quad$ INPUT
WRITE $(6,1304)$
$001270 \quad 1=1$,NRGNS
INPUT

120 , NRGNS
INPUT
OINT=NINTF(i, J)
NINT = NINTF (I., J) GO TO 1260
IF (NINT.LE.O) GO
IF (NINT.LE.O) GO TO 1260
WRITE $(6,1305) 1, J,(I D(I, J, K), K=1, N I N T)$
INPUT
INPUT
INPUT
1260 CONTINUE
1270 CONTINUE
NPUT

80

SUBROUTINE FMAT

```
C SISTEM A X=F ' V, FMM
COMMON/ADD1/ NRGNS,ISTART(10),IEND(10),NINTF(10,10),ID(10,10,050)FMAT
        1 NEQNS,NL(10), EFFP(10)
        COMMON /BIE2/ FI(2OD) F(S(2OD), HWE, TWE
        DIMENSION X(1) Y(1) XM(1) YM(1) G(NX,NX),H(NX,NX),KODE(1)
        DIMENSION DFI(1)
    C COMPUTE THE MID-POINT COORDINATES AND STORE IN ARRAY XM AND YM
        DO 4 I=1,NEQNS
        00 3 J=1,NEQNS
        G(I,J)=0.
        H(I,J)=0.
        3 CONTINUE
        DO 35 INDU=1,NRGNS
        DO 35TNTSU=1,NR
        IS=ISTART(INDU)
        IE=IEND(INDU)
        IF (I.EQ.IE) GO TO 5
        XM(I)=(X(I) +X(I+1))/2
        YM(I)=(Y(I)+Y(I+1))/2
        GO TO 10
        5 XM(I)=(X(I)+X(IS))/2
        YM(I)=(Y(I)+Y(IS))/2
    10 CONTINUE
    C COMPUTE G AND H MATRICES
        DO 32 I=IS,IE
        JC=15-1
        DO 30 J=IS,IE
        JC=JC+1
        X1=X(J)
        Y1=Y(J)
        X2=x(IS)
        Y2=Y(1S)
        IF (J.LT.IE) X2=x(J+1)
        IF (J.LT.IE) Y己=Y(J+1)
        IF(I-J)20,25,20
        20 CALL INTE(XM(I), YM(I),X1,Y1,X2,Y2,HE,GE)
        GO TO 1000
    25 CALL INLO(XI,Y1,X2,Y2,GE)
        HE=3.1415926
    C CONSTRUCT THE G AND H MATRICES ENFORCING THE INTERFACE
    C
    1000 IF (INDU.EQ.1.OR.KODE(J).NE.2) GO TO 2000
C LOCATE THE INTERFACE ON WHICH J LIES
DO 1200 IND=1,NRGNS
FMAT
FMAT
```

```
                IF (IND.EQ.INDU) GO TO 1200
                IF (NINT EQ O),INO) }20
                            DO 1150. INDC=1,NINT
                            IF (J.EQ.ID(INDU,IND,INDC)) GO TO 1160
    150 CONT INUE
        GO TO 1200
    1160 JINT=ID(IND, INDU,INDC)
        SIGN=-1.
        IF (IND.GT.INDU) JINT=ID(INDU,IND,INDC)
        IF (IND.GT.INDU) SIGN=+1.
        H(I,J|NT)=H(I,JINT)+HE
        G(I,JINT)=G(I,JINT)+(GE*EFFP(IND)/EFFP(INDU))*SIGN
    GO TO 30
    1200 CONT INUE
    2000. H(l,JC)=HE
        G (I,JC)=GE
    30 CONTINUE
    32 CONTINUE
    3 5 ~ C O N T I N U E
C
ARRANGE THE SYSTEM OF EQUATIONS READY TO BE SOLVED
    DO 51 J=1,N
        IF (KODE(J).EQ.Z) GO TO 51
        IF(KODE (J))51,51,40
    40 DO 50 I=1,N
        CH=G(I,J)
        G(I,J)=-H(I,J)
        H(I,J)=-CH
    5 0 ~ C O N T I N U E ~
    51 CONTINUE
C
C
    ELIMINATE THE ZERO COLUMN VECTORS
    JR=0
        DO 3200 J=1,N
        IC=0
        OO 3000 I=1,N
        IF (G(I,N).EQ.0) IC=IC+1
    3000 CONTINUE
        IF (IC.EQ.N) GO TO 3200
    JR=JR+
    DO 3100 I=1,N
    3100 CONTINUE
    3200 CONT INUE
    JC=JR
    DO 100 I=1,NRGNS
    DO 90 J=1,NRGNS
    NO
    NINT=NINTF(II.J) GO TO 90
```

FMAT FMAT	58 59
FMAT	60
FMAT	61
FMAT	62
FMAT	63
FMAT	64
FMAT	65
FMAT	66
FMAT	67
FMAT	68
FMAT	69
FMAT	70
FMAT	71
FMAT	72
FMAT	73
FMAT	74
FMAT	75
FMAT	76
FMAT	77
FMAT	78
FMAT	79
FMAT	80
FMAT	81
FMAT	82
FMAT	83
FMAT	84
FMAT	85
FMAT	86
FMAT	87
FMAT	88
FMAT	89
FMAT	90
FMAT	91
FMAT	92
FMAT	93
FMAT	94
FMAT	95
FMAT	96
FMAT	97
FMAT	98
FMAT	99
FMAT	100
FMAT	101
FMAT	102
FMAT	103
FMAT	104
FMAT	105
FMAT	106
FMAT	107
FMAT	108
FMAT	109
FMAT	110
FMAT	111

, $70 \quad K=1$, NINT
$J I N T=I D(I, J, K)$
$J C=J C+1$
$G(L, J C)=-H(L$, JINT $)$
FMAT
FMA
FMAT İ
FMAT 122
FMAT 123
FMAT 124
FMAT 125
FMA
125
126
FMAT 127
$\begin{array}{ll}\text { FMAT } & 127 \\ \text { FMAT } & 128\end{array}$
FMAT 129
FMAT 130
FMAT
112
113
114
115
116
117
118
119
120
21
22
23
24
25
26
127
128
129
130
131

SUBROUT JNE INTE
か

0 CONTINUE
RETURN
END
31

```
THIS SUBROUTINE COMPUTES THE VALUES OF THE H AND G MATRIX
ALONG THE BOUNDARY ELEMENTS
DIST=DISTANCE FROM THE POINT UNDER CONSIDERATION TO THE
RA=DISTANCF FROM THE POINT UNDER CONSIDERATION TO THE
INTEGRATION POINTS IN THE BOUNDARY ELEMENTS
DOUBLE PRECISION X1, X2,YI,Y己, XP, YP,HD,TA,XCO,YCO,GI,OME
OUBLE PRECISION AX,BX,AY,BY,DIST,GD,RA
OUBLE PRECISION DABS, DSQRT, DLOG
\(X 2=D \times 2\)
Y2=DY2
YP
GI (1) =0.973906528517172D0
\(G I(3)=0.86506336668898500\)
GI (4) \(=-G I(3)\)
GI(6) \(=-G I(5)\)
\(G I(7)=0.43339539412924700\)
```

GI $(9)=0.14887433898163100$
GI (10) $=-\mathrm{GI}(9)$
OME (1) $=0.06667134430868800$
$\operatorname{OME}(2)=\operatorname{OME}(1)$
OME (3) $=0.149451349150581$ DO
OME (4) $=$ OME (3)
OME (5) $=0.219086362515982 D 0$
OME (5) = OME (5)
OME (7) $=0.26926671930999600$
$\operatorname{OME}(8)=0 \mathrm{ME}(7)$
INTE
INTE
iNT
INTE
INT
INTE
INTE
INTE
INTE
INTE
INTE
OME (9) $=0.29552422471475300$
INTE
OME (10)=OME (9)
$A X=\left(X_{2}-X_{1}\right) / 2 . D 0$
$B X=(X 2+\times 1) / 2.00$
$A Y=(Y 2-Y 1) / 2 . D 0$
$B Y=(Y Z+Y 1) / 2 . D 0$
IF (AX) $10,20,10$
INTE
INTE
INTE
INTE
INTE
$T A=(Y 2-Y 1) /(X 2-X 1)$
DIST=DABS ($(T A * X P-Y P+Y 1-T A * X 1) / D S Q R T(T A * * 2+1 . D 01)$
GO TO 30
INTE
INTE
INTE
INTE
20 DIST=DABS (XP-X1)
30 SIG $=(X 1-X P) *(Y 2-Y P)-(X 2-X P) *(Y 1-Y P)$
1F(SIG)31,32,32
INTE
31 DIST=-DIST
$32 \mathrm{GD}=0 . \mathrm{DO}$
$H D=0 . D 0$
$00 \quad 40 \quad I=1,10$
$X C O(I)=A X * G I(I)+B X$
RA=DSQRT $(X P-X C O(I)$
(
(1.DORA)*OME (1)*DSQRT (AX**Z+AY**2)
$\mathrm{H}=\mathrm{HD}$
$G=G D$
RETURN
END
INTE

SUBROUTINE INLO

1

5

INLO
INLO
NLO
NLO
NLO
NLO
INLO
INLO
INLO
INLO
NLO
NLO

SUBROUTINE REARR (DFI,FII, KODE)
REARR
SUBROUT INE REARR (DFI,FII,KODE)
C THIS SUBROUTINE REARRANGES THE COMPUTED SOLUTION VECTOR DFI REAR
C THIS SUBROUTINE REARRANGES THE COMPUTED SOLUTION VECTOR DFI
C TO THE EXPANDED FORM AND REORDERS DF I AND F I VECTORS TO
REARR
REARR
C TO THE EXPANDED FORM AND REORDERS DFI AND FI VECTORS TO
C PUT ALL THE VALUES OF THE POTENTIALS IN FI AND ALL THE VALUES
REARR
C OF DERIVATIVES IN DFI
REARR
C OF DERIVATIVES IN DFI
COMMON N
REARR
REARR
COMMON /ADD1/ NRGNS,ISTART (10), IEND (10),NINTF(10,10), ID(10,10,050)REARR
1, NEQNS, NL (10), EFFP (10)
REARR
COMMON /BIE2/ FI (200), FIS(200), HWE, TWE
DIMENSION DFI (1),FII (1), KODE (1) REARR
NB=NEQNS
REARR
NP=NEQNS
REARR
DO $3000 \mathrm{I}=1$, NRGNS
$002900 \mathrm{~J}=1$, NRGNS
IF (J.LE.I.OR.NINTF (I,J).LE.O) GO TO 2900
$N B=N B-N \operatorname{NTF}(I, J)$
REARR
REARR

2900 CONTINUE
REARR

3000 CONTINUE
IR=0
$10=0$
DO 2000 INDU $=1$, NRGNS
IS=ISTART (INDU)
$I E=I E N D(I N D U)$
DO 1000 I=IS,IE
$I R=I R+1$
$10=10+1$
IF (KODE (I).NE. 2) FII (IR)=DFI (IO)
IF (KODE (I).NE.2) GO TO 1000
DO 500 IND=1, NRGNS
IF (IND. LE. INDU.OR.NINTF (INDU, IND).EQ.O) GO TO 500
NINT = NINTF (INDU, IND)
00400 INDC=1, NINT
IF \{I.NE.ID(INDU, IND,INDC)) GO TO 400
FII (IR) $=$ DFI (IO)
$N P=N P+1$
$N B=N B+1$
FII (NP) =DFI(NB)
GO TO 1000
400 CONT INUE
DO 700 IND=1, NRGNS
IF (IND.GE.INDU.OR.NINTF (INDU,IND).EQ.0) 60 TO 700
NINT=NINTF (INDU, IND)
DO 600 INDC $=1$, NINT
IF (I.NE.ID(INDU,IND,INDC)) GO TO 600
FII (IR) =-FII (ID(IND, INDU, INDC))*EFFP(IND)/EFFP(INDU)
IO=IO-1
GO TO 1000
600 CONT INUE
700 CONTINUE
1000 CONTINUE
2000 CONTINUE

```
                            DO 2500 IND=1,NP
                            OFI(IND)=FII (IND)
    2500 CONTINUE R REARR
    C REORDER FI AND :DFI ARRAY TO PUT ALL THE VALUES OF THE POTENTIAL
60
6 5
7 0
5
80
            O2 I=1,N
            IF (KODE(I).EQ.2) GO TO 20
            IF(KODE(I)) 20,20,10
        10 CH=FI(I)
            FI(I)=DFI(1)
            DFI(I)=CH
    2O CONTINUE
            IF (NRGNS.LE.1) RETURN
C
    Nl=N
    DO 200 I=1,NRGNS
    IS=ISTART (I)
    IE=IEND (I)
    DO 150 J=IS,IE
    IF (KODE(J).LT.2) GO TO 150
    DO 140 K=1,NRGNS
    IF (I.EQ.K.OR.NINTF(I,K).EQ.O) GO TO 140
        lF (K.GT.I) GO TO 100
        NINT=NINTF (I,K)
        DO }80\mathrm{ INDC=1,NINT
        IF (J.NE.ID(I,K,INDC)) GO. TO BO
        FI(J)=FI(ID(K,I,INDC))
        GO TO 150
    80 CONT INUE
    GO TO 140
    100 NINT=NINTF(I,K)
            DO 110 INDC=i,NINT
            IF (J.NE.ID(I,K,INDC)) GO TO 110
            Nl=NI+1
            FI(J)=DFI(N1)
            GO TO 150
    110 CONTINUE
    140 CONTINUE
    150 CONTINUE
    150 CONT INUE
    CONT INUE
    RETUR
    END
REARR
REARR
REARR
REARR
REARR
REARR
REARR
RF.ARR
REARA
REARR

\section*{SUBROUTINE INTER}

COMMON N INTER
COMMON /ADD1/ NRGNS, ISTART (10), IEND (10), NINTF (10,10), ID(10,10,050)INTER ,NEQNS, NL (10), EFFP (10)

NTER
INTER
NTER
INTER
INTER
INTER
NTER
INTER
INTER
INTER
INTER INTER
INTER
INTER
INTER
INTER
INTER

\section*{SUBROUTINE OUTPT}


\section*{11 CONTINUE}

200 FORMAT(6X, \(14,5(6 X, E 14.7), 6 X, 14)\) WRITE (6,300)

OUTPT
300 FORMAT ( \(/ /, 2 X\), 'INTERNAL POINTS', \(/ / 11 \mathrm{X},{ }^{\circ} \mathrm{X}^{\cdot}, 18 \mathrm{X},{ }^{\cdot} \mathrm{Y} \cdot, 14 \mathrm{X},{ }^{\prime}\) POTENTIAL. OUTPT
    \(114 X\), 'PIEZOMETRIC RISE', \()\), \(11 \mathrm{X}, \mathrm{X}^{\prime}, 18 \mathrm{X},{ }^{\prime} \mathrm{Y}^{\prime}, 14 \mathrm{X},{ }^{\prime}\) POTENTIAL', OUTP
        DO 30 INDU=1,NRGNS OUTP
        WRITE (6,600) INDU

OUTP \(L=N L\) (INDU)

OUTP DO \(20 \mathrm{~K}=1\),

OUTPT \(T P=S O L(I N D U, K)+T W E\)
\(P P=T P-C Y(I N D U, K)\)
OUTPT
WR=TP-CY(INDU,K)
OUTPT
20 WRITE (6,400)CX(INDU,K) , CY(INDU,K),TP,PP
OUTPT
400 FORMAT \(4(5 X, E 14.7))\)
WRITE \((6,500)\)
500 FORMAT \(\left., 1,120\left({ }^{*} \cdot\right)\right)\)
OUTPT
OUTPT RETURN

OUTPT
RETURN
END
OUTPT
OUTPT
OUTPT
\(130 \underset{X=1}{1} \mathrm{~J}=10+1\)
C COMPUTATION OF THE ITH ROW OF \(U\)
\(K O=10+I A\)
DO \(160 \mathrm{~K}=1 \mathrm{PI}, \mathrm{N}\)
\(\mathrm{KI}=10+\mathrm{K}\)
\(A(K I)=A(K I) / X\)
IF \((I-1) 1 B 0,160,140\)
FACTR
F.ACTR

FACTR
FACTR

\section*{SU日ROUTINE RSLMC}

1
C
C
C
SUBROUTINE RSLMC (A,AF,B,X,N,EPSI,IER,IA,V,PER,IAN) HIS SUBROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS \(A X=B\)

DIMENSION A (IAN), AF (IAN) , B(N), X(N),V(N),PER(N)
DOUBLE PRECISION DP
C INITIALIZATION
\(D O=0\).
IER=0
ITE=0
DO \(10 \quad \mathrm{I}=1, \mathrm{~N}\)
\(V(I)=B(I)\)
\(10 \times(I)=0\)
\(201 \mathrm{TE}=1 \mathrm{TE}+1\)
C THE PERMUTATIONS OF ROWS OF A ARE APPLIED TO \(V\)
DO \(40 \quad I=1, N\)
\(K=P E R(I)\)
IF \((K-I) 30,40,30\)
\(30 \mathrm{DI}=\mathrm{V}(\mathrm{K})\)
\(V(k)=V(1)\)
\(V(I)=D 1\)
C SOLUTION OF THE LOWER TRIANGULAR SYSTEM
DO \(60 \quad \mathrm{I}=2, \mathrm{~N}\)

\section*{RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSL.MC \\ RSL.MC
RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC
RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC \\ RSLMC}

RSLMC

\section*{SUBROUTINE RSLMC}
```

 IM1=I-1
 DP=V:I
 IK=1
 DO 50 K=1,IM1
 DP=DP-1.DO*AF (IK)*V(K)
 5 0 ~ I K = I K + I A
 60V(I)=DP
 C SOLUTION OF THE UPPER TRIANGULAR SYSTEM
IF(AF(IK)) 80,70,80
70 IER=4
GO TO 130
80 V(N)=DP/AF(IK
DO 100 I=2,N
IMI=N-I+I
INF=IMI +1
DP=V(IM1)
IK=(IMI-1)*IA +IMI
D1=AF(IK)
DO 90 K=INF,N
IK=IK+IA
90 DP=DP-1.DO*AF (IK)*V(K)
100 V(IM1)=DP/D1
C TEST OF PRECISION
D1=0.
D2=0
KLE=0
DO 1 20 I=1,N
D1=D1+ABS(V (I)
D2=D2+ABS(X(I)
IF (ABS(V(I))-EPSI*ABS(X(I))) 120,120,110
110 KLE=1
20 CONT INUE
IF (KLE)240,130,140
130 RETURN
140 IF (ITE-1)240,160,150
C I40 IF (ITE-1)240,160,IS WHEN THE NORM OF THE CORRECTION IS MORE
C THAN HALF OF THE ONE OF THE FORMER
150 IF.(DO-2.*DI)200,160,160
160 DO 170 I=1,N
170 X(I) = X(I) +V(I)
DO 190 I=1,N
DP=B(I)
IK=I
DO 180 K=1,N
DP=DP-1.DO*A(IK)*X(K)
180 IK=IK+IA
190 V(I)=DP
DO=D1
GO=DI
200 IF (ITE-2) 240,240,210
210 IF (D1-EPSI*D2)220,220,230
2こ0 IER=1
RETURN

```
            RSLMC
RSLMC
            RSLMC
            RSLMC
                    RSLMC
                    RSLMC
                    RSLMC
                    RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMMC
RSLMC
RSLMC
RSL MC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSL.MC
RSLMC
RSLMC
RSL.MC
RSLMC
RSLMC

SUBROUTINE RSLMC
73/74
\(O P T=1\)
\(230 \begin{aligned} & \text { IER=2 } \\ & \text { EPSI=D1/02 }\end{aligned}\)
RETURN
240 IER=3 RETURN RND

FTN 4.8+498
3/07/22. 15.22.53
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC
RSLMC

78
79
79
80
80
81
81
82
83

\section*{Mission of the Bureau of Reclamation}

The Bureau of Reclamation of the U.S. Department of the Interior is responsible for the development and conservation of the Nation's water resources in the Western United States.

The Bureau's original purpose "to provide for the reclamation of arid and semiarid lands in the West" today covers a wide range of interrelated functions. These include providing municipal and industrial water supplies; hydroelectric power generation; irrigation water for agriculture; water quality improvement; flood control; river navigation; river regulation and control; fish and wildlife enhancement; outdoor recreation; and research on water-related design, construction, materials, atmospheric management, and wind and solar power.

Bureau programs most frequently are the result of close cooperation with the U.S. Congress, other Federal agencies, States, local governments, academic institutions, water-user organizations, and other concerned groups.

\footnotetext{
A free pamphlet is available from the Bureau entitled "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphiet can be obtained upon request from the Bureau of Reclamation, Attn D-922, P O Box 25007, Denver Federal Center, Denver CO 80225-0007.
}```


[^0]:    ${ }^{1}$ Numbers in brackets refer to the bibliography.
    Bibliographical references are representative, but not a complete list, of the works on the subject.

[^1]:    ${ }^{2}$ The energy per unit force has the dimension of length. Thus, the terms making up the total energy are characterized as heads. The total head is the summation of a velocity head, a pressure head, and an elevation head. The velocity head in soils is negligible. Because the pressure head and elevation head represent potential energy, their sum is called the potential head.

[^2]:    ${ }^{3}$ In $(d)$ and $-\ln (1 / d)$ are the two basic forms of the fundemental solution of Laplace's equation in an infinite space. However, these two forms are equivalent as per the rules of logarithms.

