MIX DESIGN PARAMETERS FOR CONCRETE CONTAINING CHEMICAL ADMIXTURES

December 1981

Engineering and Research Center

J. S. Department of the Interior

3ureau of Reclamation

2090 (4-81) ater and Power	12 or 2000 concernance	TECHN	IICAL REPORT STANDARD TITLE PAG
REC-ERC-81-6	I. GOVEN	INNER'Y ACCERNING NO.	3. RECIPIENT'S CATALOG NO.
. TITLE AND SUBTITI	LE		5. REPORT DATE
			December 1981
Mix Design Paran Containing Chem			6. PERFORMING ORGANIZATION CODE
AUTHOR(S)		······································	8. PERFORMING ORGANIZATION REPORT NO.
Elwood L. Ore USBR (retired)			REC-ERC-81-6
PERFORMING ORGA	NIZATION NAM	E AND ADDRESS	10. WORK UNIT NO.
Engineering and I Bureau of Reclam		nter	11. CONTRACT OR GRANT NO.
Denver, Colorado			0-07-DV-00109 with E. L. Ore
·			13. TYPE OF REPORT AND PERIOD COVERED
SPONSORING AGENC	CY NAME AND A	ADDRESS	LIBRARY
Same			
			14. SPONSORN 28 1982°DE
SUPPLEMENTARY N	NOTES		Bureau of Reclamation
Microfiche or hard	d copy availab	ole at the Engineering ar	Denver, Colorado nd Research Center, Denver, Colo.
			Ed. WFA
ABSTRACT		·····	· · · · · · · · · · · · · · · · · · ·
Concrete sample quantities of WR percent at three An average qual	A (water-red temperatures ity aggregate	lucing and set-controlling s were prepared and provide was used to produce	ranging from 0.35 to 0.65 with various ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a adequately conservative concrete design of WRA on the rate of hardening at early
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown I aging, as shown ment was analy: was used to anal lower W/C's and	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-cement the data. The use of V	ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year.
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown f aging, as shown ment was analys was used to anal lower W/C's and mended unless a	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem nonretarding	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-cement the data. The use of V aperatures. Use of WF g WRA is available.	ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a dequately conservative concrete design of WRA on the rate of hardening at early the wet-screened mortar, and at extended influence of WRA's on the water require- ent ratio) and temperature. The computer VRA's was most effective in concrete with
quantities of WR percent at three An average quali data. The effect ages, as shown I aging, as shown ment was analy: was used to anal lower W/C's and	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-cerner the data. The use of Wa peratures. Use of WF	ng admixtures) ranging from 0. eriodically tested at intervals up a adequately conservative cond of WRA on the rate of harden the wet-screened mortar, and a influence of WRA's on the wa ent ratio) and temperature. The VRA's was most effective in co
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown ment was analys was used to anal lower W/C's and mended unless a	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem nonretarding	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-ceme the data. The use of W operatures. Use of WF g WRA is available.	ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a dequately conservative concrete design of WRA on the rate of hardening at early the wet-screened mortar, and at extended influence of WRA's on the water require- ent ratio) and temperature. The computer VRA's was most effective in concrete with
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown in aging, as shown in ment was analys was used to anal lower W/C's and mended unless a 7. KEY WORDS AND DC DESCRIPTORS a concrete propertie cement ratio/ wate	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem nonretarding	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-ceme the data. The use of W operatures. Use of WF g WRA is available.	ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a adequately conservative concrete design of WRA on the rate of hardening at early the wet-screened mortar, and at extended influence of WRA's on the water require- ent ratio) and temperature. The computer VRA's was most effective in concrete with tA's at lower temperatures is not recom-
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown in aging, as shown in aging, as shown in ment was analy: was used to anal lower W/C's and mended unless a 7. KEY WORDS AND DO . DESCRIPTORS a concrete propertie cement ratio/ wate . IDENTIFIERS . COSATI Field/Grou	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem nonretarding ocument anal admixtures/ as/ concrete er-reducing ag	lucing and set-controlling s were prepared and po- e was used to produce and for each condition ance to penetration of pressive strength. The the W/C (water-ceme the data. The use of W operatures. Use of WF g WRA is available.	ng admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a dequately conservative concrete design of WRA on the rate of hardening at early the wet-screened mortar, and at extended influence of WRA's on the water require- ent ratio) and temperature. The computer VRA's was most effective in concrete with ta's at lower temperatures is not recom-
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown in aging, as shown in aging, as shown in ment was analy: was used to anal lower W/C's and mended unless a 7. KEY WORDS AND DC . DESCRIPTORS a concrete propertie cement ratio/ wate . IDENTIFIERS . COSATI Field/Grout 8. DISTRIBUTION STA Available from the Nat	A (water-red temperatures ity aggregate was evaluat by the resista by the comp zed, as was lyze and plot d higher tem nonretarding ocument anal admixtures/ es/ concrete er-reducing ag	Lucing and set-controlling s were prepared and po- e was used to produce the data of the water-cement the data. The use of Water-cement the da	A series of the
Concrete sample quantities of WR percent at three An average quali data. The effect ages, as shown in aging, as shown in aging, as shown in ment was analy: was used to anal lower W/C's and mended unless a 7. KEY WORDS AND DC DESCRIPTORS a concrete propertie cement ratio/ wate . IDENTIFIERS . COSATI Field/Grout 8. DISTRIBUTION STA Available from the Nat	A (water-red temperatures ity aggregate was evaluate by the resistant by the comp zed, as was lyze and plot d higher tem a nonretarding DCUMENT ANALE admixtures/ es/ concrete er-reducing age up 13M TEMENT tional Technico oyal Road, Spri	Lucing and set-controlling s were prepared and po- e was used to produce the data of the water of the water of the water of the data. The use of WR operatures. Use of WR of WRA is available.	And admixtures) ranging from 0.00 to 0.40 eriodically tested at intervals up to 1 year. a adequately conservative concrete design of WRA on the rate of hardening at early the wet-screened mortar, and at extended influence of WRA's on the water require- ent ratio) and temperature. The computer VRA's was most effective in concrete with ta's at lower temperatures is not recom- WRA's at lower temperatures is not recom- det concrete additives/ concrete mixes/ et/ set-retarding agents/ slump/ water- server the set of

GPO 831-316

REC-ERC-81-6

MIX DESIGN PARAMETERS FOR CONCRETE CONTAINING CHEMICAL ADMIXTURES

by Elwood L. Ore USBR (retired) Prepared Under Contract No. 0-07-DV-00109 with E. L. Ore

December 1981

Concrete and Structural Branch Division of Research Engineering and Research Center

Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF RECLAMATION

¥

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration.

The information in this report regarding commercial products or firms may not be used for advertising or promotional purposes, and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

Page

1:11

Introduction																							
Conclusions																 •			 				
Materials							•								•			•	 		•	•	•
Mixing and to	esting	proc	edu	ires	s.	• •				•					•				 		•	•	•
Mixing water	[,] requir	reme	nt			•						 •			•				 				
Rate of harde	ening .		• •					 •								 •			 				
Compressive	streng	jth.																	 				

TABLES

Table

1	Physical properties of aggregate and cement	7
2	Concrete mix quantities and properties of fresh and hardened concrete	8
3	Abram's equation values for various W/C ratios, ages, and WRA	9
4	Compressive strengths computed for each age and WRA	11
5	Compressive strengths expressed as a percent of the 28-day strengths	12

FIGURES

Figure

1	Effect of water-cement ratio and admixture dosage on the water	
	requirement	13
2	Effect of water-cement ratio and admixture dosage on water reduction	14
3	Effect of temperature and admixture dosage on the water requirement	15
4	Effect of water-cement ratio and admixture dosage on time of initial set	16
5	Effect of water-cement ratio and admixture dosage on time of final set	17
6	Effect of temperature and admixture dosage on time of initial set	18
7	Effect of temperature and admixture dosage on time of final set	19
8	Effect of water-cement ratio and admixture dosage (0.40 and	
	0.30 percent) on compressive strength development	20
9	Effect of water-cement ratio and admixture dosage (0.20 and	
	0.10 percent) on compressive strength development	21
10	Comparison of compressive strength development for control and	
	admixture (0.10 and 0.20 percent) concretes	22
11	Comparison of compressive strength development for control and	
	admixture (0.30 and 0.40 percent) concretes	23
12	Compressive strength development as a function of 28-day strengths	
	for control and admixture (0.30 percent) concretes	24

INTRODUCTION

Chemical admixtures, commonly referred to as WRA (water reducing agents), may serve two functions in a concrete mix:

1. These may be water reducing agents, defined by ACI (American Concrete Institute) Committee 116 as, "A material which either increases slump of freshly mixed mortar or concrete without increasing water content or maintains workability with a reduced amount of water, the effect being due to factors other than air entrainment."

2. These may accelerate or retard setting time, and frequently in conjunction with this they also act as water reducers.

From our experience we have found that chemical admixtures also enhance other qualities.

The admixture required by current Bureau (U.S. Bureau of Reclamation) specifications may or may not retard hardening characteristics of concrete as indicated by penetration tests on wetscreened mortar. However, numerous tests conducted at the Bureau laboratories have demonstrated several advantages obtained from the use of WRA:

- The admixture effects a reduction in the amount of water required to produce concrete with a given slump. Since mix design is based upon W/C (water-cement ratio), significant cement savings result.
- The admixture usually increases the compressive strength of the concrete even though the W/C is held constant.
- Some admixtures which retard the hardening of concrete minimize problems due to delays and high temperature during placement.
- Inherent with the use of less cement in the concrete is a reduction in the heat of hydration, especially important in massive placements.
- Admixtures will sometimes enhance the workability of concrete at the same particular slump.

The first important use of WRA by the Bureau came during the construction of Glen Canyon Dam. In this massive structure, 3×10^6 m³ $(4 \times 10^6 \text{ yd}^3)$ of concrete contained WRA. Tests at the construction site showed that mass concrete containing WRA had greater strength with a significantly lower cement content. The effectiveness of vibration was also better with the admixture. The success at Glen Canvon prompted specifying the use of WRA at Morrow Point Dam. In this thin-arch structure, higher strength requirements made this usage especially attractive. A WRA was also used in the major portion of canal lining concrete for the San Luis Canal in California. Here, $0.99 \times 10^6 \text{ m}^3(1.3 \times 10^6 \text{ yd}^3)$ of concrete contained WRA. As a result of these experiences, a WRA is required by specifications in all Bureau contracts where the quantity exceeds 1500 m³ (2000 yd³) of concrete, and WRA is permitted in all smaller contracts.

There have been cases in more recent work where some degree of incompatibility has occurred between the admixture and other concrete ingredients which resulted in a rapid slump loss. This problem and the increased use of WRA have resulted in a need for basic mix design information. This report documents Bureau quides as contained in the Concrete Manual¹ for mix proportioning data for concrete using WRA. For example, compressive strengths shown in table 16, and water requirements shown in table 14 of the Concrete Manual, were derived from this study. For comparisons, generally the use of WRA is expressed as a ratio to concrete without WRA. Relationship between the W/C and compressive strength needs to be more accurately defined. What effect various amounts of WRA have on early strength and the rate of hardening needs to be established. The retarding influence can have a significant effect on 1- and 3-day strengths. The temperature effects on concrete properties were briefly studied.

CONCLUSIONS

1. The larger dosages of WRA generally resulted in lower water requirements; however, concrete with 0.10-percent WRA required slightly more water than the reference concrete.

¹ Concrete Manual, A Water Resources Technical Publication, Bureau⁺ of Reclamation, eighth edition, revised reprint, U.S. Government Printing Office, Washington, DC, 1981.

2. The amount of water reduction due to WRA decreased as the W/C increased; consequently, at 0.65 W/C the amount of water reduction was insignificant.

3. The water requirement relative to temperature was unchanged from 10 to 21 °C (50 to 70 °F); however, from 21 to 32 °C (70 to 90 °F), the water requirement increased 4.5 percent for each 5.5 °C (10 °F) temperature change.

4. The setting time of mortar, wet-screened from concrete, increased as the size of WRA dosage increased.

5. A longer setting time resulted from increases in W/C when less WRA was used. When the amount of WRA was 0.30 to 0.40 percent, differences in W/C did not affect initial set as greatly as it did final set.

6. A temperature decrease from 32 to 21 °C (90 to 70 °F) delayed the initial set 2.5 hours for concrete with a W/C of 0.50. An additional decrease to 10 °C (50 °F) of the same mix delayed initial set 4.25 hours. Equal increments in WRA dosages produced equal retardation increments at 21 and 32 °C, although the retardation was somewhat greater at 10 °C.

7. Larger amounts of WRA resulted in 1-day compressive strengths which were lower than the reference concrete, but by 3 days all concrete samples with WRA were stronger than the reference concrete.

8. For lower W/C concrete, smaller amounts of WRA increased the strength; but for higher W/C concrete, larger amounts of WRA increased the strength.

9. Increased compressive strength attributable to WRA was apparently maximum between 7 and 28 days of curing; however, later in the curing this strength difference diminished somewhat.

10. In this study, all concretes containing WRA were stronger than those without WRA, except for the 0.40 percent WRA concrete where the 1-day strengths were slightly less.

11. A comparison of concretes with equal 28-day strengths but different W/C ratios showed that the concrete without WRA was stronger at 90 days and 1 year than that with WRA.

12. Strengths of control concrete at 1, 3, 7, 90, and 365 days' age averaged 22.3, 44.2, 62.6, 120.0, and 129.6 percent, respectively, of given 28-day strengths of 17-, 34-, 48-MPa (2500-, 5000-, and 7000-lb/in²) levels. These averages were 16.9, 40.4, 62.6, 114.6, and 119.3 percent for concrete containing 0.30 percent WRA, at 21 °C.

MATERIALS

The Clear Creek aggregate used in the concrete for this study was a local, natural, stream-worn aggregate of average quality. The aggregate has been described as a schistose granitic gneiss. The particles vary in shape from rounded to angular, and the physical properties and gradings are given (table 1). The aggregate was washed and separated into individual fractions by laboratory screening equipment. The coarse aggregate was stored in bins after washing and screening, where it was allowed to reach a laboratory-dry condition. The sand was dried in the laboratory kiln and separated into six sizes by vibratory screens. Different sizes were selected individually so that a constant fineness modulus could be maintained.

The cements used in this study were type II, low-alkali cements obtained from several sources, subsequently blended in the laboratory, and stored in metal drums until used. The physical properties and chemical analysis were recorded (table 1).

The WRA used in this study was an unaltered lignin type which met the Bureau requirements for water reduction, retardation, and compressive strength, and was selected for convenience, not for brand. The WRA was furnished in a solution containing 40 percent solids, by mass.²

The air-entraining admixture was a laboratoryformulated, neutralized, vinsol resin solution containing 5 percent solids.

² All ratios of quantities of materials given as percent of the whole will be by mass (weight) throughout this report.

MIXING AND TESTING PROCEDURES

Concrete mixes were made with varying W/C ratios and WRA dosages. The W/C ratios used were 0.35, 0.45, 0.50, 0.55, and 0.60. Since most concrete used in Bureau work is made with W/C of 0.45 to 0.55, the mixes within this range were repeated to furnish more complete and reliable data. At each W/C, the WRA was applied at 0.0 (control), 0.10, 0.20, 0.30, and 0.40 percents of lignin solids.

The concrete was designed for 75-mm (3-in) slump and 5.0 percent entrained air. Most concrete was prepared at a temperature close to 21 °C (70 °F); however, two sets of mixes with W/C of 0.50 were made, one at 10 °C (50 °F) and one at 32 °C (90 °F). The original test plan included more mixes at corresponding W/C ratios and WRA dosages, but these were never completed. Air entrainment was accomplished by use of a neutralized vinsol resin solution alone, and in combination with the WRA when required. Both admixtures were included in separate parts of the mixing water. As the W/C was increased, generally the percent sand was also increased, and more sand was used in the WRA concrete to compensate for fewer fines due to cement reduction.

All ingredients were carefully weighed and mixed in a 0.10-m³ (3.5-ft³) revolving, tilting, drum mixer. Each batch was mixed for 5 minutes after all ingredients had been added. Entrained air, slump, and temperature were measured as soon as each batch was discharged, and if all the measured values were within the standard tolerances, test specimens were fabricated. Compressive strength test specimens were cast in 150- by 300-mm (6- by 12-in) molds, and simultaneously two wet-screened mortar specimens were cast for the time of setting tests using a penetrometer as described later. Most of the compressive strength cylinders were fog cured at 23 °C (73 °F) until tested at ages of 1, 3, 7, 28, 90, and 365 days. Cylinders were stripped after about 24 hours of curing; however, the groups of concrete cylinders made at 10 and 32 °C were held at these temperatures for 48 hours and then standard cured until test age.

Mortar obtained from wet-screening the parent concrete on a No.4 sieve was used to determine

the hardening characteristics of the concrete during the first few hours of hydration process. The development of the hardening process was measured by the resistance of the mortar to penetration using the standard needles of a penetrometer. The lapsed time for penetration resistances of 3.5 and 28 MPa (500 and 4000 lb/in²) were recorded. The occurrence of these two conditions corresponds roughly with similar conditions labeled "initial set" and "final set" when cement mortar is used. The mortar specimens were stored at 10, 21, and 32 °C, as appropriate, until "final set." The concrete was under test and test results recorded (table 2) from the time of mixing, through the fluid state, and at intervals throughout the hardening process until it had aged for 1 full year.

1.111

MIXING WATER REQUIREMENT

The 75-mm-slump concrete with various dosages of WRA at 0.35, 0.45, 0.50, 0.55, and 0.65 and various mixing water requirements to produce the correct W/C ratios was tested (table 2). Most of the data is for concrete made at approximately 21 °C; however, similar data are also shown for sets of mixes made at approximately 10 and 32 °C. The slump ranged from 63.5 to 94 mm (2.5 to 3.7 in) with a standard deviation of 7 mm (0.28 in). The relationship between water requirement and W/C ratio, and the effect of various dosages of WRA at 21 °C are shown (fig. 1). The water requirements were highest for the concrete having a 0.35 W/C and lowest for concrete with a 0.50 W/C ratio.

As the amount of WRA increased, the water required was generally less. This trend was quite regular and without exception for concretes having 0.45, 0.50, and 0.55 W/C ratios. The effect of the WRA was a bit irregular at a W/C of 0.35 where the water requirement of concrete with 0.10 percent WRA was slightly greater than that of the control; and 0.30 percent WRA lowered the requirement more than the 0.40 percent dosage did. At 0.65 W/C ratio, the WRA appears to have little ability to affect the water requirement. There was only a 1.8-kg (4-lb) difference between the high and low values, with the effect somewhat variable. The water reduction was noticeably greater at the 0.35 W/C than at the 0.65 W/C.

The water requirements are shown (fig. 2) as percentages of the reference concrete. In the middle range of W/C ratios, the amount of water reduction obtained was greatest with the highest amount. At the 0.45 W/C, for instance, the 0.10 percent WRA concrete had the same water requirement as the reference concrete; however, as the amount increased, the water reduction also increased to 5 percent at a 0.40 percent WRA dosage. At 0.50 and 0.55 W/C ratios, the behavior was quite normal with a maximum reduction of 7 percent. From the behavior of the lean 0.65 structural concrete, there was little reason to recommend the use of WRA except possibly for retardation.

In addition to the effect of W/C and WRA, the effect of temperature is important (fig. 3). As mentioned previously, five mixes were made at approximately 10 °C and five at 32 °C and compared with mixes made at 21 °C. It is evident that as the temperature rose from 21 to 32 °C the water requirement for the control increased approximately 4.5 percent for each 5.5 °C (10 °F). The same general trend held true for the WRA concrete. When the temperature was dropped from 21 to 10 °C the water requirement was hardly affected. This was somewhat contrary to trends shown in figure 118, page 256, of the Concrete Manual previously mentioned. The water reduction is appreciably greater for the 0.30 and 0.40 percent dosages at 32 °C than at 21 or 10 °C.

RATE OF HARDENING

Three factors appear to affect the hardening rate, just as they do the water demand. The most striking influence is the amount of WRA, followed in decreasing importance by temperature and W/C ratio. The rate of hardening was determined by noting the resistance to penetration of mortar, wet-screened from the parent mixture. This method was developed to study its early behavior when the compressive strength varied from zero to about 0.69 MPa (100 lb/in²). Thus, it was desirable to know how long after mixing that the concrete could be vibrated. This was found to occur when the resistance to penetration had reached 3.5 MPa (500 lb/in²). When the resistance had reached 28 MPa (4000 lb/in²), the specimens could be stripped and tested in compression. Instead of sulfur, the

27.014

specimens were "shot capped" on the rough or trowelled end, and the other end was tested as stripped. Penetration resistance at 3.5 MPa and 28 MPa corresponds roughly to the initial and final set noted on cement test reports.

The time required for the mortar to harden at 20 °C, so that resistance to penetration was 3.5 MPa (initial set), is plotted (fig. 4) as a function of the W/C ratio and WRA dosage. As expected, the higher amount of WRA resulted in greater time elapsed to reach the vibration limit. The results are such that general trends are not readily evident. However, if the data for the 0.10 percent WRA dosage are omitted (fig. 4), the remaining data for dosages of 0.20-, 0.30-, and 0.40-percent WRA show an average delay for each W/C in reaching initial set as follows:

W/C	Time (hours)
0.35	1.58
0.45	1.33
0.50	1.25
0.55	1.17
0.65	1.25

The WRA apparently produced greater retardation at 0.35 W/C and linear regression analyses indicate that as the W/C ratio increases, the retardation also increases. This trend increases for the control concrete and decreases as the amount of WRA increases. Data for the effect of WRA and W/C ratio on final set at 21 °C are shown in figure 5 in the same manner as for figure 4. A superficial examination of these data shows about the same trends as for the initial set.

The effect of temperature on the initial and final sets at a W/C ratio of 0.50 is shown (figs. 6 and 7). As the temperature decreases from 32 to 21 °C, the initial set is delayed by about 2.5 hours and the final set by 3.75 hours. If the temperature is lowered from 21 to 10 °C, the initial set is retarded by 4.25 hours and the final set by about 8 hours. Increments in dosages produce about the same increments in retardation at 21 and 32 °C, but at 10 °C each increment results in greater retardation. This trend should discourage the use of WRA at lower temperatures and encourage it at higher temperatures.

COMPRESSIVE STRENGTH

The compressive strengths were plotted as functions of the amount of WRA dosages and the W/C ratios (figs. 8 and 9). In Abram's general strength equation, $y = A/B^x$, the constants A and B were determined from the test results by the least-squares method (table 3). In all cases the correlation coefficient of 1.000 would indicate that the computed y for each W/C ratio, or x would equal the actual test values.

After the first 24 hours curing time, the compressive strength of the 0.40 percent WRA concrete (fig. 8) was less than the reference concrete at 0.35, 0.45, 0.55, and 0.65 W/C ratios. To avoid confusion, curves for the 0.50, W/C ratio are not shown. The 0.30 percent WRA concrete (fig. 8) had about the same strength as the reference concrete at each W/C ratio, and the 0.20 and 0.10 percent concrete (fig. 9) had greater strengths than the reference concrete. By the time the concrete had cured for 3 days, all test samples containing any WRA had greater strength than the reference concrete. Evidently, at some time between 1 and 3 days, the effect of the retardation is no longer detrimental to the strength.

It is interesting to observe the effect of WRA on compressive strength throughout the entire testing program. As mentioned previously, at 1 day's age the smaller amounts gave greater strength because of the retardation, but at 3 days this relationship was reversed. Generally, from 7 through 28 days the higher amounts produced greater strengths. When the concrete reached 90 days and on through 365 days, the effect of increased amounts appeared less advantageous. Another interesting trend that occurs between 90 and 365 days of cure is that at the lower W/C, smaller amounts of WRA gave the best strength, but at higher W/C, larger amounts of WRA gave the best strength. At 1 and 3 days, the curves tend to converge as the W/C increases, and the WRA was more effective at lower W/C ratios. At 7 days the tendency was less obvious, and at 28 days and older there was not a significant difference in effectiveness of the WRA as the W/C changed.

Compressive strength benefits attributable to WRA appear to be maximum in the age interval from the 7th through the 28th day (figs. 8 and 9), but at 90 days and older the difference from the reference concrete had diminished. Compressive strengths of concrete containing various amounts of WRA and various W/C ratios are shown in a somewhat different manner (figs. 10 and 11). With W/C ratios computed from $y = A/B^x$ for equal 28-day strengths ranging from 17 to 52 MPa (2500 to 7500 lb/in²), strengths at 1, 3, 7, 90, and 365 days' age were determined for appropriate A and B values (table 3) for these ages and all percent WRA contents (table 4, figs. 10 and 11). These calculations were done so that the 28-day strengths were in the range of 17.2 to 51.7 MPa (2500 to 7500 lb/in²) at 3.4 MPa (500 lb/in²) increments. With the exception of the 0.10 percent WRA, concrete made with W/C ratios sufficiently higher than the control concrete had the same 28-day strengths, but had lower strengths at 1, 3, 90, and 365 days. The W/C ratio required to produce concrete with a given 28-day compressive strength increased as the WRA was increased. For instance, for the concrete to have a 31 MPa (4500 lb/in²) 28-day strength, the W/C without WRA would be 0.48 (tabulations, figs. 10 and 11). When the WRA was 0.10 percent, the W/C would be 0.51; when the WRA was 0.30 percent, the W/C would be 0.53. This difference in W/C ratio for a given strength was greater at the lower strengths than at the higher strengths. To produce concrete with 52 MPa (7500 lb/in²) at 28 days' age, a 0.31 W/C without WRA would be required; and 0.34 with 0.40 percent WRA. Whereas, to produce concrete with 17 MPa (2500 lb/in²) at 28 days' age, a 0.67 W/C without WRA would be reguired; and 0.77 W/C with 0.40 percent WRA.

A study of the strength development of the concrete with a 31-MPa 28-day strength was interesting (figs. 10 and 11). This strength level was selected merely as an example; however, other strength levels generally followed this same relationship as described. At 7 days' age, regardless of the amount of WRA, the compressive strengths were the same in most instances. At 1 day, the retarding effect of the WRA resulted in a significant reduction in strength when above 0.10 percent; however, at 90 days it had less strength than the control concrete. Evidently concrete made with a WRA at a W/C to produce a 28-day strength of 31 MPa had less strength at 1, 90, and 365 days than concrete at the lower W/C ratio required by the concrete without WRA.

Frequently, it is very advantageous to know the relationship of early strength to 28-day strength. The Bureau *Concrete Manual*, previously mentioned, alludes to this relationship (*Manual* fig. 10, p. 25), but for non-air-entrained concrete with 359 kg/m³ (606 lb/yd³) of cement having a single strength level. In comparison, this study shows the strengths at 1, 3, 7, 90, and 365 days for WRA dosages of 0.10, 0.20, 0.25, 0.30, and 0.40 percent as percents of their 28-day values (table 5). Some of these relationships are shown graphically (fig. 12) at the 17-, 34-, and 52-MPa (2500-, 5000-, and 7500-lb/in²) levels. At 1 day's age, the

.....

strengths vary between a low of 15.1 percent to a high of 28.9 percent of their 28-day strengths for the control concrete. Similarly, for 0.30 percent WRA concretes, at the same age, the relationships vary between 10.2 to 23.4 percent. At 3 and 7 days, the relationships of the WRA and control concrete strengths are approximately the same. At 90 and 365 days, the relationship with the 28-day concrete increases to 130 \pm 2.5 percent for the control concrete, whereas the WRA concrete percentage increases through 90 days and then levels off somewhat to 365 days.

1:111

CLEAR CREEK AGGREGATE

				S	AND			
		Sieve Num	ber		Pan	Fineness	Specific	Absorption
8	16	30	50	100		modulus	gravity	percent
		Grading, pe	ercent re	etained				
15	15	25	25	15	5	2.75	2.67	0.60
				COARSE A	AGGRE	GATE	· · · · · · · · · · · · · · · · · · ·	
5 mm	(¾ ₁₆ -in)	10 mm	(¾-in)	20 mm (¾ in)	40	mm (1½-in)	Specific	Absorption
		Gra	ding, pe	rcent retained			gravity	percent
2	2	33		45		0	2.63	0.58

LABORATORY BLEND CEMENT (M-5500)

CHEMICAL ANALYSIS

Oxide Analysis	Percent	Compound Composition	Percent
SiO ₂	22.58	C₃S	46.36
Al ₂ O ₃	4.39	C₂S	29.85
Fe₂O₃	3.63	C₄AF	11.04
CaO	63.52	C ₃ A	5.50
MgO	2.11	CaSO₄	3.50
SO₃	2.06		
Loss on ignition	1.36		
Insoluble residue	0.13		
Na₂O	0.19		
K₂Ō	0.46		
Alkalies as Na₂O	0.49		

PHYSICAL PROPERTIES

Specific gravity, 3.18 Autoclave expansion, 0.023% Normal consistency, 25.2% Initial set, 3 hrs. 30 min. Final set, 5 hrs. 15 min. Compressive strength of 50-mm (2-in) cubes: 3 days – 14 MPa (2096 lb/in²) 7 days – 20 MPa (2971 lb/in²) 28 days – 33 MPa (4721 lb/in²) Air in mortar, 7.6 percent

False set: Initial, 1/2-min. penetration, 38 mm (1.5 in) 5-min. penetration, 30 mm (1.2 in) Blaine surface 3470 cm²/gm

.—	;	:	:	MIX	QUANTIT	TIES PER	CUBIC Y	ARD/METER	:	PROP	ERTIE	S OF FRESH	CONCR	ETE	SETTING	G TIME :	с	OMPRESS	IVE STR	ENGTH, F	PSI/MPa	
: MIX :	: W/C	:S/A :	: AEA :		WRA :		CEMENT 1bs	: SAND :0 : 1bs :	AGGR. : 1bs :	TEMP:S	LUMP: ins :	UNIT WT. : lbs/cu ft:	PERCEN'	RESS	INITIAL	FINAL :	6-X 12-	INCH C¥	LINDERS	MADE AN	D CURED	AS SHOWN:
: NO.		<u> </u>	: cc					: kojs :	kgs :	°C :		kgs/cu m.:	<u> </u>	8 :	hrs.min	hrs.min:	1 DAY	3 DAY	7 DAY	28 DAY	90 DAY	1 YEAR :
								_	ADE AND CU		_											
21	0.35	32	1,397 1,062	0.0	0	273 162.0	775 459.8	918 544.6	1,919 1,138.5	69 20.6	3.7	143.9 2,305.1	5.5	4.9	4:40	6:15	1,950 13.5	3,600 24.8	5,060 34.9	6,950 48.0	7,700 53.1	8,320 ; 57.4 ;
22	. 35	33	· 371 282	.1	735 559	277 164.3	786 466.3	961 570.1	1,921 1,139.7	69 20.6	3.3 84	146.1 2,340.3	4.0	4.0	4:45	6:30	2,400	4,330	5,710 39.4	7,430	8,360	9,080 62.7
23	. 35	33	237 180	. 2	1,401	264 156.6	746 442.6	984 583.8	1,967	69 20.6	3.1	146.7 2,349.9	4.0	4.2	6:00	7:45	2,260	4,200	5,750 39.7	7,370	8,130 56.1	9,340 : 64.4
24	. 35	33	88 67	.3	2,023	252 149.5	720	994 589.7	1,987	69 20.6	3.0	146.4 2,345.1	4.5	4.2 :	7:30	9:25	1,980	4,060	5,970	7,570	8,610 59.4	9,190 63.4
25	.35	33	0	. 4	2,785 2,117	260 154.2	743 440.8	981 582.0	1,961 1,163.4	69 20.6	3.7 94	146.1 2,340.3	4.5	4.8	9:30	11:15	1,860	4,240 29.3	5,900 40.7	7,550 52.1	8,410 58.0	8,720 60.2 :
51	.45	33	595	0.0	0	246 145.9	547 324.5	1,041 617.6	2,081	69 20.6	3.3 84	145.0	4.9	4.7 :	4:55	7:00	1,190	2,300	3,250	5,310	6,130	6,900
52	.45	34	452 291 221	. 1	509 387	243	540 320.3	1,077	2,062	70 21.1	3.4 86	145.3	4.9	4.5	5:35	7:25	1,350	15.8	3,650	36.6 5,610 38,7	42.2 6,560 45.2	47.6 7,210 49.7
53	.45	34	148	. 2	995 756	239	531 315.0	1,096	2,098	69 20.6	3.3 84	146.8 2,351.5	4.0	4.1 ;	6:15	8:10	9.3 1,280 8.8	17.8 2,750 18.9	4,280	6,260 43,1	6,960 48.0	7,130 :
54	.45	34	74	. 3	1,459	234 138.8	521 309.1	1,094 649.0	2,092	70 21.1	3.4	145.9 2,337.0	4.7	4.5	7:30	9:35	1,200	2,690	4,240	6,150	6,530 45.0	7,130
55	.45	34	41 31	. 4	1,904	228	507 300.8	1,089 646.1	2,086	70 21.1	3.3 84	144.8 2,319.4	5.5	5.0 ;	9:05	11:10	980 6.8	2,600	4,090 28.2	5,920 40.8	6,900 47.6	7,030
51.2	.45	33	542	0.0	. 0	235	522	1,065	2,129	70	3.2	146.3	4.4	4.2 ;	5:25	7:40	1,100	2,030	3,220	4,600	5,760	6,220
52.2	.45	34	412 303	. 1	500	$139.4 \\ 240$	309.7 534	631.8 1,093	1,263.1 2,094	21.1 70	81 3.2	2,343.8 146.7	4.0	4.0	5:40	7:55	7.6 1,260	14.0 2,390	22.2 3,510	31.7 5,300	39.7 6,220	42.9 : 6,380
53.2	.45	34	230 164	. 2	380 984	142.3	316.8 526	648.4 1,091	1,242.3 2,092	21.1 70	81 3,1	2,350.3 146.2	4.5	4.1	6:55	9:05	8.7 1,150	16.5 2,410	24.2 3,710	36.6 5,440	42.9 6,070	44.0
54.2	.45	34	125 91	. 3	748 1,441	$140.0 \\ 231$	312.0 514	647.2 1,097	1,2 41.1 2,101	$\frac{21.1}{70}$	79 3.0	2,341.9 146.0	4.7	4.1 :	7:55	9:55	7.9	16.6 2,430	25.5 3,790	37.5 5,770	41.8 6,460	42.0
55.2	.45	34	69 33	. 4	1,095 1,902	137.0 229	304.9 508	650.8 1,097	1,246.5 2,102	21.1 69	76 2.9	2,338.7 145.8	4.9	4.6	9:20	11:30	6.9 880	16.7 2,370	26.1	39.8 5,540	44.5 6,500	45.6 6,560
			25		1,446	135.8	301.3	650.8	1,247.1	20.6	74	2,335					6.1	16.3	26.0	38.2	44.8	45.2
76	.50	35	563 428	0.0	0	234 138.8	469 278.2	1,136 673,9	2,076	69 20.6	3.4 86	145.0	5.1	4.9	6:05	9:00	780	1,470	2,120	4,140	4,930	5,510 38.0
77	.50	36	298 226	.1	430	230 136.4	461 273.5	1,172 695.3 1,179	2,053 1,218.0 2,065	68 20.0	2.8 71 3.0	145.0 2,322.6	5.2 5.3	4.8 5.0	6:40	9:40	910 6.3	1,860	2,690	4,530	5,700	6,110 42.1
78	.50	.36	190 144	.2	833 633	224	445 264.0	699.5	1,225.1	68 20.0	3.0 76 2.5	145.0		5.0	7:30	10:35	900	1,980	2,950	4,820	5,570 38.4	6,07D 41.8
79	. 50	36	124	. 3	1,230	218 129.3	436 258.6 426	1,189 705.4 1,196	2,083 1,235.8 2,094	69 20,6 68	64 2.5	145.4 2,329.0 145.5	5.3 5.4	5.1 :	8:20 10:30	11:40 14:10	880 6.1 720	2,170	3,410	5,060 34.9 4,770	5,860 40.4 5,710	6,350 43.8
80	.50	36	83 - 63	. 4	1,592 1,210	213 126.3	252.7	709.5	1,242.3	20.0	64	2,330.6			10:30	14:10	5.0	1,840 12.6	2,960 20.4	32.9	39.3	6,180 42.6
76.2	.50	35	539 409	0.0	0	234	468 277.6	1,138 675,1	2,080	70 21.1	3.2 81	145.2 2,325.8	5.0	4.9	5:50	8:35	810	1,670	2,380 16.4	3,900 26,9	4,780	5,160
77.2	.50	36	315	. 1	444 337	236	471 279.4	1,162 689.4	2,036	70 21.1	3.3	144.6 2,316.2	5.2	5.0	5:50	8:20	950 6.6	1,900	2,790	4,560	5,460	5,800 40.0
78.2	.50	36	171	. 2	881 670	236	472 280.0	1,174 696.5	2,058	70 21.1	2.9 74	145.9	4.5	4.0	6:55	9:20	900	1,920	2,860	4,680	5,350 36.9	5,940 40.9
79.2	.50	36	115	. 3	1,286	229 135.8	458 271.7	1,179 699.5	2,066	70 21.1	3.0 76	145.6 2,332.2	4.9	5.2 :	7:55	10:25	770	1,940	2,960 20.4	4,760	5,480	5,870 40.5
80.2	.50	36	69 52	. 4	1,683	225 133.4	449 266.3	1,176 697.7	2,061	70 21.1	3.3 84	144.8 2,319.4	5.4	5.0	9:15	11:55	650	1,810	2,970 20.4	4,660	5,050 34.8	5,430 37.4
111.	. 55	36	412	0.0	0	248	451	1,177	2,062	69	2.9	145.9	4.0	4.0	5:15	7:15	730	1,480	2,280	3,870	5,100	5,250
112	.55	37	313 260	. 1	414	147.1 244	267.5 444	698.3 1,215	1,223.3 2,037	20.6 69	3.0	2,337.0	4.1	4.0	5:30	7:25	5.0 890	10.2				
113	. 55	37	198 154	. 2	315 811	144.7 238	263.4 434	720.8 1,213	1,208.5	20.6 70	3.3	2,338.7	4.8	4.5 :	6:00	8:00	6.1 820	11.0 1,730				
114	. 55	37	117	. 3	616 1,218	141.2 239	257.4 434	719.6 1,213	1,206.7	21.1	3.1	2,325.8	4.7	4.5	7:30	9:30	5.7 660	11.9 1,650	19.0		33.8 4,780	36.8 4,960
115	. 55	37	61 65	. 4	926 1,545	141.7	257.4 412	719.6	1,207.3	21.1	2.6	2,325.8	5.7	5.0 :	8:45	10:55	4.6	11.3		29.2 4,700		34.2 5,310
111.2	. 55	36	49 369	0.0	1,174	134.6 240	244.4 435	720.8 1,182	1,209.1	21.1 66	2.9	2,309.8	4,5		6:25	10:15	4.5 590	12.9	20.4	32.4 3,490	36.5	36.6 4,540
112.2		37	280	.1	407	142.3	258.0 436	701.3	1,227.5	18.9		2,329.1	4.5		6:25	9:20	4.1	9.0	13.5	24.0	30.5	31.3
113.2	. 55	37	113	.2	309 808	142.3	258.6	720.8	1,207.9	18.9		2,330.3	4.5		7:00	9:50	4.8	9.1	14.4	26.0	30.8	32.0
114.2	. 55	37	76	.3	614	141.2	256.8 426	722.6	1,210.9	18.9	81	2,332.3	5.2	;	8:30	11:20	4.4	10.3	14.6	27.1	31.7	33.5
115.2	.55	37	38	. 4	907	138.8	252.7 415	718.4	1,204.3	18.9 66	81 3.3	2,316.3 145.0	5.2		10:00	13:05	3.9	10.2	15.4	27.8	31.1	33.6
					1,182	135.2	246.2	725.0	1,214.4	18.9		2,322.7					3.5	10.2	16.2	29.6	32.2	34.5
141	.65	38	390 296		0	242 143.5	372 220.7	1,253 743.4	2,014 1,194.9	68 20.0	3.3	143.7 2,301.8	5.2	4.8	5:55	9:05	465 3.2	920 6.3	1,380	18.7	22.1	23.2
142	.65		248 188	.1	347 264	238 141.2	366 217.1	1,291 765.9	1,990 1,180.6	68 20.0		143.9	5.3	4.9	6:00	9:05	500	990 6.8	1,450	19.3	22.7	23.6
143	.65	39	124 94	. 2	700 532	242 143.5	372 220.7	1,286 762.9	1,983	68 20.0		143.9 2,305.0	5.2	4.5	7:10	9:50	465	930 6.4	1,600	21.1	24.2	25.9
144	.65	39	58 44	.3	783	239	368 218.3	1,298 770.1 1,308	2,001	68 20.0	2.5	144.7 2,317.8	4.8	4.3		10:40 12:55	460	1,120	12.6	23.2	28.3	27.2
145	.65	39	0	. 4	1,390 1,056	142.9	371 220.1		1,196.0	19.4	71	2,335.4	4.1	4.0	9:40	12:55	2.6	1,100 7.5	1,710			3,780 26.0
									MADE	AND CU	RED A	<u>T 90⁰F (</u> 3	32.2 ⁰ C)									
86	.50	35	643 489		0	256 151,2	513 304.1	1,114 660.9	2,038 1,209.1	92 33.3	3.3 84	145.2 2,325.8	4.3	4.5	3:30	5:05	8.8	2,120	18.9	30.5	36.9	6,140 42.3
87	.50	36	336	.1	480 365	255	511 303.1	1,142 677.5	2,002 1,187.7	92 - 33.3	3.3 1 84	144.8 2,319.4	4.6	4.6		5:35	8.6	2,140	20,0	31.3	36.9	5,930
88	.50	36		. 2		253 151.1	507 300.8	1,145 679.3	2,005 1,189.5	92 33.3	3.2 8 81	144.8 2.319.4	4.7	4.6	4:35	5:55	7.7	2,130	21.0	31.7	38.1	41.2
89	.50		147	. 3	1,037	244 144.7	487 288.9		2,044		2.7	146.0 2,338.7	4.2	4.9	5:20 6:40	6:36 8:15	7.4	2,420 16.6 2,500	22.6	33.6	39.1	43.5
90	.50	36		. 4		231 137.0	462 274.1	1,176 697.7	2,061 1,222.7	91 32.8	2.2 56	145.5 2,330.6	4.9	4.8	0:40	0:17	7.7	17.2		35.6	40.8	
									MADE_	AND CL	JRED A	T 50°F	(10 ⁰ C)									
81	.50	35	347		0	235 139.4	469 278.2	1,148	2,099 1,245.3	52 11.1		146.4 2,345.1	4.3	4.6	: 10:15	17:25	180	1,280	2,43		0 5,670 39.1	
82	.50	3€		.1	431	230	461 273.5	1,186	2,095	53	3.0	146.4 2,345.1	4.4	4.7	11:00	18.00	160 1.1	1,360	2,52	0 5,071 34.9	0 5,750 39.6	6,380 44.0
83	. 50	36		. 2		224	448 265.7	1,192	2,086	51	3.1	146.3	4.6	4.9	12:30	19:45	150 1.0	1,360) 2,871 19.8	0 4,930 34.0	0 5,740 39.6	6,210 42.8
84	.50	36				225	449 266,3	1,196 709.5	2,094 1,242.3	53 11.	3.1 7 79	146.8 2,351.5		4.8	14:30	21:10	100	1,520	20.5	34.3	37.8	42.0
85	.50	36	5 (.4		219 129.9	428	1,180	2,065	53	3.0	143.1 2,292.2	6.4	5.9	: 15:40	23:55	70 0.5	1,330 9,1	2,73	0 4,46 30.7		
					,																	

W/C	1 Da		3 Da	av	7 Da	ау	28 D	av	90 D	ay	1 Ye	ar
	Compressive	. %	Compressive	%	Compressive	%	Compressive	%	Compressive	%	Compressive	%
	strength MPa	control	strength MPa	control	strength MPa	control	strength MPa	control	strength MPa	control	strength MPa	control
						Co	ntrol					
35	12.55	100	23.23	100	33.23	100	46.33	100	53.57	100	59.29	100
40	9.79	100	18.55	100	26.82	100	39.64	100	46.61	100	51.02	100
45	7.65	100	14.82	100	21.58	100	33.99 29.09	100	40.54	100	43.92	100
50 55	6.00 4.69	100 100	11.79 9.44	100 100	17.44 14.06	100 100	29.09	100 100	35.23 30.61	100 100	37.78 32.54	100 100
60	3.65	100	7.51	100	11.31	100	24.30	100	26.61	100	27.99	100
65	2.83	100	6.00	100	9.10	100	18.27	100	23.17	100	24.13	100
70	2.21	100	4.76	100	7.38	100	15.65	100	20.13	100	20.75	100
Α	-	10 242	_	16 400	-	21 818		19 856	_	20 639	_	24 561
В		139	-	92		74	-	22		16	-	20
Standard error	_	0.55	-	1.00	-	1.40	-	1.73	_	2.01		2.20
						0.1%	WRA					
35	15.17	121	28.27	121	38.68	116	51.57	111	59,78	112	64.67	109
40	11.72	119	21.99	119	30.82	115	43.92	111	51.16	110	55.02	108
45	9.03	117	17.17	116	24.54	114	37.37	110	43.85	108	46.81	107
50	6.96	116	13.37	113	19.58	112	31.78	109	37.58	107	39.78	105
55	5.38	115	10.41	110	15.58	111	27.10	109	32.20	105	33.85	104
60 65	4.14 3.17	113 112	8.07 6.27	108 105	12.41 9.93	109 108	23.03 19.58	108 107	27.58 23.58	104 102	28.82 24.54	103 102
70	2.48	112	4.89	105	9.93 7.86	108	19.58	107	23.58	102	24.54	102
, U A	2.40	13 628		23 566	-	27 507		23 115	-	25 617	-	29 078
B	-	182	_	148	-	94	-	25	-	22	-	25 25
Standard error	-	0.67	-	0.87	-	0.93		1.07		1.47	-	2.11
						0.2%	WRA					
35	14.41	114	29.03	125	40.47	122	52.40	113	57.98	108	63.09	106
40	11.03	113	22.61	122	32.47	121	45.02	114	50.26	108	54.47	107
45	8.48	111	17.65	119	26.06	121	38.68	114	43.57	107	47.02	107
50	6.55	109	13.79	117	20.96	120	33.23	114	37.78	107	40.54	107
55	5.03	107	10.75	114	16.82	120	28.54	115	32.75	107	34.96	108
60 65	3.86	106	8.41	112	13.51	119	24.48	115	28.41	107	30.20	108
65 70	2.96 2.27	104 103	6.55 5.10	109 107	10.82 8.69	119 118	21.03 18.06	115 115	24.61 21.37	106 106	26.06 22.48	108 108
,0 A	2.27	13 097	5.10	23 925	8.05	27 303	18.00	22 018	21.37	22 828	22.40	25 714
B	_	190		143	_	81		21 21		17	_	19
Standard error		0.61	_	0.76	_	1.73	_	1.85	_	1.92	_	2.18
						0.25%	WRA					
35	13.44	107	28.13	121	40.61	122	52.54	114	57.85	108	63.22	107
40	10.34	106	22.27	120	32.82	122	45.30	114	50.47	108	54.61	107
45	8.00	105	17.58	119	26.47	123	39.09	115	43.99	108	47.16	107
50	6.20	104	13.93	118	21.37	123	33.71	116	38.33	109	40.75	108
55 60	4.83 3.72	102 101	11.03 8.76	117 116	17.30 13.93	123 123	29.09 25.10	117	33.44 29.16	109	35.16 30 <i>.</i> 40	108 109
65	2.89	100	6.89	115	11.24	123	25.10	118 118	29.10	110	26.27	109
70	2.03	99	5.45	114	9.10	123	18.68	119	22.20	110	22.86	109
A	_	11 765		21 051	_	26 326	-	21 436		21 896		25 586
В	_	171	_	108	-	72		19	-	.15		19
Standard error	-	.77	-	0.79	-	1.65	-	1.70	-	1.82		1.91
						0.3%	WRA				······································	
35	12.48	100	27.30	117	40.82	122	52.67	114	57.71	108	63.36	107
40	9.72	99	21.92	118	33.09	123	45.64	115	50.61	109	54.74	107
45	7.58	99	17.58	119	26.89	124	39.57	116	44.40	109	47.37	108
50	5.86	98	14.06	119	21.86	125	34.27	- 118	38.95	111	40.95	108
55	4.55	98	11.31	120	17.72	126	29.72	119	34.13	111	35.37	109
60 65	3.58	97	9.10	121	14.41	127	25.72	120	29.92	112	30.61	109
65 70	2.76 2.14	97 96	7.31	122	11.72	128	22.27	122	26.27	113	26.47	110
70 A	2.14	96 10 569	5.86	122 18 523	9.51	129 25 383	19.30	123 20 868	23.03	114 21 002	22.89	110 25,459
B	_	153		82	_	25 363	_	18	_	14	_	25,455
Standard error	-	0.63	-	0.77		1.46	-	1.40	-	1.64	-	1.57
						0.4%	WRA					
35	11.17	89	26.82	115	40.06	120	50.68	109	57.98	109	61.09	103
40	8.62	88	21.51	116	32.68	122	44.54	112	50.81	109	53.16	104
45	6.69	87	17.30	117	26.61	123	39.09	115	44.54	110	46.26	105
50	5.10	85	13.86	117	21.65	125	34.40	118	38.95	111	40.26	107
55	3.93	84	11.10	118	17.65	126	30.20	121	34.13	111	35.02	108
60	3.03	83	8.89	119	14.41	127	26.54	124	29.92	112	30.47	109
65	2.34 1.79	82 81	7.17	120	11.72	129	23.30	128	26.20	113	26.54	110
		0	5.72	120	9.58	130	20.48	131	22.96	114	23.10	111
70				18 155	_	24 202	_	18 152		21 272	-	23 460
	-	10 054 183		18 155 82	-	24 393 60		18 153 13	_	21 272	_	23 469 16
70 A	-	10 054				24 393 60 1.41		18 153 13 1.51		21 272 14 2.13		23 469 16 1.71

Table 3. – Abram's equation values for various W/C ratios, ages, and WRA dosages. (recorded in MPa)

W/C	1 Da		3 Da		7 Da		28 D		90 D		1 Ye	
	Compressive strength psi		Compressive strength psi	% control	Compressive strength psi		Compressive strength psi		Compressive	% control	Compressive	
	strength psi	control	strength psi	CONTROL	strength psi		ntrol	control	strength psi	control	strength psi	contro
	4000	100	2270		4000			100				
35 40	1820 1420	100 100	3370 2690	100 100	4820 3890	100 100	6720 5750	100 100	7770 6760	100 100		10
40	1110	100	2150	100	3130	100	4930	100	5880	100		10 10
45 50	870	100	1710	100	2530	100	4330	100	5110	100	5480	10
55	680	100	1370	100	2040	100	3620	100	4440	100	4720	10
60	530	100	1090	100	1640	100	3100	100	3860	100	4060	10
65	410	100	870	100	1320	100	2650	100	3360	100		10
70	320	100	690	100	1070	100	2270	100	2920	100	3010	10
Α		10 242	. —	16 400	-	21 818	-	19 856	_	20 639	_	24 56
В	-	139	-	92		74	-	22	-	16		2
tandard error	_	80	-	145		203	-	251	_	291		31
						0.1%	WRA					
35	2200	121	4100	121	5610	116	7480	111	8670	112	9380	10
40	1700	119	3190	119	4470	115	6370	111	7420	110		10
45	1310	117	2490	116	3560	114	5420	110	6360	108	6790	10
50	1010	116	1940	113	2840	112	4610	109	5450	107	5770	10
55	780	115	1510	110	2260	111	3930	109	4670	105	4910	10
60	600	113	1170	108	1800	109	3340	108	4000	104	4180	10
65	460	112	910	105	1440	108	2840	107	3420	102	3560	10
70	360	110	710	103	1140	107	2420	107	2930	100	3030	10
Α	-	13 628	-	23 566	-	27 507	-	23 115	-	25 617		29 07
B	-	182	-	148	-	94	-	25	-	22	—	2
andard error		98		127	-	135		156		214		30
						0.2%						
35	2090	114	4210	125	5870	122	7600	113	8410	108	9150	10
40	1600	113	3280	122	4710	121	6530	114	7290	108	7900	10
45	1230	111	2560	119	3780	121	5610	114	6320	107	6820	10
50	950	109	2000	117	3040	120	4820	114	5480	107	5880	10
55	730	107	1560	114	2440	120	4140	115	4750	107	5070	10
60	560	106	1220	112	1960	119	.3550	115	4120	107	4380	10
65	430	104	950	109	1570	119	3050	115	3570	106	3780	10
70	330	103	740	107	1260	118	2620	115	3100	106	3260	10
A	-	13 097	_	23 925	-	27 303		22 018	-	22 828		25 71
В		190	-	143	-	81	_	21	-	17	-	1
tandard error	-	89	-			251		269	_	279	-	31
							WRA					
35	1950	107	4080	121	5890	122	7620	114	8390	108	9170	10
40	1500	106	3230	120	4760	122	6570	114	7320	108	7920	10
45	1160	105	2550	119	3840	123	5670	115	6380	108	6840	10
50	900	104	2020	118	3100	123	4890	116	5560	109	5910	10
55	700	102	1600	117	2510	123	4220	117	4850	109	5100	10
60	540	101	1270	116	2020	123	3640	118	4230	110	4410	10
65	420	100	1000	115	1630	123	3140	118	3690	110	3810	10
70	320	99	790	114	1320	124	2710	119	3220	110	3290	10
A	-	11 765 171	—	21 051 108	_	26 326 72	_	21 436 19		21 896	_	25 58
B andard error	_	112	_	115	_	239		247	-	15 264	-	1 27
andard error	_	112			_	235				204		
						0.3%	WRA					
35	1810	100	3960	117	5920	122	7640	114	8370	108	9190	10
40	1410	99	3180	118	4800	123	6620	115	7340	109	7940	10
45	1100	99	2550	119	3900	124	5740	116	6440	109	6870	10
50	850	98	2040	119	3170	125	4970	118	5650	111	5940	10
55	660	98	1640	120	2570	126	4310	119	4950	111	5130	10
60	520	97	1320	121	2090	127	3730	120	4340	112	4440	10
65	400	97	1060	122	1700	128	3230	122	3810	113	3840	1.
70	310	96	850	122	1380	129	2800	123	3340	114	3320	11
Α	-	10 569	-	18 523		25 383	-	20 868	-	21 002	-	25,4
В		153		82	-	64	-	18	-	14	-	1
andard error		92		112	-	212	-	203	-	238	-	22
						0.4%						
35	1620	89	3890	115	5810	120	7350	109	8410	109	8860	10
40	1250	88	3120	116	4740	122	6460	112	7370	109	7710	10
45	970	87	2510	117	3860	123	5670	115	6460	110	6710	10
	740	85	2010	117	3140	125	4990	118	5650	111	5840	10
50	570	84	1610	118	2560	126	4380	121	4950	111	5080	10
	440	83	1290	119	2090	127	3850	124	4340	112	4420	10
50	440	82	1040	120	1700	129	3380	128	3800	113	3850	11
50 55	340	01				130	2970	131	3330	114	3350	1
50 55 60 65	340		830	120	1390	130	2010					
50 55 60		81 10 054	830	120 18 155	1390	24 393	-	18 153		21 272	-	
50 55 60 65 70	340 260	81	830 									23 4e

 Table 3. – Abram's equation values for various W/C ratios, ages, and WRA dosages. – Continued (recorded in Ib/in²)

10

N/C	Age:	1 D	ay	3 0)aγ	7 0	aγ	28	Day	90	Day	1 Y	ear
						Compr	essive Stre	ngth MPa	(lb/in²)				
	ntrol	15.0	(2171)	27.2	(2060)	20.0	(5624)	E1 7	(7500)	59.1	(8579)	8E 0	(9566
).31).34		15.0 13.4	(2171) 1945	27.3 24.7	(3960) 3581	38.8 35.2	(5624) 5109	51.7 48.3	7000	59.1	8061	65.9 61.7	8948
.36		11.9	1728	22.2	3214	31.8	4608	44.8	6500	52.0	7540	57.4	8328
			1521	19.7	2859	28.4	4122	44.0	6000	48.4	7015	53.1	7707
.39		10.5			2518		3651	37.9	5500	40.4	6486	48.8	7084
.41		9.1	1325	17.4		25.2							
.45		7.8	1138	15.1	2191	22.0	3198	34.5	5000	41.0	5952	44.5	6460
.48		6.6	962	12.9	1879	19.0	2761	31.0	4500	37.3	5412	40.2	5833
.52		5.5	797	10.9	1582	16.2	2344	27.6	4000	33.6	4867	35.9	5204
.56		4.4	645	9.0	1302	13.4	1946	24.1	3500	29.7	4315	31.5	4573
.61		3.5	504	7.2	1040	10.8	1570	20.7	3000	25.9	3755	27.1	3939
.67		2.6	377	5.5	797	8.4	1218	17.2	2500	22.0	3186	22.7	3301
	0% WRA												
.35		15.3	2215	28.4	4115	38.8	5631	51.7	7500	59.9	8691	64.8	9405
.37		13.6	1981	25.5	3697	35.2	5110	48.3	7000	56.1	8133	60.5	8776
.39		12.1	1758	22.7	3296	31.7	4603	44.8	6500	52.2	7575	56.2	8147
.42		10.6	1545	20.1	2911	28.3	4112	41.4	6000	48.3	7014	51.8	7519
.45		9.2	1342	17.5	2544	25.1	3637	37.9	5500	44.5	6452	47.5	6891
.47		7.9	1151	15.1	2194	21.9	3180	34.5	5000	40.6	5887	43.2	6263
51		7.7	971	12.8	1864	18.9	2741	31.0	4500	36.7	5321	38.8	563
.54		5.5	803	10.7	1552	16.0	2322	27.6	4000	32.8	4752	34.5	5007
.59		4.5	647	8.7	1262	13.3	1924	24.1	3500	28.8	4180	30.2	4379
.63		3.5	504	6.8	994	10.7	1548	20.7	3000	24.8	3605	35.9	3752
.69		2.6	376	5.2	749	8.2	1197	17.2	2500	20.9	3026	21.5	312
	0.04 14/0 4		3/0	U.Z	/43	0.2	113/	17.2	2000	20.9	3020	21.0	512
	20% WRA		2040	10 4	4100	20 7	6764	E1 7	7500	67.9	8305	62.3	904
.35		14.1	2040	28.4	4122 3683	39.7 35.9	5761 5215	51.7 48.3	7500 7000	57.3 53.7	8305 7784	62.3 58.3	8455
38		12.5	1811	25.4			5215						
40		11.0	1593	22.5	3263	32.3	4685	44.8	6500	50.1	7261	54.2	7868
43		9.6	1387	19.7	2863	28.8	4174	41.4	6000	46.4	6736	50.2	7280
46		8.2	1194	17.1	2484	25.4	3681	37.9	5500	42.8	6207	46.1	6691
49		7.0	1013	14.6	2126	22.1	3207	34.5	5000	39.1	5676	42.0	610
52		5.8	844	12.3	1790	19.0	2754	31.0	4500	35.4	5141	38.0	550
56		4.7	689	10.2	1477	16.0	2323	27.6	4000	31.7	4603	33.9	4912
60		3.8	547	8.9	1188	13.2	1916	24.1	3500	28.0	4061	29.7	4315
.66		2.9	419	6.4	923	10.6	1533	20.7	3000	24.2	3514	25.6	371
72		2.1	306	4.7	686	8.1	1178	17.2	2500	20.4	2961	21.5	311:
	25% WRA												
.36		13.0	1892	27.4	3981	39.7	5758	51.7	7500	57.0	8266	62.2	9028
.38		11.6	1678	24.6	3569	35.9	5211	48.3	7000	53.5	7754	58.1	8431
40		10.2	1475	21.9	3173	32.3	4681	44.8	6500	49.9	7239	54.0	7833
43		8.8	1283	19.3	2795	28.7	4169	41.4	6000	46.3	6721	49.9	7235
46		7.6	1103	16.8	2435	25.3	3675	37.9	5500	42.7	6200	45.8	6637
			934	14.4	2093	22.1	3202	34.5	5000	39.1	5675	41.6	6038
.49		6.4	778										
.53		5.4		12.2	1771	18.9	2749	31.0	4500	35.5	5147 4614	37.5	5439
.57		4.4	634	10.1	1469	16.0	2318	27.6	4000	31.8		33.4	4839
.61		3.5	502	8.2	1189	13.2	1911	24.1	3500	28.1	4077	29.2	4239
.67		2.6	384	6.4	931	10.5	1529	20.7	3000	24.3	3533	25.1	3638
.73		1.9	280	4.8	697	8.1	1174	17.2	2500	20.6	2984	20.9	3036
	30% WRA												
36		12.1	1755	26.5	3848	39.7	5756	51.7	7500	56.7	8232	62.1	901
.38		10.7	1555	23.9	3461	35.9	5208	48.3	7000	53.3	7728	57.9	8406
41		9.4	1365	21.3	3089	32.2	4678	44.8	6500	49.8	7221	53.7	7797
43		8.2	1187	18.8	2732	28.7	4165	41.4	6000	46.3	6711	49.6	7189
.46		7.0	1019	16.5	2390	25.3	3671	37.9	5500	42.7	6197	45.4	658
50		5.9	862	14.2	2064	22.0	3198	34.5	5000	39.2	5680	41.2	597
.53		4.9	716	12.1	1756	18.9	2745	31.0	4500	35.6	5158	37.0	536
.58		4.0	583	10.1	1466	15.9	2314	27.6	4000	31.9	4631	32.8	4764
.62		3.2	461	8.2	1194	13.1	1906	24.1	3500	28.2	4098	28.7	4161
68		2.4	352	6.5	942	10.5	1525	20.7	3000	24.5	3559	24.5	3558
00 74		2.4 1.7	255	4.9	712	8.1	1170	17.2	2500	24.5	3012	24.5	295
	10% WRA		¥99	4.3	112	0.1	11/0	17.2	2000	20.0	3012	20.4	233
	NWRA		1693	27.8	4028	41.4	6005	51.7	7500	59.2	8593	62.5	9061
34		11.7											
.37		10.1	1473	24.7	3581	37.1	5383	48.3	7000	55.2	8006	58.0	8413
.40		8.7	1269	21.8	3157	33.0	4786	44.8	6500	51.1	7420	53.5	7768
.43		7.4	1080	19.0	2754	29.1	4216	41.4	6000	47.1	6836	49.1	7126
.46		6.2	906	16.4	2375	25.3	3672	37.9	5500	43.1	6252	44.7	6489
.50		5.1	748	13.9	2019	21.8	3157	34.5	5000	39.1	5670	40.4	5856
.54		4.2	605	11.6	1687	18.4	2672	31.0	4500	35.1	5089	36.0	5228
.59		3.3	477	9.5	1381	15.3	2216	27.6	4000	31.1	4510	31.7	4606
.64		2.5	364	7.6	1100	12.4	1793	24.1	3500	27.1	3933	27.5	3989
.70		1.8	267	5.8	846	9.7	1405	20.7	3000	23.1	3358	23.3	3379
		1.3	185	4.3	620	7.2	1052	17.2	2500	19.2	2785	19.1	2777

Table 4.—Compressive strengths computed for each age and WRA dosage.

11111

1

Strengths computed for each age and percent WRA from A and B values shown in table 3 so that the 28 day strengths were in the range of 17.2 to 51.7 MPa (2500 to 7500 lb/in²) at 3.4 MPa (500 lb/in²) increments.

W/C	Age:	1 Day	3 Day	7 Day	28 Day	90 Day	1 Year
Con	trol						
0.31		28.9	52.8	75.0	100.0	114.4	127.6
0.34		27.8 26.6	51.2 49.4	73.0 70.9	100.0	115.2	127.8
0.36		25.4	49.4	68.7	100.0 100.0	116.0 116.9	128.1
0.39 0.41		24.1	45.8	66.4	100.0	117.9	128.5 128.8
0.41		24.1	43.8	64.0	100.0	119.0	129.2
0.48		21.4	41.8	61.4	100.0	120.3	129.6
0.52		19.9	39.6	58.6	100.0	121.7	130.1
0.56		18.4	37.2	55.6	100.0	123.3	130.7
0.61		16.8	34.7	52.3	100.0	125.2	131.3
0.67		15.1	31.9	48.7	100.0	127.4	132.0
0.10	0% WRA						
0.35		29.5	54.9	75.1	100.0	115.9	125.4
0.37		28.3	52.8	73.0	100.0	116.2	125.4
0.39		27.0	50.7	70.8	100.0	116.5	125.3
0.42		25.7	48.5	68.5	100.0	116.9	125.3
0.45		24.4	46.2	66.1	100.0	117.3	125.3
0.47		23.0	43.9	63.6	100.0	117.7	125.3
0.51		21.6	41.4	60.9	100.0	118.2	125.2
0.54		20.1	38.8	58.1	100.0	118.8	125.2
0.59		18.5	36.1	55.0	100.0	119.4	125.1
0.63		16.8	33.1	51.6	100.0	120.2	125.1
0.69		15.0	30.0	47.9	100.0	121.0	125.0
0.20	0% WRA						
0.35		27.2	55.0	76.8	100.0	110.7	120.5
0.38		25.9	52.6	74.5	100.0	111.2	120.8
0.40		24.5	50.2	72.1	100.0	111.7	121.1
0.43		23.1	47.7	69.6	100.0	112.3	121.3
0.46		21.7	45.2	66.9	100.0	112.9	121.6
0.49		20.3	42.5	64.1	100.0	113.5	122.0
0.52		18.8	39.8	61.2	100.0	114.3	122.4
0.56		17.2	36.9	58.1	100.0	115.1	122.8
0.60		15.6	33.9	54.7	100.0	116.0	123.3
0.66		14.0	30.8	51.1	100.0	117.1	123.8
0.72		12.2	27.4	47.1	100.0	118.4	124.5
	5% WRA						
0.36		25.2	53.1	76.8	100.0	110.2	120.4
0.38		24.0	51.0	74.4	130.0	110.8	120.4
0.40		22.7	48.8	72.0	100.0	111.4	120.5
0.43		21.4	46.6	69.5	100.0	112.0	120.6
0.46		20.0	44.3	66.8	100.0	112.7	120.7
0.49		18.7	41.9	64.0	100.0	113.5	120.8
0.53		17.3	39.4	61.1	100.0	114.4	120.9
0.57		15.8	36.7	58.0	100.0	115.4	121.0
0.61		14.3	34.0	54.6	100.0	116.5	121.1
0.67		12.8	31.0	51.0	100.0	117.8	121.3
0.73		11.2	27.9	47.0	100.0	119.3	121.4
	0% WRA			70.0	400.0		
0.36		23.4	51.3	76.8	100.0	109.8	120.2
0.38		22.2 21.0	49.4 47.5	74.4 72.0	100.0 100.0	110.4 111.1	120.1
0.41		19.8	45.5	69.4	100.0	111.9	120.0 119.8
0.43		18.5	43.5	66.8	100.0	112.7	
0.46							119.7
0.50		17.2	41.3	64.0	100.0	113.6	119.5
0.53		15.9	39.0	61.0	100.0	114.6	119.3
0.58		14.6	36.6	57.8 54 5	100.0 100.0	115.8	119.1
0.62		13.2 11.7	34.1 31.4	54.5 50.8	100.0	117.1 118.6	118.9
0.68				46.8	100.0	120.5	118.6
0.74		10.2	28.5	40.0	100.0	120.5	118.3
	0% WRA	22.6	53.7	80.1	100.0	114.6	120.8
0.34 0.37		22.0	51.2	76.9	100.0	114.4	120.8
0.37		19.5	48.6	73.6	100.0	114.4	119.5
0.40		18.0	45.9	70.3	100.0	113.9	118.8
0.43		16.5	43.2	66.8	100.0	113.7	118.0
0.46		15.0	40.4	63.1	100.0	113.4	117.1
		13.4	37.5	59.4	100.0	113.1	116.2
0.54 0.59		11.9	34.5	55.4	100.0	112.8	115.1
0.59		10.4	34.5	51.2	100.0	112.4	115.1
0.64		8.9	28.2	46.8	100.0	111.9	112.6
0.70		7.4	24.8	42.1	100.0	111.4	111.1
5.77		· . 	<u>_</u> U				

Table 5. – Compressive strengths expressed as a percent of the 28-day strength

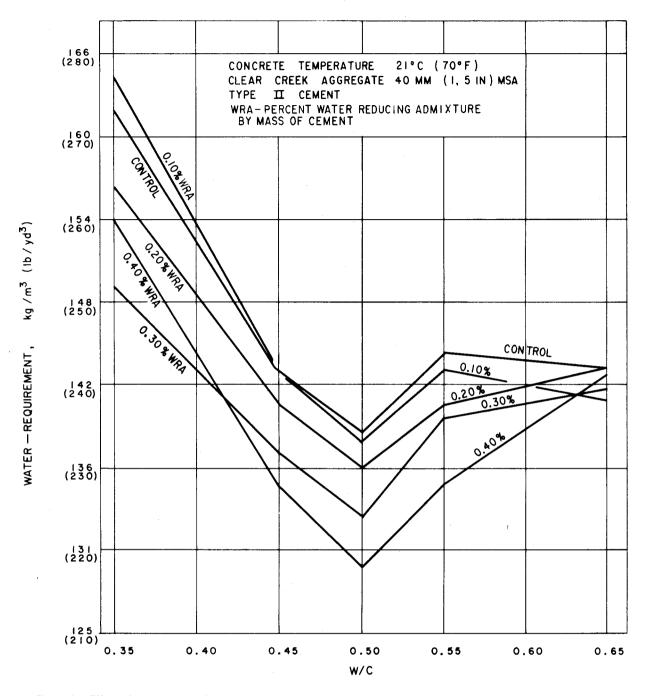


Figure 1.-Effect of water-cement ratio and admixture dosage on the water requirement. Water requirement is lowest at 0.50 W/C. Concretes with higher and lower W/C ratios have higher water requirements.

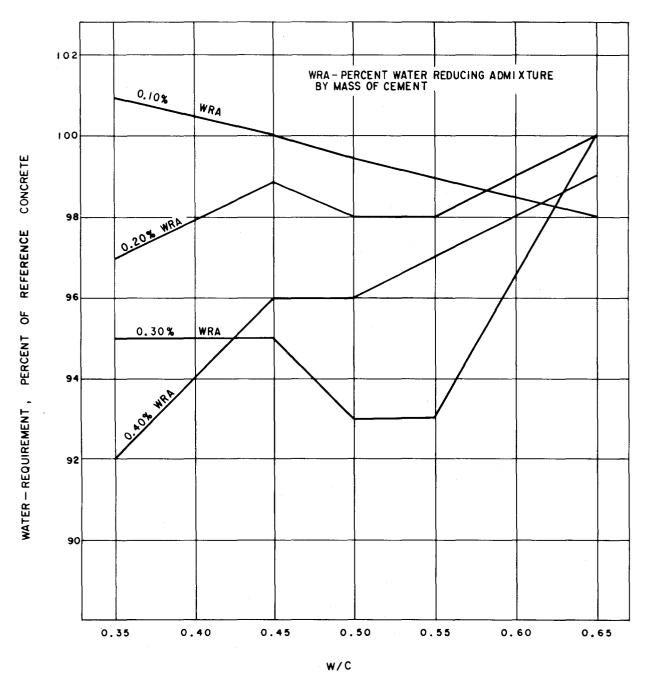
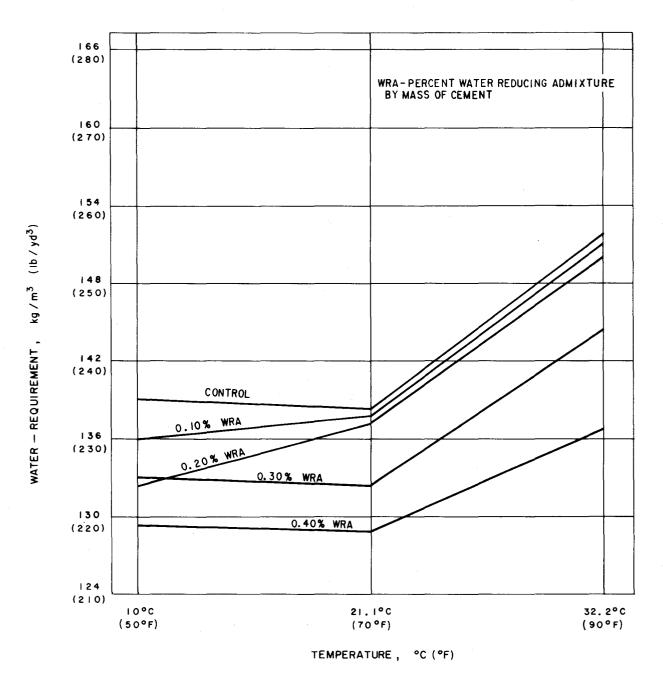



Figure 2.—Effect of water-cement ratio and admixture dosage on water reduction. With WRA additions of 0.20 percent or greater, the water reduction was greatest at W/C ratios less than 0.65. WRA's are of very little benefit at 0.65 W/C.

×

1:11

Figure 3.—Effect of temperature and admixture dosage on the water requirement. Water requirement rose 4.5 percent for each 5.5 °C (10 °F) rise in temperature between 21 and 32 °C. Between 10 and 21 °C the water required for a 75-mm (3-in) slump was unaffected.

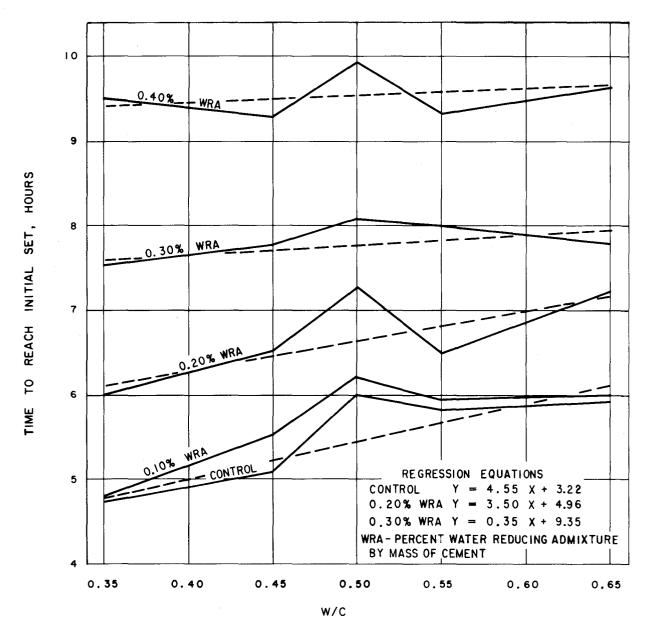
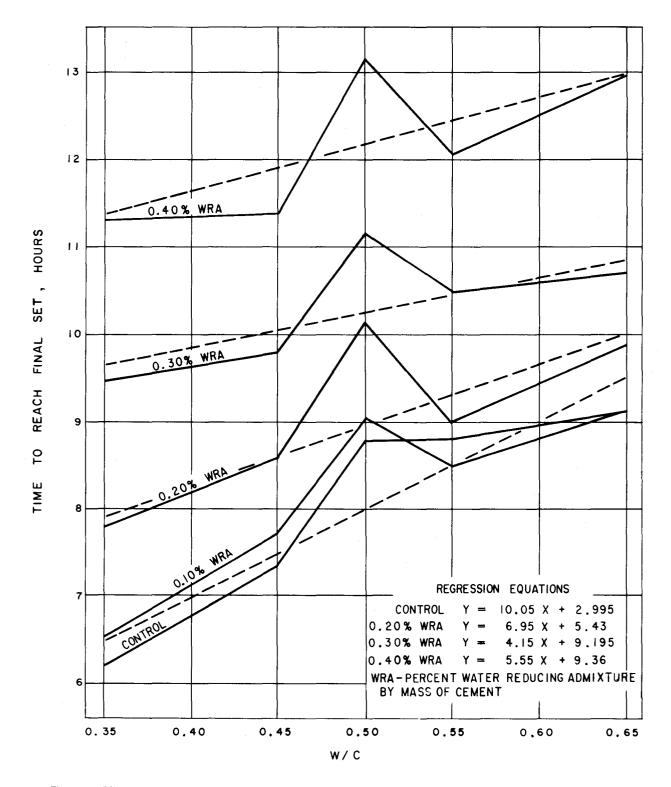
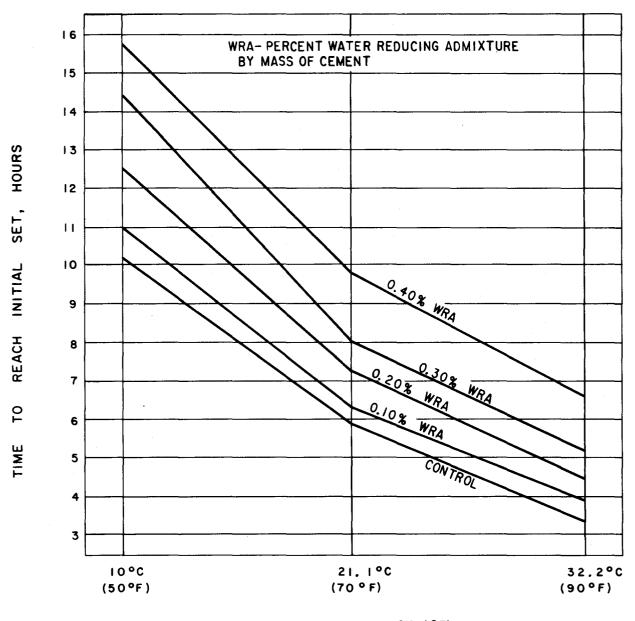
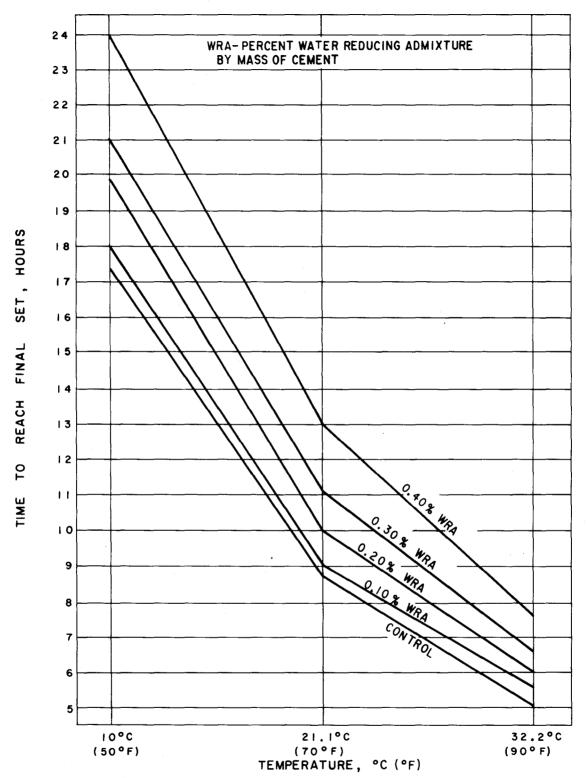


Figure 4. – Effect of water-cement ratio and admixture dosage on time of initial set. The group of concretes with W/C of 0.65 reached initial set later than concretes with lower W/C ratios. Omitting the 0.10 percent dosage, equal WRA increments produced slightly greater retardation at 0.35 W/C than at 0.65.

.....


Figure 5. – Effect of water-cement ratio and admixture dosage on time of final set. Groups of mixes with W/C of 0.65 reached final set later than mixes with lower W/C ratios. Omitting the 0.10 percent dosage, equal WRA increments produced greater retardation at 0.35 W/C than at 0.65. Trends shown by final set were more acute than those shown by the initial set.

TEMPERATURE, °C (°F)

Figure 6. — Effect of temperature and admixture dosage on time of initial set. When temperature increased from 10 to 21 °C and then to 32 °C, time to reach initial set was reduced by 4.25 and 2.50 hours at a 0.50 W/C. Equal increments of WRA produced greater retardation at 10 °C.

٠

1:00

Figure 7. – Effect of temperature and admixture dosage on time of final set. When temperature increased from 10 to 21 °C and then to 32 °C, time to reach final set was reduced 8.25 and 3.75 hours. Equal WRA increments produced greater retardation at 10 °C than at 21 °C or 32 °C.

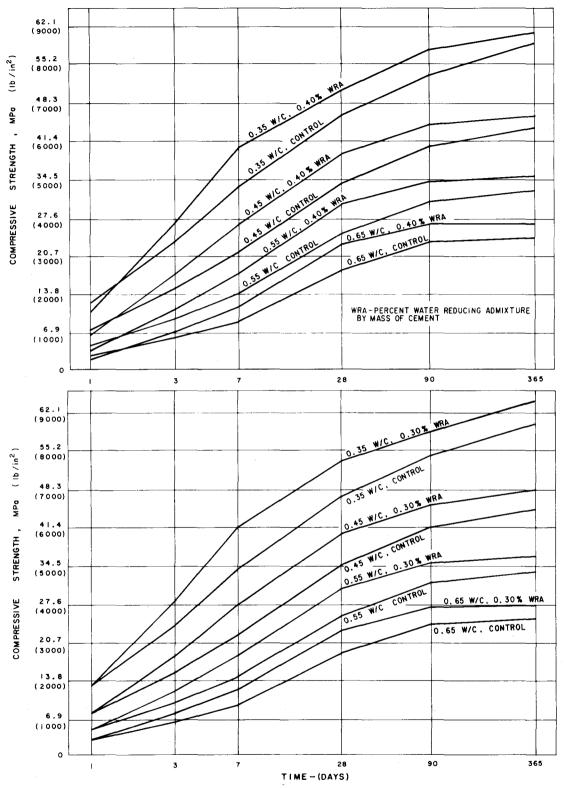
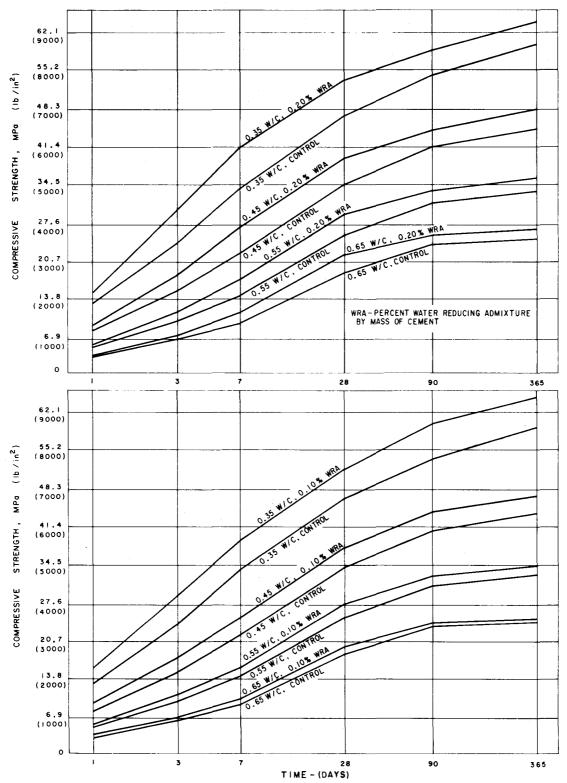



Figure 8.—Effect of water-cement ratio and admixture dosage (0.40 and 0.30 percent) on compressive strength development. Concretes with 0.30 and 0.40 percent WRA had lower strengths at 1 day and: (1) were higher at later ages than the control, (2) were more effective at lower W/C ratios; and (3) had the maximum effect at 7 and 28 days' age.

1:1131

......

Figure 9.—Effect of water-cement ratio and admixture dosage (0.20 and 0.10 percent) on compressive strength development. Concretes with 0.10 and 0.20 percent WRA had higher strengths at all ages and were more effective as the W/C ratio increased, maximizing at 7 and 28 days' age.

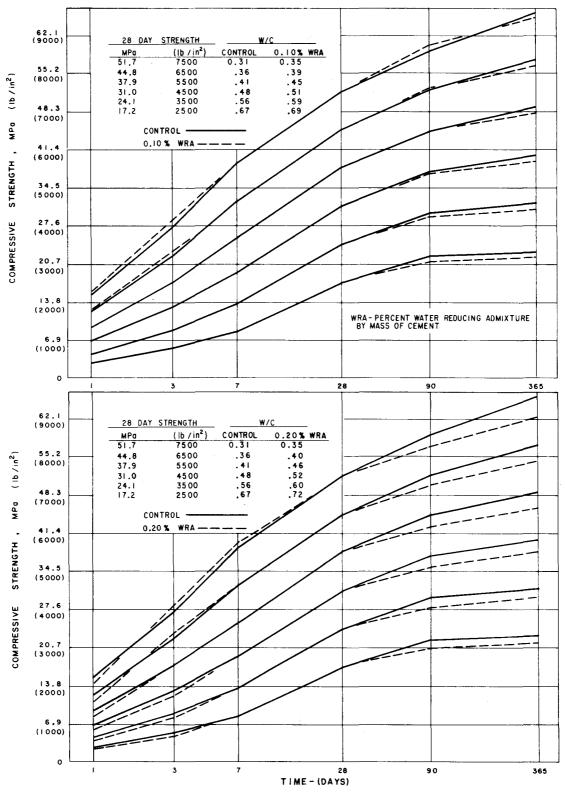
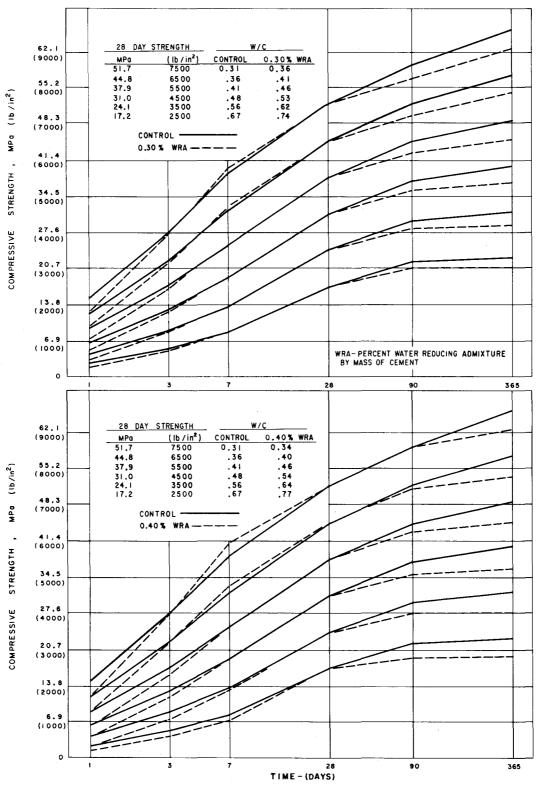



Figure 10. — Comparison of compressive strength development for control and admixture (0.10 and 0.20) concretes. Concretes made with WRA at W/C ratios sufficiently higher than the control to have the same 28-day strengths of 51.7, 44.8, and 37.9 MPa had lower strengths at 1, 3, 90, and 365 days' age. (exception, 0.10 percent WRA dosage).

1,1111

Figure 11.-Comparison of compressive strength development for control and admixture (0.30 and 0.40 percent) concretes. Concretes made with WRA at W/C ratios sufficiently higher than the control concrete to have the same 28-day strengths (51.7, 44.8, and 37.9 MPa) had lower strengths at 1, 3, 90, and 365 days' age.

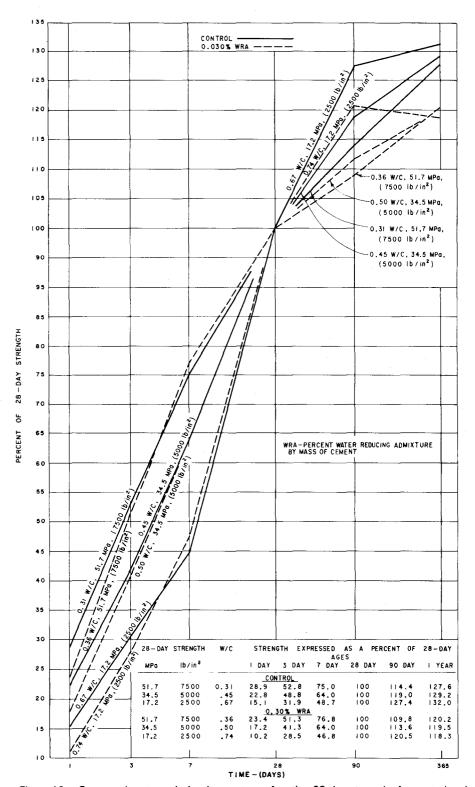


Figure 12.—Compressive strength development as a function 28-day strengths for control and admixture (0.30 percent) concretes. Strengths at 1, 3, 7, 90, and 365 days are an average of 22.3, 44.5, 62.6, 120, and 129.6 percent of their 28-day values for non-WRA concretes at 17.2, 34.5, and 51.7 MPa levels. For concretes containing 0.30 percent WRA, these values averaged 16.9, 40.4, 62.6, 114.6. and 119.3 percent.

GPO 835-503

A free pamphlet is available from the Bureau of Reclamation entitled, "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request to the Bureau of Reclamation, Engineering and Research Center, PO Box 25007, Denver Federal Center, Bldg. 67, Denver CO 80225, Attn D-922.