REC-ERC-79-7

GATE STROKING

Engineering and Research Center Bureau of Reclamation

July 1979

د..... ۲۰۰۰ - ۲۰۰۰

1. REPORT NO. 2. GOVERNMENT ACCESSION REC-ERC-79-7	ECHNICAL REPORT STANDARD TITLE PA(3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE	5. REPORT DATE
Gate Stroking	July 1979
Gate Stroking	
	6. PERFORMING ORGANIZATION COD
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.
H, T. Falvey	REC-ERC-79-7
P. C. Luning	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.
Engineering and Research Center	
Bureau of Reclamation	11. CONTRACT OR GRANT NO.
Denver, Colorado 80225	
	13. TYPE OF REPORT AND PERIOD
2. SPONSORING AGENCY NAME AND ADDRESS	COVERED
Same	
	14. SPONSORING AGENCY CODE
SUPPLEMENTARY NOTES	
Gate stroking consists of a series of continuous or desired water surface profile in a canal. The first of Bureau was on the Granite Reef Aqueduct, development of the technique is outlined and met on Bureau aqueducts are presented. Sufficient co application of the program to other aqueducts. The	bobyious application of gate stroking within the Central Arizona Project. The mathematical thods for treating the unique conditions found omputer documentation is provided to permit e technique can be applied either to the entire
Gate stroking consists of a series of continuous or desired water surface profile in a canal. The first of Bureau was on the Granite Reef Aqueduct, development of the technique is outlined and met on Bureau aqueducts are presented. Sufficient co upplication of the program to other aqueducts. The iqueduct or to the component reaches. If applied	obvious application of gate stroking within the Central Arizona Project. The mathematical thods for treating the unique conditions found omputer documentation is provided to permit e technique can be applied either to the entire d to the aqueduct, the output consists of both
Gate stroking consists of a series of continuous or desired water surface profile in a canal. The first of Bureau was on the Granite Reef Aqueduct, development of the technique is outlined and met on Bureau aqueducts are presented. Sufficient co application of the program to other aqueducts. The aqueduct or to the component reaches. If applied gate and pump schedules. When applied to reache to reache back the second state of the second state of the second gate and pump schedules. When applied to reache second state of the second state of the second state of the second state of the second state of the second state of the second gate and pump schedules. When applied to reache second state of the second state of the second state of the second state and pump schedules. When applied to reache second state of the second	bobvious application of gate stroking within the Central Arizona Project. The mathematical thods for treating the unique conditions found omputer documentation is provided to permit e technique can be applied either to the entire d to the aqueduct, the output consists of both es only, the set of gate schedules is produced. s/ *computer models/ pumps/ water surface analysis
5. ABSTRACT Gate stroking consists of a series of continuous or desired water surface profile in a canal. The first of Bureau was on the Granite Reef Aqueduct, development of the technique is outlined and met on Bureau aqueducts are presented. Sufficient of application of the program to other aqueducts. The aqueduct or to the component reaches. If applied gate and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined and pump schedules. When applied to reached by the technique is outlined is the technique is outlined and pump schedules. When applied to reached by the technique is outlined is the technique is outlined and pump schedules. The technique is outlined and pump schedules is the technique is outlined and pump sc	bobvious application of gate stroking within the Central Arizona Project. The mathematical thods for treating the unique conditions found omputer documentation is provided to permit e technique can be applied either to the entire d to the aqueduct, the output consists of both es only, the set of gate schedules is produced.
Gate stroking consists of a series of continuous or desired water surface profile in a canal. The first of Bureau was on the Granite Reef Aqueduct, development of the technique is outlined and met on Bureau aqueducts are presented. Sufficient co application of the program to other aqueducts. The aqueduct or to the component reaches. If applied gate and pump schedules. When applied to reache to reache back the program to other applied to reache application of the program to other applied to reache gate and pump schedules. When applied to reache back to reache to reache to reache back to reache to reache to reache to reache applied to reache to reache to reache to reache to reache applied to reache to reache to reache to reache to reache back to reache to reache to reache to reache to reache to reache applied to reache to reache to reache to reache to reache to reache to reache applied to reache	bobvious application of gate stroking within the Central Arizona Project. The mathematical thods for treating the unique conditions found omputer documentation is provided to permit e technique can be applied either to the entire d to the aqueduct, the output consists of both es only, the set of gate schedules is produced. s/ *computer models/ pumps/ water surface analysis iranite Reef Aqueduct, Arizona/ Salt-Gila istics

•

REC-ERC-79-7

GATE STROKING

by

H. T. Falvey

P. C. Luning

July 1979

Hydraulics Branch Division of Research and Division of Data Processing Engineering and Research Center Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION

ACKNOWLEDGEMENTS

Funds for this study were made available from the Central Arizona Project through coordination efforts by the E&R Center Automation Team. The careful review of this report and the continuous support by engineers in the Operations Division, Central Arizona Project is gratefully acknowledged.

> The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

Page

Introduction Summary and conclusion Analytical development	S							• • •				•		• • •			• •		• • •	• •	1 1 2
Basic equations Numerical method												•							•	•	2 5
Boundary conditions	•	•	•	•	•				•	•		•	•	•	•	•	•	•	•	•	5
Reach versus aqueduct Changes in prism cross	se	cti	on							•			•	•		•	•	•	•	•	5 6
TurnoutsGatesSiphons	•							•	•	•	•		•	•	•	•	•	•	•		7 7 8
Specifications constrai																				•	9
Method of utilization Validity of the program Program description .				•		•			•	•		•		•	•				•	•	10 11 11
Background Problem formulation Initial conditions Boundary conditions	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•			11 11 12 12
Discharge schedules Turnout schedules Pumps Gate positions				•	• • •	•		• • •								• • •		• • •		•	12 12 12 13 13 13
Physical descriptors Modular construction Output Development and strue Program details	ctu	Ire	of	: th	e p	rog	grar	n	•	•	• •			• • •	•		• • •	• • •	• • •	• • •	13 13 13 13 13 14
Bibliography	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15

APPENDIX

Gate stroking computer program listing		_					• ·					1	7
		•	•	•	•	•	•	•	•	•	•	•	

i

CONTENTS—Continued

FIGURES

Figure

1	Characteristic lines	
2	Computational regions	
3	Region 1	
4	Region 2	
5	Region 3	
-		
6	Interpolation scheme	
7	Region 4	
8	Region 5	
9	Dead-band operation with a pump	
10	Turnouts and change of cross-sectional area 6	
11	Computational method across pool boundaries	
12	Gate definition sketch	
13	Coefficient of free and submerged Tainter-gate discharge	
	for $r/a = 1.5$	
14	Discharge coefficient as a function of submergence 8	
15	Dead-band operation of gates	
16	Typical siphon layout	
17	Loss coefficients	

INTRODUCTION

The change from one discharge to another in open-channel flow always creates a disturbance in the water-surface elevation. The magnitude of the disturbance is related to the manner in which the change is accomplished. In some cases, the disturbances persist for long periods with large amplitudes. In 1969, Wylie [1]* developed a method to control the disturbances within certain limits. The objective of the method was to produce a predetermined variation in the watersurface elevation at one location in a canal pool by properly varying the boundary conditions at each end of the pool.

Since pool boundaries are usually gates, the technique of water-surface control is called "gate stroking." The term comes from a similar procedure used in closed conduits known as 'valve stroking." Although the term "stroking" as used in this context cannot be found in the dictionary, its definition can be implied from the several meanings commonly listed. Thus, stroking is "any of a series of continuous or discontinuous efforts to do, produce, or accomplish something, especially a successful result." Based upon its usage and the general meaning of stroking, gate stroking can be defined as, "a continuous or series of discontinuous gate motions which produce a predetermined watersurface variation in a canal."

Since the original paper by Wylie, the number of gate stroking applications has been minimal. O'Loughlin [2] and Gientke [3] are two of the few who have referred to application of gate stroking for specific installations. Perhaps one of the reasons there are not more applications is that gate stroking requires a scheduled type of operation with centralized control. The number of systems meeting this requirement is rather limited.

The first obvious application of gate stroking within the Bureau was on the Granite Reef Aqueduct, Central Arizona Project. This aqueduct consists of several canal reaches separated by pumping stations. The aqueduct is intended to be controlled by a computer-assisted remotecontrol system. It anticipated that all delivery schedules can be reasonably estimated several days in advance of the actual need for the water. In addition, the aqueduct is designed without any wasteways or reregulating reservoirs. When put into operation, the canal is to be operated at nearly the design capacity. Thus, there is very little margin for errors and the control of transients is a significant factor. These considerations coupled with a desire to minimize onpeak pumping costs led to the development of the gate stroking technique within the Bureau.

Wylie's original concept was followed very closely in the development which follows; however, provision had to be made to include structures like turnouts, siphons, and free flowing tunnels in the Bureau's computer program. In addition, a technique had to be developed in which the initial conditions were not always at steady state.

The purpose of this report is to outline the mathematical development; present the methods used in handling the unique conditions found on Bureau aqueducts; illustrate how the gate stroking is utilized; and provide sufficient documentation for the computer program, appendix A, so that it can be applied to other aqueducts.

SUMMARY AND CONCLUSIONS

Gate stroking is a series of continuous or discontinuous gate motions which produce a desired water-surface profile in a canal. The first obvious application of gate stroking within the Bureau was on the Granite Reef Aqueduct, Central Arizona Project.

The mathematical development of the technique is outlined and methods for treating the unique conditions found on Bureau aqueducts are presented. Sufficient computer documentation is provided to permit application of the program to other aqueducts.

The technique can be applied either to the entire aqueduct or to the component reaches. If applied to the aqueduct, the output consists of both gate and pump schedules. When applied to reaches only the set of gate schedules is produced.

The most nebulous relationship in the technique is the gate discharge equation. Additional research to better define the gate discharge coefficients is required.

^{*} Numbers in brackets refer to literature cited in the bibliography.

ANALYTICAL DEVELOPMENT

Basic Equations

Any computational scheme which calculates the unsteady water-surface profiles can be used with the concept of gate stroking. The method chosen by Wylie is the method of characteristics. Two computational schemes are used with the method of characteristics. These are (a) the grid of characteristics and (b) the method of specified time increments. The grid of characteristics method was chosen for use in the computer program. This method is more accurate because interpolation at the interior of the grid is avoided. Since the computations for each segment are performed independently of the other segments, the grid does not have to intersect specified points on the boundary. Thus, the usual problem of joining computations at a boundary, when using the grid of characteristics, does not arise in the gate stroking application.

The equations of motion and continuity in an open channel can be expressed as four particular total differential equations. These are:

$$\sqrt{\frac{gT}{A}} \frac{dy}{dt} + \frac{1}{A} \frac{dQ}{dt} + g(S - S_0) = 0$$

$$\begin{cases} (1) \\ C + \end{array}$$

$$\frac{dx}{dt} = \frac{Q}{A} + \sqrt{\frac{gA}{T}}$$
(2)

$$-\sqrt{\frac{gT}{A}}\frac{dy}{dt} + \frac{1}{A}\frac{dQ}{dt} + g(S-S_0) = 0$$

$$\frac{dx}{dt} = \frac{Q}{A} - \sqrt{\frac{gA}{T}}$$
(3)

where g = acceleration of gravity = top width of water prism 7 = cross-sectional area of water prism Α = flow depth y t = time 0 5 = discharge at section = friction slope So. = bottom slope = horizontal distance X

The first two equations are valid along the positive characteristic C^+ , figure 1. The last two are valid along the negative characteristic.

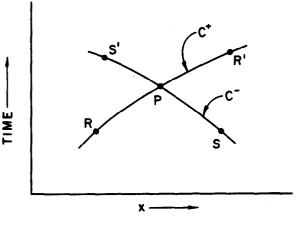


Figure 1.-Characteristic lines.

Using the notation of Wylie, the intersection point P presents a location at which the solution of the variables x, y, Q, and t is theoretically possible. If conditions are known simultaneously at either of the R and at either of the S points, then a numerical integration of the four characteristic equations will result in a solution of the variables at P.

Several computational schemes are used in the computer program. Each of these is dependent upon which combination of points R and S is known. The schemes can be related to specific regions in the x-t plane, figure 2.

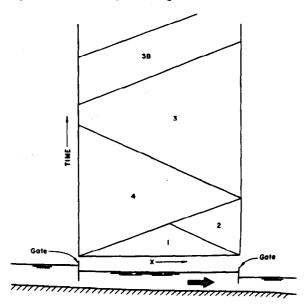


Figure 2.-Computational regions.

Each of the computational regions requires specific information from at least one of its borders. Each computational scheme then conveys information to the other borders. In general, borders occur along any time-distance line which borders a region, such as A-B, B-C. C-A, figure 3. Certain borders, however, have special significance. These occur at specific locations where depth variations are known or desired, and are known as boundaries. The canal segment between boundaries is called a "pool," The pool boundaries may or may not coincide with hydraulic barriers, such as gates. The canal segment between boundaries at which discharges are specified, is known as a "reach." Several pools may be contained within a reach.

The sequence of the computations for each of the regions which comprise a pool is described in the following paragraphs.

Region 1, figure 3.—The initial conditions, that is, depths and velocities along the entire length of the pool, must be defined at time equal zero. The variables at all points within the region can be determined by successively extending the grid forward in time. This region is also known as the domain of dependence since conditions within the region are uniquely determined by the conditions specified on one boundary. When the computations are completed, the value of the four variables will have been determined along the border A-B-C.

Region 2, figure 4.—In this region, conditions are known along the border A-B. At the point P, the value of the variable x is also known. However, to solve for the conditions at P using the positive characteristic, one additional variable must be specified. If the downstream boundary is a pump or a delivery point, the discharge will be specified. As will be seen later, if the boundary is a gate, the discharge will also be specified to maintain continuity. Therefore, along the boundary A-C, the discharge must be specified, whereas, time and depth will be determined. Interior points P_1 are computed from known values of R_1 and S_1 as was done in region 1. Upon completion of the computations. the values of all variables are known along the border B-C-A.

Region 3, figure 5.—This region is also a domain of dependence since the point P is determined from conditions given at the downstream boundary. Thus, along the boundary A-D, it is

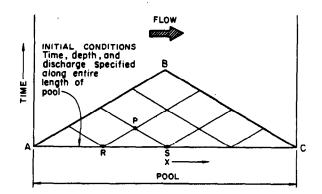
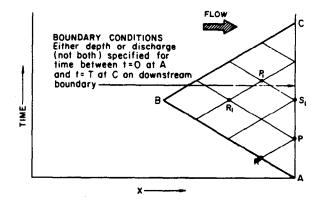
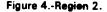




Figure 3.-Region 1.

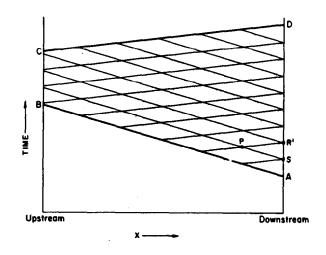


Figure 5.-Region 3.

necessary to specify all four of the variables. To be compatible with the solution from region 2, the values of the four variables at point A must be indentical with those at point C in region 2. The other boundary values along the line A-D are determined from the prescribed discharge and water level schedules. When the computations are finished, the conditions are known along the borders A-B and C-D. To determine the conditions along B-C an interpolation is necessary. The interpolation scheme used involves a linear interpolation between points on the positive characteristics which cross the boundary (A to B, fig. 6). This is different than the scheme used by Wylie [1] who interpolated between the points of the diamond shape formed by the grid which crossed the boundary (C to D, fig. 6). Neither method seems to have any particular advantage over the other.

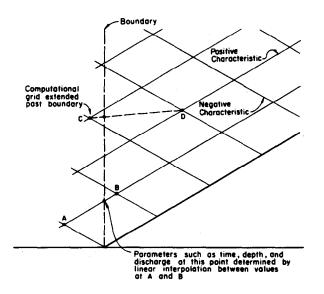


Figure 6.-Interpolation scheme.

The computations are extended in time, as required, (region 3B), by the same computational scheme used in region 3, figure 2. Region 3B has no theoretical significance. It is merely a device for extending the computations forward to an arbitrary time t without requiring additional computer memory when t is large.

Region 4, figure 7.—According to Wylie [1], this region is known as the domain of influence since it is influenced by the values of the conditions at point A. The computations proceed from known values on the borders A-B and C-A, when the computations have been completed, conditions along the boundary C-B will have been determined.

If the discharge at the upstream end of the most upstream pool is specified, then the depth in that pool cannot be specified. In this case, a fifth computational procedure has been provided, figure 8.

Region 5, figure 8.—In this region, the discharge is specified along boundaries A-D and B-C. The computations proceed in a fashion similar to those in region 3. However, at the downstream boundary B-C, distance and discharge as a function of time are known. This computational procedure is required only when the upstream boundary discharge is scheduled.

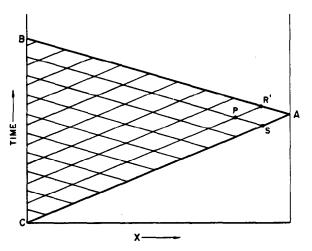


Figure 7.-Region 4.

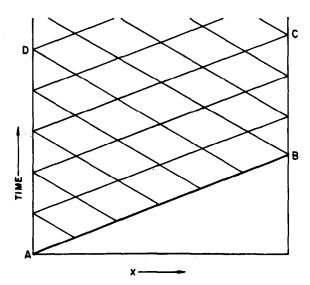


Figure 8.-Region 5.

Numerical Method

The four characteristic equations were integrated using the trapezoidal rule. The trapezoidal rule is given by

$$\int_{x_0}^{x_n} Y \, dX = \frac{h}{2} \left(Y_0 + 2Y_1 + 2Y_2 \right) + \frac{h}{2} \left(Y_0 + 2Y_2 + 2Y_2 \right) + \frac{h}{2} \left(Y_0$$

$$+ Y_n$$

where $h = X = X_1 - X_0$

 $... 2Y_{n-1}$

$$\int_{x_0}^{x_1} Y \, dX = \frac{h}{2} \, \left(Y_0 + Y_1 \right) \tag{6}$$

Applying this rule to the characteristic equations gives

$$\frac{g}{2}\left(\frac{1}{C_R}+\frac{1}{C_P}\right)(Y_P-Y_R)+(Y_P-V_R)+$$

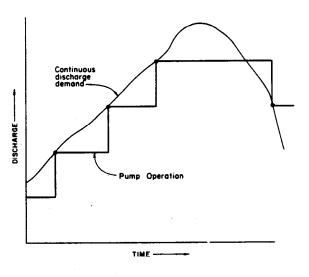
$$\frac{g}{2}(S_R + S_p - 2S_0)(t_p - t_R) = 0$$
(7)

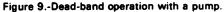
$$(X_{p} - X_{R}) = \left(\frac{V_{p} + V_{R}}{2} + \frac{C_{R} + C_{p}}{2}\right)(t_{p} - t_{R}) \quad (8)$$

$$-\frac{g}{2}\left(\frac{1}{C_{S}}+\frac{1}{C_{p}}\right)(Y_{p}-Y_{S})+(V_{p}-V_{S})+$$
$$\frac{g}{2}(S_{S}+S_{p}-2S_{0})(t_{p}-t_{S})=0$$
(9)

$$(X_{p}-X_{S})=\left(\frac{V_{p}+V_{S}}{2}-\frac{C_{p}+C_{S}}{2}\right)(t_{p}-t_{S}) \quad (10)$$

In these equations


$$C = \sqrt{\frac{gA}{7}}$$
(11)


BOUNDARY CONDITIONS

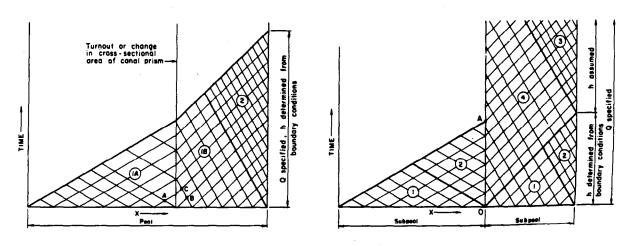
Reach Versus Aqueduct Computation

(5) The Granite Reef Aqueduct consists of several reaches separated by pumping stations. Each reach consists of several pools which are separated by control gates. Two methods of applying the gate stroking technique are possible. For one, the water level variations over an operating cycle within each reach are specified. In addition, the operation at each pumping station is specified. The other technique
(6) involves specifying water level changes at each pool in the entire aqueduct. Pumps are treated like gates having dead bands, figure 9. This type of operation could properly be called "pump stroking."

The difference between reach and aqueduct computations is mainly one of operating philosophy. If a pump and water level schedule are both specified, then the water level in at least one pool in a reach cannot be specified. That is, the

level in one pool must be allowed to seek its own level or "float." On the other hand, if only the water level variations and delivery schedules are specified, then the necessary pump schedules to achieve this can be uniquely determined. For the first case, the pump schedules are of primary importance and water level fluctuations in at least one pool must be tolerated. In the second case, water level fluctuations are controlled everywhere and the pumping schedule is the flexible component.

For a floating water level, the computations pass from a predictive to an analysis stage. The discharges at each end of the pool are specified and the water levels at the boundaries are calculated, figure 8. This computer program fails when there is a very small flow into the pool. As the water level drops, the wave celerity approaches zero. Since the reciprocal of the celerity is used in the method of characteristics, the range of permissible values for the variable may be exceeded in the computer with small flow depths.


Changes in Prism Cross Section

In the derivation of the characteristics method, it was assumed that the section was prismoidal in each pool. This assumption does not hold true if a change in cross-sectional shape occurs in the pool. For large changes in shape, the characteristic line which crosses the change can deviate greatly from a straight line (point A to point C, fig. 10A).

The exact solution of this case requires two additional equations for the characteristic which crosses the change in section. These are (1) an equation which defines the distance between the known point (A or B) and the change in section, and (2) an energy equation across the change in section. This requires that every step in the computational matrix of pools with changes in section be checked to determine whether a crossing has occurred. If one has occurred, then a set of six simultaneous equations must be solved using an iterative scheme. The iterations are necessary since the area, top width, and hydraulic radius at the unknown point C are functions of the unknown depth at that point.

If the cross-sectional changes are not too abrupt, the differences in the slopes of the characteristic at the change can be ignored. This approximation requires the solution of five simultaneous equations. Studies have not been performed to determine what constitutes a large change in section.

As an alternate approach, the pool can be divided into subpools. The computations in each subpool proceed as if each were a pool. The computations begin at the downstream subpool in which the depth must be assumed along the region 3 boundary, (fig. 10B). As a consequence, both the depth and discharge are determined just downstream of the change in cross section. If continuity of flow across the change is maintained, then application of the energy equation will yield the depths on the upstream side of the

A. Actual Characteristic Grid

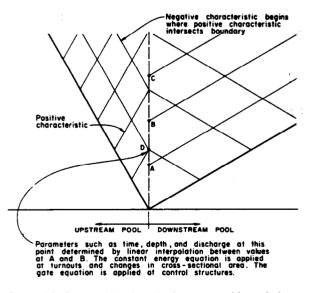

B. Simplified Computational Scheme

Figure 10.-Turnouts and change of cross-sectional area.

transition. These depths can be compared with the depths resulting from the upstream subpool computations of region 2. If the differences between the two are within acceptable limits, the depth variation assumed at the downstream pool boundary is acceptable. If the two are outside of acceptable limits, the downstream pool boundary depths must be respecified. Generally, rapid changes in water depths do not occur; therefore, iteration has not proven to be necessary.

The largest errors with this procedure develop at the last computation in region 2 of the upstream subpool, (fig. 10B). The effect of errors along the timeline O-A can be minimized by a relatively simple procedure. Using continuity of flow at the intermediate boundary, the flow depths are determined in the upstream subpool region 2. Then, using the energy equation across the intermediate boundary with known values of flow and depth from region 4 (and in some cases, region 3) a slightly different upstream flow depth is determined at the intermediate boundary in region 2. This depth based on energy considerations is substituted for that based on continuity considerations. A linear interpolation is required at the transition, (fig. 11), since the grid points from the downstream subpool regions 3 and 4 do not match with those from the upstream subpool region 2.

With the present program it has been assumed that the flow passes from one cross section to the other with no loss of energy. However, the energy equation could include a transition loss if desired.

Figure 11.-Computational method across pool boundaries.

Turnouts

The concepts developed for changes in cross section also apply to turnouts. In this case, the continuity of flow also includes the proper accounting for the turnout discharge. Theory and experiment indicate that the turnout flow does not affect the energy head [4]. Therefore, energy is assumed constant across the turnout.

Gates

The general form of the equation for flow under a free flowing radial (Tainter) gate can be obtained from Bernoulli's equation [5]. It is expressed as:

$$Q = C_{c}bB \sqrt{2g (\Delta_{.}y + V_{1}^{2}/2g)}$$
(12)

where C_c = Contraction coefficient

- b = gate opening
- B = gate width
- Δy = difference between upstream and downstream water depths

 V_1 = upstream mean velocity

g = acceleration of gravity

If the downstream depth exceeds the gate opening, the flow is said to be submerged. For this case, the equation must be modified to include losses that occur on the downstream side of the gate. It has been argued that the parameters C_c and $V_i^2/2g$ are governed by several linear terms which are characterized by the flow pattern [6]. Thus, it is possible to express the discharge as

$$\Omega = C_d b B \sqrt{2g y_1}$$
(13)

where C_d = Discharge coefficient y_1 = Upstream depth

The discharge coefficient is a function of the submergence y_2/b , trunnion height a/b, and upstream depth y_1/b ratios, (figs. 12 and 13).

The Corps of Engineers (7) uses the following form of the equation for submerged flow

$$Q = C_s B y_2 \sqrt{2g (\Delta y + V_1^2/2g)}$$
(14)

where C_s = Submerged discharge coefficient.

With this equation, the discharge coefficient varies linearly on a log-log scale from a value of 0.04 at $y_2/b = 20$ to 0.35 at $y_2/b = 2.5$. The effect of the radius of curvature of the sector

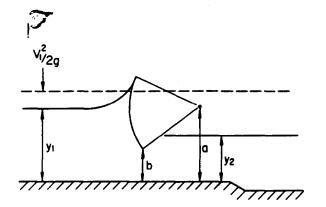


Figure 12.-Gate definition sketch.

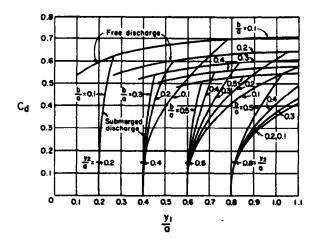


Figure 13.-Coefficient of free and submerged radial gate discharge for r/a = 1.5

which forms the gate and the trunnion height has not been systematically investigated for this form of the equation.

The equation used in the computer program is based upon the equation from the Corps of Engineers, using the gate opening instead of the downstream depth.

$$Q = CBb \sqrt{2g(\Delta y + V_1^2/2g)}$$
(15)

where C = discharge coefficient

$$= C_s y_2/b$$

Since the spread in the data is so large (fig. 14) detailed model studies of the specific structures are recommended. With detailed studies, the simpler form of the discharge relationship given by equation (13) should be used.

In current practice, it is impractical for a gate to follow the timewise change in openings that are specified by the gate stroking technique. Instead,

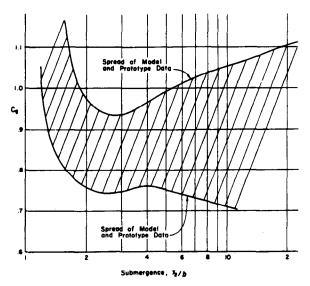


Figure 14.-Discharge coefficient as a function of submergence.

a dead-band type of operation is preferred. With this, a gate movement is initiated when the gate stroking predicts excursions which exceed the dead band. If this occurs, the time at which the gate motion should have started is calculated. This time is a function of the gate speed, (fig. 15). Future gate structure installations may include multi- and variable-speed gate motors. With these features the gates could follow the openings specified by the gate stroking technique more closely.

Siphons

Normally, siphons are located at the upstream end of a pool with a control gate located on the upstream end of the siphon, (fig. 16).

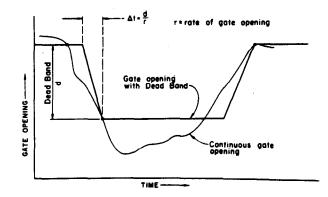


Figure 15.-Dead-band operation of gates.

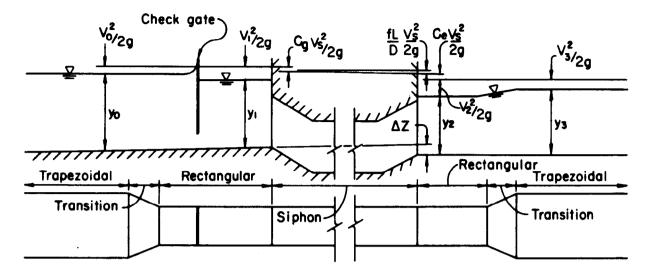


Figure 16.-Typical siphon layout.

The passage of a pressure wave through the siphon actually requires a finite length of time. However, if the wave travel time is small relative to the time steps used in the open channel portion, the siphon can be approximated with a lumped parameter. That is, it is only necessary to treat the siphon as an isolated loss which occurs with no time delays. The lumped parameter approximation is valid when

$$\frac{L}{a} < \Delta T$$

where L = siphon length

a = wave velocity

 $\Delta 7$ = computational time increment in open channel portion of conduit.

Normally, siphons are shorter than 2 km and wave speeds are of the order of 1000 m/s. These values indicate that the lumped parameter approximation is good for computational time increments exceeding 20 seconds in which ΔT exceeds the *L/a* ratio by an order of magnitude.

Ignoring inertial effects, the equation of motion for flow in the siphon is given by

$$\frac{V_1^2}{2g} + y_1 + z_1 = \frac{V_2^2}{2g} + y_2 + z_2 + KQ^2$$
(16)

where V = velocity

y = flow

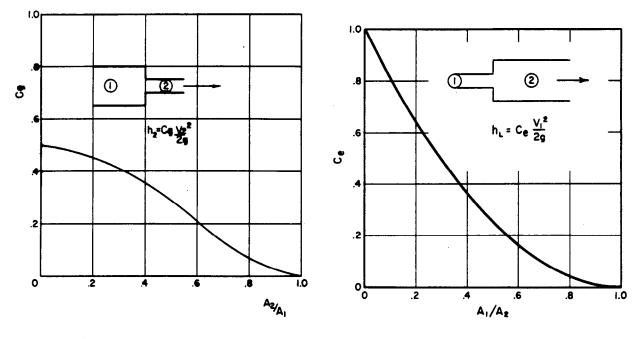
z = distance from datum

g = local acceleration of gravity

K = loss coefficient

The subscripts 1 and 2 refer to locations in the canal immediately upstream and downstream of the siphon, respectively. The loss coefficient includes all singular and frictional effects. It can be approximated by

$$K = \frac{1}{2gA^2} \left(\frac{fL}{D} + C_g + C_e \right)$$
(17)


where A = cross-sectional area of siphon

- f = Darcy-Weisbach friction factor
- L = siphon length
- D = equivalent hydraulic diameter of siphon = four times hydraulic radius
- C_g = contraction coefficient of entrant flow
- C_e = expansion coefficient of exit flow

The contraction and expansion coefficients can be accurately estimated from the ratio of the siphon area to the cross-sectional area of the respective water prisms using figure 17.

Specifications Constraints

With gate stroking, two boundary conditions are unknown (not specified) in each pool. These two unknowns are reduced to one, at boundaries that require a continuity of discharge. Based upon these two premises, it is possible to construct a series of general rules or constraints which define the computational procedures to be followed with gate stroking in canal reaches.

A. Contraction Coefficient

B. Expansion Coefficient

Figure 17.-Loss coefficients.

These are as follows:

- 1. In a reach there must exist at least one pool in which two conditions are specified (depth and discharge). This pool is defined as the pivot pool.
- 2. The computations start at a pivot pool and progress in both directions (upstream and downstream) away from the pivot pool. If the pivot pool is at the end of a reach, the computations progress in one direction only. The present program does not handle the condition of a pivot pool located other than at the end of a reach.
- More than one pivot pool can exist in a reach; however, for the entire reach, exactly N+1 conditions must be specified, where N = number of pools.
- 4. A region 5 computation (fig. 8) must be performed when the specified condition is at the far end of the pool from the direction in which the computations are preceeding.

METHOD OF UTILIZATION

The Gate Stroking Model is intended to be interfaced with two other types of programs. The first of these is a scheduling program which determines the desirable water-surface elevations and pumping schedules for the daily operation of an aqueduct. Two types of scheduling programs have been developed for the Central Arizona Project. These are the Constant Volume Model and the Water Power Optimization Model. The Constant Volume Model assumes that some target storage value can be maintained in each aqueduct pool during both onpeak and offpeak periods. The Water Power Optimization Model on the other hand varies the storage value in each pool to optimize the onpeak and offpeak pumping schedules.

The second type of program with which the Gate Stroking Model was intended to interface is an analysis program. The analysis program actually simulates the canal flow. For that reason, it is called the Aqueduct Simulation Model.

Since the Aqueduct Simulation Model contains detailed flow data concerning the aqueduct at

any point in time, it is used to obtain initial conditions for the Gate Stroking Model. Then a schedule of operations is developed for a subsequent time interval based on either the Constant Volume or the Water Power Optimization Model. This schedule of operations consists of changes in deliveries, possible pump operations, and specified water level fluctuations within the pools. Using this information, the Gate Stroking Model determines the gate and, in some cases, the pump schedules for the time interval under consideration. These schedules include both the gate openings and timing for the operation of the gates and pumps. Basically, the changes in flow rates through the pumps and gates should be continuous functions. However, in current practice, all of these changes actually take place in discrete amounts at discrete times. Therefore, it is necessary to determine the effects of the discrete operations through application of the Aqueduct Simulation Model to the time interval being considered. At the end of the interval the entire process is repeated. The scheduled time interval is one day in the case of the Granite Reef Aqueduct.

VALIDITY OF THE PROGRAM

As a check on the validity of the gate stroking program, the program was restructured to act as an analysis-type program. Several comparisons were made between the Aqueduct Simulation Model and the restructured Gate Stroking Model. It was found that the restructured Gate Stroking Model, using the grid of characteristics, converges to the steady-state conditions determined by the standard step method. Conversely, the method of specified time increments, as used by Shand [8], allows the water surface to drift rather than reach steady state. Depth differences from several tenths to over 0.3 m were found in the various comparisons.

The technique for restructuring the Gate Stroking Model was to make an initial estimate of depths downstream of gates, calculate the state variables in the pool upstream of the gate using that estimate, calculate the state variables in the pool downstream of the gate using the upstream values just calculated, recalculate the upstream pool using the new downstream values, etc. This process was continued until the water surface along the length of the canal stayed within some convergence limits from one iteration to the next. The technique is stable and generally requires from two to five iterations for convergence, depending upon the length of time modeled and the number and magnitude of gate movements. Unfortunately, for a canal of any length and for time periods of the order of a day, computer resource use can be significant. Investigations are being continued in an effort to improve the convergence of the technique.

PROGRAM DESCRIPTION

Background

The program (listed in appendix) determines the gate stroking schedules for a series of pools in a canal reach. If pools are separated by pumps, the pump schedules may either be determined or specified. The program is of a general nature and may be used to generate gate and, if desired, pump schedules for virtually any canal. Modifications were made to the program for the purpose of expediting a series of operations studies on Granite Reef and Salt-Gila Aqueducts, and separate versions of the program were used for those studies. The program description below pertains to the general version of the program.

The purpose of the program is to determine gate schedules which will produce desired boundary conditions (that is, depths and discharges) in a canal. The differential equations describing the flow apply to free surface flow in a prismatic canal section. Following Wylie[1], the method of characteristics is used to solve the equations within the interior of a computational segment. Abbott [9] gives an excellent description of the significance of characteristic functions as they pertain to the equations of state of water conveyance systems.

Problem Formulation

The present gate stroking technique has been formulated such that:

- 1. The computations proceed from one pool to another in an upstream direction.
- 2. Initial conditions along the entire length of the aqueduct must be specified.
- 3. At the downstream end of the most downstream pool:
 - a. The discharge must be specified for all time.
 - b. The depth must be specified for all time greater than one wave travel time in the pool.

- 4. At intermediate pools, the depth must be specified for time greater than one wave travel time in the pool.
- 5. To obtain a gate schedule for all pools it is necessary to project the most downstream pool depth and discharge schedules at least one wave travel time for the reach into the future. If pump stroking is involved, the most downstream pool schedules must be projected at least one wave travel for the entire length of the aqueduct.
- 6. The discharge at all intermediate pools is a dependent variable; that is, the discharge cannot be specified.

Initial Conditions

The state of the system must be described completely at some specific time, usually at a zero time reference. The system may be in a steady-state condition (all time derivatives equal to zero) or in an unsteady, or transient, condition. The program will accept initial conditions in any of three formats, individually for each pool. The formats differ only in the number of points at which the initial conditions are specified. The state variables, x (position along the length of the pool), y (water depth), and Q (water discharge quantity), may be specified at zero time at up to 40 equally spaced locations along the length of the pool.

If N = 1, the state variables must be specified at either end of the pool. A backwater calculation is then performed by the program to determine the state variables at 11 equally spaced points in the pool.

If $2 \le N \le 10$, linear interpolations of the state variables using the values at x_1 and x_n only are calculated at 11 equally spaced points in the pool.

If $11 \le N \le 40$, the values of the state variables provided by the user are accepted as the initial condition.

No checks are made at boundaries for consistency across boundaries.

Boundary Conditions

Depth schedules.—must be provided for the downstream boundaries of all pools. The program will accept schedules for a 48-hour period. If a depth schedule is not appropriate for a particular pool, that is, the most upstream pool in the reach or a pool with no control structure at its downstream end, the schedule will be ignored by the program. However, schedules must be provided for each and every pool. Depths are to be provided on the hour, and transitions from one depth to another are made linearly by the program. The specific format for input is described in subroutine READIT, which may be altered to suit the needs of the user.

Discharge schedules.---must be provided for the downstream boundaries of all pools. The discharge schedule at the upstream boundary of the most upstream pool must also be furnished to provide consistency with the input/output formats of the Constant Volume and Aqueduct Simulation Models. The program will ignore all but the most upstream and downstream schedules and will maintain discharge continuity throughout the length of the reach. Provision is made in the program to stroke the pumps at the upstream end of the reach or to stroke the gate which connects the reach to a reservoir. In these cases, the appropriate upstream discharge schedules will be ignored. Discharges are to be specified on the hour, and transitions from one discharge to another are made in one step at the time of change.

Turnout schedules.—must be provided for all turnouts. Turnouts are considered to be at the downstream ends of pools. They may occur separately or in conjunction with a control structure such as a check gate or siphon. The pool number, time of change of discharge (on the hour), and the change in discharge (positive discharge is outflow from the canal) are input for up to 48 discharge changes for each turnout. The initial turnout discharge is assumed zero, and the specified values are added to the current discharge at the specified times. No energy losses are considered at turnouts.

Pumps.—at the downstream end of the reach are treated as scheduled discharge devices. At the upstream end of the reach, pumps are treated as scheduled discharge devices if pump stroking is not employed.

With pump stroking, start and stop times for pumps within the reach are calculated using a dead band for discharge. That is, pumps will be started or shut down when the discharge change calculated by the program equals or exceeds the incremental discharge change specified for the pump in the physical descriptors for the pumps. Gate positions.—are determined using the gate equation which is

$$Q = C_{d} b B \sqrt{2g(y_{1} - y_{2}) + V_{1}^{2}/2g}$$

where C_d = discharge coefficient

- b = gate opening
- B = gate width
- V_7 = mean velocity in the rectangular section upstream of the gate
- y₁ = depth in the rectangular section upstream of the gate
- y₂ = depth in the rectangular section downstream of the gate

Gate movements are performed only when the calculated gate position has changed from the previous position by an amount equal to or exceeding the dead-band value for that gate. Gate structures are treated as having one gate. The width of the rectangular gate section is specified in the variable BOTGATE. Independent operation of multiple gates within a structure is not a feature of the program. This type of operation can be simulated, however, by modifying the discharge coefficient. The modified coefficient for single gate operation within a structure having multiple gates is given by

$$C_d^1 = \frac{C_d B_g}{B}$$

where B_g = bottom width of a single gate

Inverted siphons.—with or without control gates at the upstream end of the siphons are treated as zero length friction effects. The invert drop from the gate structure or siphon inlet to the siphon outlet and the friction loss factor are specified for each siphon.

Boundaries where no control structure is present.—(that is, changes in cross section, or turnouts) are treated as points at which no energy losses occur. Depths upstream of these boundaries are calculated using the energy equation.

Physical Descriptors

The constant descriptors of the reach, that is, stationing at pool ends, cross-section parameters, gate parameters, roughness, and siphon parameters, are set in DATA statements in the main program. Comment cards in the program describe the various parameters.

Modular Construction

The program has been constructed in a modular fashion. It is anticipated that expanded cap abilities will be easily accomplished by this approach. For example, circular sections were added by defining a circular pool type and adding the appropriate code in the area, top width, and wetted perimeter function routines.

Output

The output file is formated to be compatible for use as input to the Aqueduct Simulation Model.

Development and Structure of the Program

The gate stroking program was developed within rather severe time constraints to perform realtime operation studies for the Granite Reef and Salt-Gila Aqueducts. Previously published material dealt almost exclusively with techniques for the solution of the flow equations within a few computational segments. The equations of state and their solution for a system of pools present a challenge which is an order of magnitude greater than the problem of solving the open channel equations in a single segment. Some comments are appropriate concerning the general structure and the evolution of the present program.

The program is written in FORTRAN and is implemented on a CDC CYBER 74 computer system. Comment cards within the program explain the computational procedures. The assumption is made that anyone using the program will have a good understanding of free surface flow; an understanding of the various mathematical techniques encountered in the solution of the equations of state of the system; and a reasonable, but not expert, understanding of digital computing techniques. Within this framework, the program may be utilized to assist in the investigation of flow characteristics of virtually any canal configuration.

The program does not contain coding to accommodate all possible structures found in all canals. It also does not handle all possible canal cross sections. However, the modular structure of the program enables the user to add new structure types and pool types in a straightforward fashion. Likewise, from the multitude of possible operational philosophies for a canal, one was chosen as appropriate for the Granite Reef

Aqueduct, and that one was implemented in the program. The philosophy chosen is that pump schedules are predetermined at both ends of the reach and the most upstream pool in the reach will be uncontrolled with respect to depth variations. The same computational techniques can be used to "float" the downstream pool by calculating in a downstream direction or to pivot on an interior pool and calculate both upstream and downstream of that pool. The modular construction of the program allows the user to implement these schemes in a relatively straightforward fashion. Provision was also made for stroking the most upstream control structures. The input and output for the program are contained in the routines READIT and WRITEIT and may be modified easily to suit the user.

Various techniques were investigated for the treatment of the system at control structures and turnouts. The generalized program evolved out of experience gained with these various techniques. Some observations relative to the evolution may be beneficial.

Since turnouts generally divert only a small portion of the total discharge, the program used for the Granite Reef study merely adjusted the discharge within a computational segment when a characteristic crossed the turnout location. This treatment appears adequate when the turnout diversion is small and when the turnout is not near the control structures at the ends of the pool. The advantage of this technique is that depth continuity is maintained at a turnout location for all time. If the turnout discharge were a large percentage of the total discharge, a simultaneous depth correction could be made at the turnout using the energy equation. Difficulties in making the proper discharge correction were encountered when the turnout fell between a boundary and the grid point upstream or downstream of the boundary. Since the method of characteristics is stable for rather large time increments and, consequently, the x spacing of grid points can be rather large, the chance for a turnout between a boundary and the next grid point is fairly high. Thus, for the Salt-Gila study and the general program, turnouts are treated as boundaries. The disadvantage of this approach is that depths at the turnout for one wave-travel time in the upstream pool are not calculated identically in the upstream and downstream pools. Apparently, serious discrepancies do not occur for normal operation schemes. The energy equation is used to calculate a corrected depth

across the turnout so the effect of large diversions is minimized.

As was discussed earlier, various equations have been used to describe the state of a canal system at gate structures. Mathematically, flows through the gates can be very sensitive to small differences in depths on the upstream and downstream sides of the gates. Accordingly, convergence criteria for the various iterative schemes in the program should be examined using the gate parameters particular to the system under investigation. An adequate compromise between program run times and longterm stability of the solution must be reached. For self-consistency, identical methods of computing the discharge through gates should be used in both the gate stroking and the Aqueduct Simulation Model programs. For this reason, equations more closely approximating the equations in Shand's [8] program were used in the Granite Reef and Salt-Gila versions of the gate stroking program. Due to the finite number of gate movements and different computational techniques, differences will occur between the predicted and "actual" water surfaces and discharges, even with identical physical parameters and gate equations. These differences should, however, be small. Large differences if they occur, can be attributed to interpolation errors in one or both of the programs.

Program Details

The equations upon which the coding is based are described in the preceding sections. The friction slope is computed using English customary units. The conversion to SI metric units can be accomplished by deleting the constant 1.49 in Subprogram S and by changing the value of the gravitational constant GGRAV to metric units.

- The purposes of the subroutines and function subprograms are as follows:
- PROGRAM GSM Main calling program. Canal parameters are input through DATA statements located in this program
- SUBROUTINE READIT Routine to read in discharges, depths, turnout schedules, and initial conditions
- SUBROUTINE STROKER Routine to solve gate stroking problem for free surface flow
- SUBROUTINE SOLVER Routine to solve for x, t, Q and y at point P using values at point R on positive characteristic and values at point S on negative characteristic

FUNCTION C - Function to calculate wave celerity

FUNCTION R - Function to calculate hydraulic radius

FUNCTION A - function to calculate cross-sectional area in trapezoidal, horseshoe, or circular channels

FUNCTION TW - Function to calculate top width in trapezoidal, horseshoe, or circular channels

FUNCTION S - Function to calculate energy slope using Manning's equation

FUNCTION P - Function to calculate wetted perimeter in horseshoe, trapezoidal, or circular channels

SUBROUTINE BOUNDARY - Calculates t, Q, and y at an upstream boundary and t and y at a downstream boundary

- FUNCTION HDN Function to determine downstream boundary depth
- FUNCTION QDN Function to determine discharge boundary condition at downstream end of pools
- FUNCTION QUPST Function to specify discharge at upstream end of most upstream pool
- SUBROUTINE TRNOUT Routine to specify turnout discharge
- SUBROUTINE GATEMO Routine to calculate gate openings and pump schedules
- SUBROUTINE GATEY Routine to calculate depth in gate section from channel depth
- FUNCTION CD Routine to calculate discharge coefficient as a function of gate opening to upstream depth ratio
- SUBROUTINE FOLOWER Routine to follow stroking motions to determine start times and final positions of gates and pump schedules
- SUBROUTINE WRITEIT Routine to merge turnout, gate, and pump schedules into input file for unsteady model

BIBLIOGRAPHY

- Wylie, E. B., "Control of Transient Free-Surface Flow," Journal of the Hydraulics Division, American Society of Civil Engineers, Vol. 95, No. HY1, p. 347-361, January 1969.
- [2] O'Loughlin, E. M., "Application of Unsteady Flow Analysis to Operation Decisions in Long Aqueducts," International Commission on Irrigation and Drainage, Eighth Congress, Bulgaria, R. 16, p. 28.2.207-28.2.223 1972.
- Bulgaria, R. 16, p. 28.2.207-28.2.223 1972. [3] Gientke, F. J., "Transient Control in Lower Sacramento River," Journal of the Hydraulics

Division, American Society of Civil Engineers, Vol. 100, No. HY3, p. 405-424, March 1974.

- [4] Chow, V. T., *Open-Channel Hydraulics,* McGraw-Hill, p. 328, 1959.
- [5] Ippen, A. T., "Channel Transitions and Controls," *Engineering Hydraulics*, edited by H. Rouse, p. 536, 1950.
- [6] Metzler, D. E., "A Model Study of Tainter-Gate Operation," M.S. Thesis, Iowa State University, Ames, 1948.
- [7] U.S. Army Engineer Waterway Experiment Station, "Hydraulic Design Criteria," Chart 320-8, 1959.
- [8] Shand, M. J., "Final Report Automatic Downstream Control Systems for Irrigation Canals," Hydraulic Engineering Laboratory, College of Engineering, University of California, Berkeley, Report HEL-8-4, August 1971.
- [9] Abbott, M. B., An Introduction to the Method of Characteristics, American Elsevier, New York, 1966.

APPENDIX

Gate Stroking Computer Program Listing

1

ł

	PROGRAM GSM	74/74	OPT= 1		FTN	4.6+428	79/0
1	т	APE4=64, TA		TPUT=64,TAPE1= 6=64,TAPE8=64, Ogram		, TAPE3=64,	
5	C PAPER C JAN C DIVISI	CONTROL O 1969, PROC	F TRANSIENT	IS TAKEN FROM Free-Surface Ournal of the	FLOW IN		
10	C THE GR C 1.49 I	AVITATIONA N MANNINGS	N IN SUBPR	NITS GGRAV, AND TH Ogram S are th Conversion			
15	C METRIC C USED,	CONVERSIO	N, AS FORMA	AY BE AFFECTED T F10.3 IS GED ECK AND SEE TH UNDING	NERALLY		
20	C THE PRO C DEPTH C The IN C Change C Have T	SCHEDULES PUT IS IN D. THE OU	AT 0, 0700 Routine Rea Tput is in	UT PUMP SCHEDU And 2300 Hours DIT, And May H Routine Write The Users Requ	AVE TO BE		
25	C TAPE2 I C Tape3 I	S INTERMED S INPUT FI	IATE T AND LE CONTAINI	D Ý FILE AT PO Gate Opening I Ng Pump, depti O Overlay comi	FILË H AND TURNOU		
30	Ć TAPĒĞ Ī C Tapeb 1 C in C in C tapeg 1	S OUTPUT F S INPUT FI UNSTEADY S OUTPUT F	ILE CONTAIN LE CONTAINI Model forma ILE IN UNST	TIME AND GATE Ing program MI Ng Initial Con T Eady Model Fon	ESSAGES TO UNDITIONS	ISER	
35	Č Co Co Physica N		RS RAV, PI, BOTT	OM(50),SIDSLO			
40	C WORKING . T . S	51).DEDBAN VARIABLES MAX,XEND,T TAEND(50),	D(51),NGÀTE INC,NXINC,N T1,Y1,STUDY	YFONDY(50),SYI S,GATECO(11,51 POOLS,IPOOL,T1),DSINVT(50),USINVT(51),	
45	. U . T C RE	MAXI, NUMTR Al'NMANN, M	WNSTA(50),N NS,USRES,DS ANN			PE(51)	
50	C C SCRATCH C TO KEEP	AREA TO B Memory WI Mmon /Scra	E OVERLAID Thin some s TCH/	STRTYPE,STUDY IN THE VARIOUS ORT OF REASON	S SUBROUTINE Able bound		
55	. 0	SCHED (48 , 5 UMMY 1 (7169	0),XINIT(40	.YSTART(40,50)),YINIT(40),Q)			

19

.

.

FTN 4.6+428

79/01/09. 14.41.14

PAGE

· •

PAGE 2

.

	EQUIVALENCE (SCRATCH(1),NDX(1)) C
60	C STUDY TELLS THE PROGRAM IF THE MOST UPSTREAM
	C STRUCTURE, EITHER A PUMP OR A GATE, IS TO BE
	C STROKED OR NOT C Study=1 is no stroking (0 is scheduled)
	C STUDY=2 IS STROKING
65	DATA (STUDY=2)
	C POOLS ARE NUMBERED FROM DOWNSTREAM TO UPSTREAM IN THE REACH
70	C ARRAYS ARE DIMENSIONED FOR 50 POOLS C Arrays are dimensioned for 40 grid points per pool
	C RRATS ARE DIMENSIONED FOR TO GRID FOIRTS FER FOOL
	C SET MAX TIME FOR THE REACH
	C MAX TIME MUST BE AT LEAST STUDY TIME (USUALLY 24 HOURS) C plus wave travel time for the reach
75	C TIME IS IN SECONDS
	DATA (TMAXI=19600.) C STATIONING AT UPSTREAM ENDS OF POOLS
	C ARRAY IS UPSTA(POOL)
	DATA (UPSTA=270494.4,234854.4,198105.6,162148.8,134270.4
80	. ,45+0.0) C stationing at downstream ends of pools
	C ARRAY IS DWNSTA(POOL)
	DATA (DWNSTA=304972.8,270494.4,234854.4,198105.6,162148.8
85	. ,45+0.0) C NUMBER OF POOLS IN THE REACH
	DATA (NOPOOLS=5)
	C TYPES OF POOLS C Pooltyp=0 this pool Not used
	C POOLTYP=1 TRAPEZOIDAL CHANNEL
90	C POOLTYP=2 HORSESHOE TUNNEL
	C POOLTYP=3 CIRCULAR TUNNEL / C Array is pooltyp(pool)
	DATA (POOLTYP=5+1,45+0)
95	C MANNINGS N C Array Is Mann(Pool)
33	DATA (MANN=5+0.016,45+0.0)
	C BOTTOM SLOPE - SO
	C ARRAY IS BOTGRAD(POOL) DATA (BOTGRAD=5+0.00008.45+0.0)
100	C STRUCTURE TYPES AT UPSTREAM ENDS OF POOLS
	C ARRAY IS STRTYPE(POOL) C Strtype(51) IS most downstream structure
	C STRTYPE=0 POOL NOT USED
	C STRTYPE=1 PUMP
105	C STRTYPE=2 NORMAL CHECK GATE C Strtype=3 Syphon with Check gate
	C STRTYPE=4 SYPHON WITH NO CONTROL STRUCTURF
	C STRTYPE=5 NO CONTROL STRUCTURE
110	DATA (STRTYPE=3+2,3,2,45+0,2) C Trapezoidal Channel Properties - Bottom Width and Sideslope
	C SIDESLOPE=0.0 GIVES A RECTANGULAR SECTION
	C DATA (BOTTOM=5+24.0,45+0.0)
	DATA (SIDSLOP=5+1.5,45+0.0)

50

.

•

115	C CHECK GATE PROPERTIES
	C POOL NUMBERING IS D/S TO U/S
	C GATE IS AT U/S END OF POOL
	C PARAMETERS FOR GATE AT D/S END OF REACH IN ARRAY(51)
	C
120	C SET UPSTREAM AND DOWNSTREAM CONSTANT LEVEL
	C RESERVOIR DEPTHS IF GATES AT U/S OR D/S ENDS OF REACH
	DATA (USRES=16.0), (DSRES=14.0)
	C CHECK GATE BOTTOM WIDTH
125	DATA (BOTGATE=5+36.0,45+0.0,36.0)
	C GATE MOTOR SPEED
	DATA (SPEED=5+0.75,45+0.0,0.75)
	C GATE MOTION DEADBAND
	DATA (DEDBAND=5+0.5,45+0.0,0.5)
130	C INVERT DROP FROM GATE SECTION TO CHANNEL ON D/S SIDE OF GATE
	C IF SYPHON. LUMP INVERT DROPS ON D/S SIDE IN SYFONDY BELOW
· · · · ·	C IF GATE AT D/S END OF REACH, DEPTH IN DSRES IS IN
	C GATE SECTION - NO D/S INVERT DROP OR SYPHON PARAMETERS ARE
	C INPUT FOR THAT GATE
135	DATA (DSINVT=3+0.1,0.0,0.1,45+0.0)
	C INVERT DROP FROM CHANNEL TO GATE SECTION ON U/S SIDE OF GATE
	C IF GATE AT U/S END OF REACH, DEPTH IN USRES IS IN
	C GATE SECTION - NO U/S INVERT DROP IS INPUT FOR THAT GATE
	C U/S INVERT DROP IS ALLOWED FOR GATE AT D/S END
140	C OF REACH, IF ANY
	DATA (USINVT=50+0.0,0.0)
	C GATE COEFFICIENTS
	C ARRAY IS GATECO(1-11,POOL)
	C SEE ROUTINE GATEMO FOR THEIR USE IN GATE EQUATION
145	DATA (GATECO=
	7168867 <u>.</u> 655645644659693.
	756, .862, 1.019
	. ,,71,.688,.67,.655,.645,.644,.659,.693,
	756, .862, 1.019
150	, , 71, .688, .67, .655, .645, .644, .659, .693,
	756, .862, 1.019
	. ,.71,.688,.67,.655,.645,.644,.659,.693,
	756,.862,1.019
155	. ,.71,.688,.67,.655,.645,.644,.659693,
133	756,.862,1.019
	. ,495+0.0
· ·	756862,1.019) C PUMP PARAMETERS
160	C PUMPDQ(POOL) IS DISCHARGE INCREMENT FOR PUMPS AT U/S END OF POOL
100	C USED IN ROUTINE FOLOWER TO DETERMINE PUMP SCHEDULES
	C PUMPDQ(51) IS AT D/S END OF REACH
	DATA (PUMPDQ=4+0.0,125.,45+0.0,125.)
165	C TUNNEL PROPERTIES
	C RADIUS IS HEIGHT OF TUNNEL, INVERT TO CREST, FOR HORSESHOE TUNNEL
	C RADIUS IS RADIUS OF TUNNEL FOR CIRCULAR TUNNEL
	C ARRAY IS RADIUS(POOL)
	DATA (RADIUS=50+0.0)
170	c c c c c c c c c c c c c c c c c c c
	C SYPHON PARAMETERS

74/74 OPT=1

21

.

.

.

PROGRAM GSM

PAGE 3

79/01/09. 14.41.14

FTN 4.6+428

	PROGRAM GSM	74/74	OPT=1	F	TN 4.6+428
		S ARE SYFON	DY(POOL) AND SYFNLOS	(POOL)	
175		ATA (SYFOND	Y=3+0.0,3.24,0.0,45+0	0.0)	
		ATA (SYFNLO	S=3+0.0,3.21E-7,0.0,4	45+0.0)	
	C TURNO	UTS CAN BE	AT D/S END OF ANY POU TS IN THE REACH	DL	
180		ATA (NUMTRN			
	C	ATA (GGRAV=	32.2),(PI=3.1415927)		
185	R	EWIND 6 EWIND 1			
	R	EWIND 2 EWIND 3			
190	R	EWIND 4 EWIND 5 EWIND 8			
190		EWIND 9			
	C READ I	N FLOWS, DE NITIAL COND	PTHS AND TURNOUT SCH	EDULES	
195		ALL READIT			
	C 5 MIN		T FOR CALCULATIONS A STAYS IN ARRAY LIMIT		IN SECONDS)
200		INC=300.			
	· · · · · · · · · · · · · · · · · · ·	POOLS=NOPOO		00 0001 8	
205		O 10 I=1,NP		UK FUULS	
205	5	TAEND(I)=DW			
	C SET M	XINUM CALCU	LATION TIME FOR THE COMPUTE TIME	REACH -	
210	C SOLVE	MAX=TMAX1 FOR EACH PO			
	t	0 100 I=1,N	EED IN UPSTREAM DIRE Pools	CTION	
215	C SET PO	POOLFI OL LENGTH A	ND TYPE IPOOL)-STABEG(IPOOL)		
	1	YPPOOL=POOL			
220	C HSCHE		TH SCHEDULE		
	C SCHEDI	ULE IS FOR 4	B HOURS		
	20 (1(J)=HSCHED(CONTINUE	J,IPOOL)		
225	C CALCUI	ATE BACKWAT	REMENTS ALONG LENGTH Er curve if only one	POINT IS GIV	EN -
	C THE I	ION-ZERO VAL The backwate	UE FOR Y MAY BE AT E R Curve Will be calc	ULATED TO THE	OTHER END

2 2

.

.

79/01/09. 14.41.14

•

.

PAGE

.

	PROGRAM	GSM	74/74	OPT=1		FTN 4.6+428	79/01/09.	14.41.14
			NXINC=NDX(IP	000				
230					DESIRED, FOR 11 PC	DINTE IN DOOL		
			TEINXINC.EQ.	2. AND. VSTART/	1,IPOOL).EQ.0.0) (CALL BARWATD(A)		
			TEINYING EO	2 AND VSTADT	2,IPOOL).EQ.0.0) (CALL DARWAIR(1)		
	1	C LINE	AR WATER SURF	ACE IF LESS 1	HAN 11 POINTS	CALL DANNAIR(2)		
					WAS SET TO 11			
235				11) GO TO 40	WHO SET TO TT			
			WRITE(6,9000					
					XSTART(1, IPOOL)			
					YSTART(1, IPOOL)			,
					QSTART(1, IPOOL)			
240	4	C LINE			TO XEND IN 10 EQU	UAL STEPS		
			DO 30 L=2.11					
			FL=L-1					
				OL)=XSTARŤ(1.	IPOOL)+FL+DELX/10.	.0		
					IPOOL)+FL+DELY/10.			
245			QSTART(L, IPC	OL)=QSTART(1,	IPOOL)+FL+DELQ/10	.0		
		30	CONTINUE					
			NXINC=11					
			NDX(IPOOL)=1	1 -				
		40	CONTINUE					
250		C CHEC	K THAT ARRAYS	ARE NOT OVER	RUN			
			WRITE(6,9010) NXINC				
			IF(NXINC.GT.					
		C MEAS			M END OF POOL			
			DO 50 L=1,NX					
255					STABEG(IPOOL)			
			YINIT(L)=YST	• • • • • •				
			QINIT(L)=QST	ART(L, IPOOL)				
		50	CONTINUE					
260) XINIT(1),XI	NIT(NXINC)			
200			XINIT(1)=0.0					
			XINIT(NXINC)				×	
	1	L SAVE	COMMON ON TA		CD) 1000-4 0454			
) (SCRAICH(13	CR),ISCR=1,8450			
265			REWIND 4 /E THIS POOL					
		5 3011	CALL STROKER	,				
			LIEVE COMMON F					
					R), ISCR=1,8450)			
			REWIND 4	(3000100(130	R),13CR=1,6450)			
270			WRITE(6,9020	1 19001				
		100	CONTINUE	/ 1/001				
			REWIND 1					
	(ENINGS AND PU	MP DISCHARGES FOR			
			CALL GATEMO			LA HOOR PERIOD		
275		C CALC		VEMENTS FROM	GATE OPENINGS AND	CALCULATE DUMP		
			CALL FOLOWER					
	(C OUTP	UT CALCULATED	DATA FOR UNS	TEADY MODEL INPUT			
			CALL WRITEIT					
			WRITE(8:9050)				
280			REWIND 6	•				
			REWIND 9				•	
			STOP					
	(C FORM	ATS					
		9000	FORMAT(1X,43	HINTERPOLATIN	G WATER SURFACE FR	ROM END POINTS)		
285		9010			H MAX ALLOWED IS			
						•		

•

١,

MAGE 5

9020 FORMAT(1X,8HEND POOL,15/) 9030 FORMAT(5020) 9040 FORMAT(1X,6HXINIT=,2F10.2) 9050 FORMAT(1X,18HNORMAL TERMINATION) END

.....

r

.

.

) 1

· .

79/01/09. 14.41.14

PAGE 1

ŧ

1	SUBROUTINE BAKWATR(ICHOOSE)
•	C ROUTINE TO CALCULATE INITIAL BACKWATER CURVES
	C GIVEN DOWNSTREAM Y AND Q (ICHOOSE=1)
	C OR UPSTREAM Y AND Q (ICHOOSE=2)
5	C SECOND ORDER RUNGA-KUTTA METHOD ON
	C DY/DX=(S0-S)/(1-Q**2*T/A**3*G)
	DIMENSION X(40)
	COMMON /ALL/
	C PHYSICAL PARAMETERS
10	NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51).
	. MANN(50),BOTGRAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ
	. (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
	C WORKING VARIABLES
	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
15	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51),
	. TMAXI, NUMTRNS, USRES, DSRES
22	C C
20	REAL NMANN,MANN Integer Typpool.pooltyp.strtype.study
	SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
	C TO REEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
25	COMMON /SCRATCH/
-•	NDX(50).XSTART(40,50).YSTART(40,50),QSTART(40,50),
	. HSCHED(48,50),XINIT(40),YINIT(40),QINIT(40),H(48),
	. DUMMY1(7169)
	REAL K
30	WRITE(6,70)
	C DIVIDE POOL INTO (N-1)+10 SEGMENTS
	C STORE ONLY EVERY TENTH VALUE OF XN AND YN
	XEND=XSTART(2,IPOOL)-XSTART(1,IPOOL)
35	SO=BOTGRAD(IPOOL)
	TYPPOOL POOL TYP(IPOOL)
	NDX(1POOL)=11 NXINC=11
	IF(ICHOOSE.EQ.1) GO TO 5
40	C CALCULATE IN DOWNSTREAM DIRECTION
	00-OSTART(1,IPOOL)
	YO=YSTART(1, IPOOL)
	FN=N-1
	DX=XEND/(FN+10.)
45	X(1)=0.0
	L=0
	YN=Y0
	DO 2 1=2,N
	L=L+1
50	DD 1 J=1,10
	FJ=J
	XN=X(L)+FJ+DX
	A1=A(YN)
55	IF(TW1.LE.O.) GO TO 60
	VC2=GGBAV+A1/TW1
	TFTVC2.LE.0.) GO TO 40

)

• •

,

.

. .

	V1=Q0/A1
	IF(ABS(V1++2-VC2).LT.0.001) GO TO 50
60	R1=R(YN)
	R1=R(YN) g ^r S1=S(V1,R1)
	F1=(50-51)/(1Q0++2+TW1/(A1++3+GGRAV))
	Y2=YN+DX+F1
	A2=A(Y2)
65	TW2=TW(Y2)
	1F(TW2.LE.O.) GD TO 60
	VC2=GGRAV+A2/TW2
	IF(VC2.LE.0.) GO TO 40
70	V2=Q0/A2
70	IF(ABS(V2++2-VC2).LT.0.001) GO TO 50
	R2=R(Y2)
	S2=S1V2,R2) F2=(S0-S2)/(1Q0++2+TW2/(A2++3+GGRAV))
	F2=(30-32)/(1Q0++2+(W2/(A2++3+6GKA+)) K=0.5+(F1+F2)
75	X=0.5*(F1+F#) YN=YN+DX+K
15	1 CONTINUE
	X(L+1)=XN
	XSTART(L+1, IPOOL)=XN+STABEG(IPOOL)
	YSTART(L+1, IPOOL)=YN
80	OSTART(L+1, IPOOL)=Q0
	2 CONTINUE
	XSTART(1, IPOOL)*STABEG(IPOOL)
	XSTART(N, IPOOL)=STAEND(IPOOL)
	RETURN
85	C CALCULATE IN UPSTREAM DIRECTION
	5 CONTINUE
	Q0=QSTART(2,IPOOL)
	Y0=YSTART(2, IPOOL)
	FN=N+1
90	DX=-XEND/(FN+10.)
	X(N)=XEND
	L=N+1
	/N=Y0
	DO 20 1=2,N
95	
	DO 10 J=1,10
	FJ=J 900-9443-550
	XN=X(L)+FJ+DX A1=A(YN)
100	
	IF(TW1.LE.O.) GO TO 60
	VC2=GGRAV+A1/TW1
	IF(VC2.LE.O.) GO TO 40
	V1=Q0/A1
105	IF(ABS(V1++2-VC2).LT.0.001) GO TO 50
	R1=R(YN)
	S1=S(V1,R1)
	F1=(S0-S1)/(1Q0*+2+TW1/(A1*+3+GGRAV))
	Y2=YN+DX+F1
110	A2=A(Y2)
	TW2=,TW(Y2)
	1F(TW2.LE.0.) GO TO 60
	VC2=GGRAV+A2/TW2
	IF(VC2.LE.0.) GD TD 40

SUBROUTINE	BAKWA1	rf 74/74	OPT=1	*	** ** <u>*</u>		FTN	4.6+428
115		V2=Q0/A2						
		IF(ABS(V2++2	2-VC2).LT	.0.001) GO T(50		
		R2=R(Y2)						
		\$2=\$(V2,R2) F2=(\$0-\$2)/(COAVI 1		
120		r2=(50-52)/(K=0.5+(F1+F2		+(#2/(A2++3+(JGKAVJ J		
120		YN=YN+DX+K	<,					
	10	CONTINUE						
		X(L-1)=XN						
		XSTART(L-1,	[POOL) = XN	+STABE	G(1P00	_)		
125		YSTART(L-1.)			•	•		
		OSTART(L-1,	[POOL) = QO					
	20	CONTINUE						
		XSTART(1, IPO						
		XSTART (N, IPO		ND (IPC	IOL)			
130		YSTART (N, IPO						
		QSTART (N, IP	00L)=Q0					
	40	RETURN						
	40	CONTINUE WRITE(6.45)						
135	45	FORMAT(1X.2)		NEG V		V E10.3.		
135	-3	3H X=.F10.						
		STOP	5, 1211 110	BAURA	un /			
	50	CONTINUE						
	•••	WRITE(6.55)	YN.XN					
140	55	FORMAT(1X,14		L DEPT	H.F10.	3,3H AT,F10.	3,	
		12H IN BAKI			•	•	•	
		STOP						
	60	CONTINUE						
		WRITE(6,65)						
145	65	FORMAT(1X,3		NEG 1	W IN 8/	AKWATER AT 1	/=,F1	0.3,
		3H X=, F10.		*****				
	70	FORMAT(1X,4	THCALCULA	IING E	ACKWATI	EN CURVE FOR	I THE	5 POOL
		STOP						
		END						

•

. .

27

PAGE 3

79/01/09. 14.41.14

.

PAGE 1

1	SUBROUTINE READIT
•	C ROUTINE TO READ IN FLOWS AND DEPTHS AND TURNOUT SCHEDULES
	C C
5	COMMON /ALL/
	C PHYSICAL PARAMETERS
	. NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
	(51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
10	C WORKING VARIABLES
	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. JPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51),
15	. TMAXI, NUMTRNS, USRES, DSRES
	C
	REAL NMANN,MANN
	INTEGER TYPPOOL, POOLTYP, STRTYPE, STUDY
	C
20	Ċ.
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
	COMMON /SCRATCH/
	. NDX(50),XSTART(40,50),YSTART(40,50),QSTART(40,50),
25	. HSCHED(48,50),
	. XINIT(40),YINIT(40),QINIT(40),H(48),
6	. QD(48),QU(48),QT(48,50),
•	. DUMMY1(4673)
	c
30	C TAPE 3 HAS UPSTREAM AND DOWNSTREAM Q SCHEDULES, DEPTH
	C SCHEDULES AND TURNOUT SCHEDULES AT
	C T=0, 0700 AND 2200
	C SCHEDULES MUST BE SUPPLIED AT EVERY POOL BOUNDARY,
	C EVEN WHEN THEY CANNOT BE USED, E.G., AT POOL BOUNDARIES
35	C WHERE NO CONTROL STRUCTURE IS PRESENT
	C
	REWIND 3
	C READ OVER 4 LINE HEADING
	READ(3,9000)
40	MAX=NOPOOLS
	C READ AT HOURS 0, 7, 22
	C READ U/S PUMP SCHEDULE
	C INDEX IS HOURH
45	READ(3,9030) QU(1),QU(8),QU(23)
49	BACKSPACE 3
	C STORE IN D/S TO U/S ORDER C TAPE 3 IS IN U/S TO D/S ORDER
	C TAPE 3 IS.IN U/S TO D/S ORDER INDX=MAX
	DO 30 I=1, MAX
50	READ(3,9040) HSCHED(1, INDX), HSCHED(8, INDX), HSCHED(23, INDX)
	C READ D/S PUMP SCHEDULE
	C READ AT HOURS 0, 0700 AND 2200
55	C INDEX IS HOUR+1
~~	READ(3,9050) QD(1),QD(8),QD(23)
	C FILL IN REMAINING HOURS OF DAY
	A LOPE TH VEHILITING HAND AL PUL

- ----

28

.

•

.

HOURS

,

4

	DO 40 1=2,7
	QU(I)=QU(I-1)
60	QD(I)=QD(I-1)
	DO 40 J=1.MAX
	HSCHED(I,J)=HSCHED(I-1,J)
	40 CONTINUE
	DO 50 I=9,22
65	QU(I) = QU(I-1)
	QD(1)=QD(1-1)
	DO 50 J=1,MAX
	HSCHED(I,J)=HSCHED(I-1,J)
	50 CONTINUE
70	QU(24)=QU(23)
	QD(24) ≈QD(23)
	DO 60 J=1,MAX
	HSCHED(24, J)=HSCHED(23, J)
	60 CONTINUE
75	C CONTINUE SCHEDULES FOR SECOND 24 HOURS
	DO 70 I=1,24
	QU(1+24)=QU(24)
	QD(1+24)=QD(24)
	DO 70 J=1, MAX
80	HSCHED(1+24, J)=HSCHED(24, J)
	70 CONTINUE
	C QT(HOUR,POOL) IS TURNOUT Q
	C TURNOUT IS AT D/S END OF POOL
	DO BO I×1,50
85	DO 80 J=1,48
	QT(J,I)=0.0
	80 CONTINUE
	C ARE THERE ANY TURNOUTS IN THIS REACH
	C NUMTRNS IS SET IN A DATA STATEMENT IN MAIN PROGRAM
90	IF(NUMTRNS.EQ.0) GD TO 140
	C READ TURNOUT SCHEDULES
	C MAXTURN IS LAST INDEX IN THIS REACH
	C READ OVER 3 LINE HEADING FOR SCHEDULE
	READ(3,9060)
95	MAXTURN=NUMTRNS
	DO 130 INDX=1,MAXTURN
	C READ NUMBER OF CHANGES AT THIS TURNOUT
	READ(3,9010) LPOOL, NCHANGE
	C READ TIME OF CHANGE AND DELTA Q
100	C CHANGES MAY ONLY BE MADE ON THE HOUR FROM 0000 TO 2300
	DO 120 I=1,NCHANGE
	READ(3,9070) NTIME, DELQ
	C TIME INDEX IS HOUR+1
	ITIME=NTIME+1
105	QT(ITIME, LPOOL)=QT(ITIME, LPOOL)+DELQ
	MIN=ITIME+1
	IF(MIN.GT. 24) GO TO 100
	C SET Q AT TURNOUT FOR THE REMAINDER OF THE DAY
	DO 90 J=MIN,24
110	QT(J,LPOOL)=QT(J-1,LPOOL)
	90 CONTINUE
	100 CONTINUE
	C CONTINUE SCHEDULE FOR SECOND 24 HOURS
	DO 110 J=1,24

; 1

ı.

.

.

.

~•

.

PAGE 3

115	QT (J+24, LPOOL) =QT (24, LPOOL)
	110 CONTINUE
	120 CONTINUE
	130 CONTINUE
	140 CONTINUE
120	C TAPE 8 HAS INPUT FOR UNSTEADY MODEL
	C READ INITIAL CONDITIONS FROM THIS FILE
	C COPY TAPE B TO TAPE 9 FOR USE AS INPUT TO
	C UNSTEADY MODEL WITH GATE SCHEDULES INSERTED
	C AFTER THIS PROGRAM HAS CALCULATED THEM
125	C AND WITH TURNOUT SCHEDULES INSERTED
	REWIND B
	REWIND 9
	C READ 3 TITLE CARDS AND STUDY START TIME CARD
	DO 150 I=1,4
130	READ(8,9080)
	WRITE(9,9080)
	WRITE(6,9080)
	150 CONTINUE
135	C READ INITIAL CONDITIONS KPOOL=NOPOOLS
135	C READING POOLS FROM UPSTREAM TO DOWNSTREAM
	C STORING POOLS FROM D/S TO U/S
	C X VALUES RUN FROM U/S TO D/S IN BOTH CASES
	C MUST HAVE CARDS FOR U/S AND D/S ENDS OF ALL POOLS
140	C IF ONLY U/S AND D/S POINTS ARE GIVEN, THEN
	C IF Y U/S * 0.0, CALCULATE BACKWATER CURVE FROM D/S END
	C IF Y D/S = 0.0, CALCULATE BACKWATER CURVE FROM U/S END
	C IF Y U/S AND Y D/S .NE. 0.0, LINEAR WATER SURFACE AND
	C LINEAR Q CHANGE BETWEEN ENDS OF POOL
145	C
	170 INDX=1
	READ(8,9110) YSTART(INDX,KPOOL),OSTART(INDX,KPOOL)
	,XSTART(INDX,KPOOL)
	WRITE(9,9110) YSTART(INDX,KPOOL),QSTART(INDX,KPOOL)
150	, XSTART(INDX, KPOOL)
	C SEARCH FOR END OF POOL XEND=DWNSTA(KPOOL)
	180 INDX+1
	READ(8.9110) YSTART(INDX.KPOOL).OSTART(INDX.KPOOL)
155	. ,XSTART(INDX,KPOOL)
	WRITE(9,9110) YSTART(INDX,KPOOL),QSTART(INDX,KPOOL)
	,XSTART(INDX,KPOOL)
	IF(XSTART(INDX, KPOOL).EQ.XEND) GO TO 190
	IF(XSTART(INDX,KPOOL).LT.XEND) GO TO 180
160	WRÍTE(6,9120) XSTART(INDX,KPOOL),XEND
	STOP
	190 CONTINUE
	C STORE THE NUMBER OF INITIAL CONDITION POINTS
	NDX(KPOOL)=INDX
165	C HAVE WE READ DOWN TO POOL 1, THE MOST D/S POOL IN THE REACH
	IF(KPOOL.EQ.1) RETURN
	KPOOL=KPOOL-1
	C READ NEXT D/S POOL Go to 170
170	C
	G
	-

ŝ

•

.

•

	C FORM	ATS		
	9000	FORMAT(1X///1X)		
	9010	FORMAT(14,15)		
175	9030	FORMAT(17X, F11.2.2	F16.2)	
	9040	FORMAT(1X/17X, F11.	2.2F16.2/1X)	
	9050	FORMAT(17X, F11.2,		
	9060	FORMAT(1X//1X)		
	9070	FORMAT(19,3X,F10.2	2)	
180	9080	FORMAT (40H	•	
		40H)
	9090	FORMAT(110)		•
	9100	FORMAT (10H	.I10.20H	
		40H	• -)
185	9110		,F10.3,	•
		30H	,F10.	2)
	9120	FORMAT(1X, 13HFOUND	STATION, F10.3.	•
		21H BEFORE FINDIN	G XEND=. F10.3.10H IN	READIT)
	-	END		•

•

.

) }

.

+

1	SUBROUTINE STROKER
•	C ROUTINE TO SOLVE GATE STROKING PROBLEM FOR OPEN
	C CHANNEL FLOW AS PER WYLIE
	C THIS PROGRAM IS SET UP FOR Q AND Y
5	
	COMMON /SOLV/ XP.YP.TP.QP.XR.YR.TR.QR.XS.YS.TS.QS
	C C
	COMMON /ALL/
	C PHYSICAL PARAMETERS
10	. NMANN,SO,GGRAV,PI,BOTTOM(50),SIDSLOP(50),RADIUS(50),BOTGATE(51),
	. MANN(50),BOTGRAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ
	. (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51).
	C WORKING VARIABLES
	. TMAX.XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
15	. STAEND(50),T1,Y1,STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOL\$, POOL TYP(50), STRTYPE(81),
	. TMAXI,NUMTRNS,USRES,DSRES C
20	REAL NMANN, MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
	C
	č
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
25	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
	COMMON /SCRATCH/ XCP1(40), YCP1(40), TCP1(40), OCP1(40)
	. ,XCM1(40),YCM1(40),TCM1(40),QCM1(40)
	,XCP2(40),YCP2(40),TCP2(40),QCP2(40)
	. ,XDN2(40),YDN2(40),TDN2(40),QDN2(40)
30	. ,XCP3(40),YCP3(40),TCP3(40),QCP3(40)
	. ,XCM3(40),YCM3(40),TCM3(40),QCM3(40)
	. ,XDN3(40),YDN3(40),TDN3(40),QDN3(40)
	. ,XUP3(40),YUP3(40),TUP3(40),QUP3(40)
25	• ,XCP3B(40),YCP3B(40),TCP3B(40),QCP3B(40)
35	. ,XDN3B(40),YDN3B(40),TDN3B(40),QDN3B(40) . ,XUP3B(40),YUP3B(40),TUP3B(40),QUP3B(40)
	. ,XUP3B(40),YUP3B(40),TUP3B(40),QUP3B(40) XCP4(81),YCP4(81),TCP4(81),QCP4(81)
	. ,XCM4(81),YCM4(81),TCM4(81),QCM4(81)
	. XUP4(81), YUP4(81), TUP4(81), QUP4(81)
40	. XCP5(81), YCP5(81), TCP5(81), OCP5(81)
	. INDX(85), TINDX(85), KDWN, TDWN(500), ODWN(500), YDWN(800)
	, KUP, TUP(500),QUP(500),YUP(500)
	. ,KMAX,SAVETUP(500),SAVEYUP(500),SAVEQUP(500)
45	DIMENSION ISEQNCE(5,2),X(85),Y(85),T(85),Q(85)
	C ISEQNCE IS SEQUENCE TO CALCULATE SOLUTION REGIONS
	C
	C MAP OF SOLUTION REGIONS FOR ALL BUT MOST U/S POOL
	C REGION 3B IS REPEATED AS NECESSARY TO GET TO TMAX
50	C Q AND Y ARE GIVEN AT D/S BOUNDARY AND Q AND Y ARE
	C CALCULATED AT U/S BOUNDARY
	C * * * C * * *
55	
	•••

•

.

)) .

٠

	C • •		,
			-
60	C * * 38		
	Č *	•	
	C *		
	C +	•	
65	Č * *		
	Č * •		
	C +		
	C + +		
	C + + 3		
70	Č		
	C + +		
	C + +		
	Č + +		
	Č + *		
75	Č +	•	
	Č +	•	
	Č * 4		
	Č *	•	٠
	C +	•	
80	Č * *		
	C + *	2	
	Č* * *	-	
	Č * *		٠
	Č * * 1	*	
85	C * *	•	
85	C + + C +++++++++++++++++++++++++++++++		*
85	C • • • 38 C • • 38 C • • 38 C • • • • • • • • • • • • • • • • • • •		* ****
85	C + + C +++++++++++++++++++++++++++++++	5T U/S PC	* ****
	C + + C +++++++++++++++++++++++++++++++	ST U/S PO FUDY=1)	* ****
85 90	C * * C *******************************		
	C + + C +++++++++++++++++++++++++++++++		
	C * * C *******************************		
	C * * C *******************************		
90	C * * C *******************************		
	C * * C *******************************		
90	C * * C *******************************		
90	C * * C *******************************		
90	C * * C *******************************		
90 95	C * * C *******************************		
90	C * * C *******************************		
90 95	C * * C *******************************		
90 95	C * * C ****** C **********************		
90 95	C * * C ****** C **********************		
90 95 100	C * * C *******************************		
90 95	C * * C *******************************		
90 95 100	C * * C *******************************		
90 95 100	C * * C *******************************		
90 95 100	C * * C *******************************		
90 95 100 105	C * * C *******************************		
90 95 100	C * * C *******************************	AND Y IS	
90 95 100 105	C * * C *******************************	AND Y IS	
90 95 100 105	C C MAP OF SOLUTION REGIONS FOR MOS C IF Q INTO POOL IS SCHEDULED (SI C Q IS GIVEN AT BOTH BOUNDARIES C FOR BOTH BOUNDARIES C * C * C * C * C * C * C * C *	AND Y IS	

___,___.

*----

• •

• •

115	C
	C
	C ISEQNCE=8 EXITS THE COMPUTATION LOOP
	DATA (ISEQNCE=1,2,3,4,8,1,2,5,8,8)
120	C LAST=2 FOR MOST UPSTREAM POOL C IF Q IS SCHEDULED FOR U/S END OF THAT POOL
120	C FLOAT DEPTH FOR MOST UPSTREAM POOL
	C IF O IS SCHEDULED
	LAST=1
	C IPOOL IS THE POOL BEING CALCULATED
125	C NPOOLS IS THE NUMBER OF THE MOST U/S POOL
	IF(IPODL.EQ.NPOOLS.AND.STUDY.EQ.1) LAST=2
	C TIMINC IS THE TIME INCREMENT USED FOR CALCULATIONS C IT may be increased if 40 points in region 3 wont get
	C THE SOLUTION TO X=0
130	C OR DECREASED IF POOL IS VERY SHORT
	TIMINC=TINC
	C SET THE NUMBER OF COMPUTATION POINTS FOR EACH REGION
	N1=NXINC
105	N2=N1
135	N4≠N1+N2−1 N5=N4
	C KUP IS UPSTREAM INDEX FOR STORING T, Q AND Y
*	KUP=N4
	IF(LAST.EQ.2) KUP=1
140	C KOWN IS DOWNSTREAM INDEX FOR STORING T, Q AND Y
	KDWN=0
	DO 800 IPASS=1,5 ISEQ=ISEQNCE(IPASS,LAST)
	GD TO(100,200,300,400,500,900,900),1SEQ
145	C X, Y, T AND Q ARE WORKING ARRAYS
•	C CPJ AND CMJ ARRAYS ARE X, Y, T AND Q VALUES
	C ALONG + AND - CHARACTERISTICS IN REGION J
150	C REGION 1 - INITIAL CONDITIONS 100 CONTINUE
	C XINIT, ETC., ARE INITIAL CONDITIONS AT TIME = 0
	DO 110 I=1,N1
	X(I)=XINIT(I)
	Y(I)=YINIT(I)
155	T(1)=0.
	Q(I)=QINIT(I) 110 CONTINUE
	110 CONTINUE X(N1)=XEND
	XCP1(1)=X(1)
160	YCP1(1)=Y(1)
	TCP1(1)=T(1)
	QCP1(1)=Q(1)
	XCM1(1)=X(N1)
165	YCM1(1)=Y(N1) TCM1(1)=T(N1)
105	OCM1(1)=Q(N1)
	M=N1-1
	DO 160 1=2,N1
	DO 150 J=1,M
170	C IP, IR AND IS ARE P, R AND S POINT INDICES IN X, Y, T C AND A HUBBE P IS DOINT TO BE SOLVED FOR
	C AND Q WHERE P IS POINT TO BE SOLVED FOR,

79/01/09. 14.41.14

PAGE 4

f

	C R IS KNOWN POINT ON + CHARACTERISTIC AND
	C S IS KNOWN POINT ON - CHARACTERISTIC
	C P, R, S NOTATION FOLLOWS WYLIE
175	IP=J
	IR≠J
	IS=J+1
	C SET R AND S POINT VALUES
	XR=X(1R)
180	YR=Y(IR)
	TR=T(1R)
	OR=0(1R)
	XS=X(15)
	YS=Y(IS)
185	TS=T(15)
105	Q\$=Q(15)
	C SOLVE FOR POINT P
	CALL SOLVER
	C STORE NEW VALUES
190	X STORE NEW VALUES
130	
	Y(IP)=YP
	T(1P)=TP
	Q(IP)=QP
195	C STORE END POINTS IN REGION 1 BOUNDING CHARACTERISTICS
133	IF(J.EQ.1) GO TO 130 120 IF(J.EO.M) GO TO 140
	GD TO 150 C STORE IN + CHARACTERISTIC
	130 CONTINUE
200	XCP1(I)=XP
	YCP1(I)=YP
	TCP1(1)=TP TCP1(1)=TP
	QCP1(1)=0P
	C LAST POINT IS ALSO ON - CHARACTERISTIC
205	C CHECK FOR THIS SITUATION
	GO TO 120
	Č STORE IN - CHARACTERISTIC
	140 CONTINUE
,	XCM1(1)=XP
210	YCM1(1)=YP
	TCM1(1)=TP
	OCM1(1)=0P
	150 CONTINUE
	M=N-1
215	160 CONTINUE
	WRITE(6,9000)ISEQ
	GD TD 800
	C REGION 2 - Q SPECIFIED D/S
	200 CONTINUE
220	XDN2(1)=XCM1(1)
	YDN2(1) = YCM1(1)
	TDN2(1)=TCM1(1)
	QDN2(1)=QCM1(1)
	D0 230 I=2.N2
225	X(1)=XCM1(I)
	Y(1)=XCM1(I) Y(1)=YCM1(I)
	T(1)=TCM1(1) T(1)=TCM1(1)
	Q(1)=Cm(1) Q(1)=Q(M1(1)
	w(i)=womi(1)

.

.

PAGE 5

M=I 230 DO 210 J=2,M 1R=J-1 IS=J IP=J C SET R AND S POINT VALUES 235 XR=X(1R) YR=Y(IR) TR=T(IR) QR=Q(IR) C CHECK FOR BOUNDARY 240 IF(J.EO.M) GO TO 220 XS=X(IS) YS=Y(IS) TS=T(IS) QS=Q(IS) 245 C SOLVE FOR POINT P CALL SOLVER C STORE NEW VALUES X(IP)=XP Y(IP)=YP 250 T(IP)=TP Q(IP)=QP 2.0 CONTINUE 220 XP=XEND C BNDRY(1) IS D/S BOUNDARY - Q SPECIFIED, C+ CHARACTERISTIC 255 CALL BNDRY(1) C STORE BOUNDARY VALUES X(IP) = XPY(IP)=YP T(IP)=TP 260 Q(IP)=QP C STORE IN D/S ARRAY XDN2(1)=XPYDN2(1)=YPTDN2(I)=TP 265 QDN2(I)=QP 230 CONTINUE C STORE IN REGION 2 BOUNDING CHARACTERISTIC DO 240 1=1.N2 XCP2(I)=X(I)270 YCP2(1)=Y(1) TCP2(1)=T(1) QCP2(1)=Q(1) 240 CONTINUE C STORE IN TOWN, QDWN, YDWN FOR GATE MOTION CALCULATIONS LATER 275 DO 250 I=1,N2 TOWN(I)=TDN2(I) QDWN(I)=QDN2(I) YDWN(I)=YDN2(I) 250 CONTINUE 280 C UPDATE D/S INDEX FOR SAVING T, Q AND Y KDWN=N2 C STORE ENDING TIME AND DEPTH FOR INTERPOLATION C IN POOL 2 AND FOLLOWING T1=TDN2(N2) 285 Y1=YDN2(N2)

1 4

.

*

· ----- ,

	SUBROUTINE	STROKER	74/74	OPT=1	F	TN 4.6+428	79/01/09. 14.41.14	PAGE	6
			RITE(6.9000)	ISEQ					
	c		D TO 800 3 - H AND (SPECIFIED	D/S				
290		300 CO	DNTINUE						
250	•	C EVERY T	TINC TIME AD	VANCE	UNDARY VALUES ONLY				
			JPPREV=0.						
	c		DNPREV=0. E wave tr ave	L TIME WITH	TIMINC TO SEE IF				
295	6 (C POOL IS	S TOO SHORT	TO USE TIMI	NC				
			CHECK=YDN2(N ELERTY=C(YCH						
		FN	I=N1-1						
300)		<pre>(CHECK=XEND/ (3=CELERTY+1)</pre>						
		IF	OX3/DXCHEC	:K.GT.2.) TI	MINC=DXCHECK/CELERTY+2	•			
	c				ITE(6,9040) TIMINC Zero Length Pool				
		IF	(TIMINC.LT.	0.5*TINC) G	0 TO 810				
305	• •		OF POINTS I B=0	N 38 REGION	l de la construcción de la constru				
	c			REGION 3 C	ROSSES X=0				
		NC	ROSS=0		ON D/S BOUNDARY				
310	• .	XD	N3(1)=XEND	2 END PUINT	ON D/S BUUNDART				
			N3(1)=TDN2(N3(1)=YDN2(
			N3(1)=TDN2(N3(1)=QDN2(
315			304 I=2,40						
513	•		=I N3(I)=XEND						
				I-1)+TIMINC					
			N3(I)=HDN(T	(.TMAX) GO T (DN3(I))	0 302				
320)	QD	N3(I)=QDN(T						
) TO 304 N3(I)=TMAX						
		YD	N3(1)=HDN(T						
325	5		N3(I)=QDN(T T0 306	MAX)					
		304 CO	NTINUE						
			B=1 NTINUE						
330		WR	ITE(6,9010)	N3					
1 3 3 0		1 F.	(TDN3(1).GE	.TDN3(N3)) (.TDN3(N3)) (WRITE(6,9020)TDN3(1),TD STOP	N3(N3)			
		xc	₩3(1)±XDN3(N3)					
]			P3(1)=YDN3(P3(1)=TDN3(
		QC	P3(1)=QDN3(N3)					
			M3(1)=XDN3(M3(1)=YDN3(
· · · ·		TC	M3(1)=TDN3(1)					
340			M3(1)=QDN3(308 I=1,N3						
		X(:	1)=XDN3(1)						
		¥(:	I)=YDN3(I)						

.

.

- ----- .

٠

PAGE 7

	T(I)=TDN3(I)
	Q(I) = QDN3(I)
345	308 CONTINUE
	C K=UPSTREAM X=0 INTERSECT INDEX
	K=1
	M=N3-1
350	N=M DO 322 I=1,M
550	C NALLX CHECKS THAT ALL XP ARE LESS THAN ZERO
	NALLX=0
	DO 320 J=1.N
	IP=J
355	IS=J
	IR=J+1
	C SEP R AND S POINT VALUES
	XR=X(1R) YR=Y(1R)
360	TR=T(1R)
••••	QR=Q(IR)
	XS=X(IS)
	YS=Y(IS)
	TS=T(IS)
365	Q5=Q(15)
	C SOLVE FOR POINT P
	CALL SOLVER C SET NALLX IF ANY XP HAS NOT CROSSED X=0
	IF(XP.GE.0.0) NALLX=1
370	C CHECK FOR CROSSING X=0
	IF(XP.LT.0.0.AND.XS.GE.0.0) GO TO 318
	310 CONTINUE
	C STORE NEW VALUES
	X(IP)=XP
375	Y(IP)=YP
	T(IP)=TP
	Q(IP)=QP C CHECK FOR END POINTS
	IF(J.EQ.1) GO TO 314
380	312 IF(J.EQ.N) GO TO 316
	GO TO 320
	C STORE IN C-
	314 CONTINUE
385	XCM3(1+1)=XP
305	YCM3(l+1)=YP TCM3(l+1)=TP
	QCM3(I+1)=(P
	C LAST POINT MAY ALSO BE ON + CHARACTERISTIC
	C CHECK FOR THIS SITUATION
390	GO TO 312
	C STORE IN C+
	316 CONTINUE
	XCP3([+1)=XP
395	YCP3(1+1)=YP TCP3(1+1)=TP
	QCP3(1+1)=1P QCP3(1+1)=QP
	GO TO 320
	C INTERPOLATE UPSTREAM VALUES
	C AT X=0

ω 8

.

•

SUBROUTINE STROKER 74/74 OPT=1

e ->

• •

))

.

.

400	318	CONTINUE
	C SET I	NCROSS TO SHOW THAT X=0 WAS CROSSED
		NCRDSS=1
		DELX=XP-XS
		DX=XP
405		RATIO=DX/DELX
		XUP3(K)=0.0
		YUP3(K)=YP-RATIO+(YP-YS)
		TUP3(K)=TP-RATIO+(TP-TS)
		QUP3(K)=QP-RATIO+(QP-QS)
410		K=K+1
		GD TO 310
	320	CONTINUE
	C HAVE	ALL POINTS CROSSED X=0 - IF SO STOP CALCULATING
		IF(NALLX.EQ.0) GO TO 324
415		N=N-1
	322	CONTINUE
	324	CONTINUE
	CIFD	ID NOT CROSS X=0, STOP
		IF(NCROSS.EQ.0) GO TO 346
420	C FIND	C+ X=0 INTERCEPT
		DO 326 I=2,N3
		IF(XCP3(I).GT.0.0) GO TO 326
		DELX=XCP3(I)-XCP3(I-1)
		DX=XCP3(1)
425		RATIO=DX/DELX
		XUP3(K)=0.0
		YUP3(K)=YCP3(1)-RATIO+(YCP3(1)-YCP3(1-1))
		TUP3(K)=TCP3(1)-RATIO=(TCP3(1)-TCP3(1-1))
		QUP3(K)=QCP3(1)-RATIO+(QCP3(1)-QCP3(1-1))
430		GO TO 328
	326	CONTINUE
	328	CONTINUE
	C SURT	UPSTREAM BOUNDARY ON T
435		DD 330 1=1,K
433		T(I)=TUP3(I)
	330	TINOX(1)=1.
	330	
		ILOW=1
440		TLOW=T(1)
		DO 336 J=1,K DO 332 1=1,K
		IF(TINDX(I).LT.0.0) GO TO 332
		IF(T(I).GE.TLOW) GO TO 332
		ILOW+I
445		TLOW=T(I)
	332	CONTINUE
		INDX(J)=ILOW
		TINDX(ILOW)=-1.
		DO 334 L=1.K
450		IF(TINDX(L).LT.0.0) GO TO 334
		ILOW=L
		TLOW=T(L)
		GO TO 336
	334	CONTINUE
455	336	CONTINUE
-		DD 338 I=1,K

•

•

	X(I)=XUP3(I)
	Y(I)=YUP3(I)
	T(I)=TUP3(I)
460	Q(1)=QUP3(1)
	338 CONTINUE
	DO 340 I=1,K
	J=INDX(I)
	XUP3(I)=X(J)
465	YUP3(I) = Y(J)
	TUP3(1)=T(J)
	QUP3(I)=Q(J)
	340 CONTINUE
	C STORE IN TOWN, ODWN, YOWN FOR GATE MOTION CALCULATIONS LATER
470	$\begin{array}{c} \text{DO } 342 \text{ I=1,N3} \\ \text{O} \text{ AND } \text{ Y} \end{array}$
	C UPDATE D/S INDEX TO SAVE T, Q AND Y
	KDWN=KDWN+1
	J=KDWN
	TĎWN(J)=ŤĎN3(I)
475	QDWN(J) = QDN3(I)
	YDWN(J) = YDN3(I)
	IF(I.EQ.1) GO TO 342
	C SAVE ONLY AFTER TINC TIME ADVANCE
	IF(TDN3(I).GE.TDNPREV+TINC) GO TO 341
480	KDWN ≈ KDWN-1
	GD TO 342
	C UPDATE TONPREY (T PREVIOUS)
	341 TDNPREV=TDN3(1)-0.01
	342 CONTINUE
405	WRITE(6,9000)ISEQ
485	C STORE IN TUP, QUP AND YUP FOR FUNCTIONS QDN AND HDN FOR NEXT POOL
	DO 344 I=1,K
	C UPDATE U/S INDEX TO SAVE T, Q AND Y
	KUP=KUP+1
490	N=KUP
	TUP(N)=TUP3(I)
	QUP(N)=QUP3(1)
	YUP(N)=YUP3(I)
	IF(1.EQ.1) GO TO 344
495	C SAVE ONLY AFTER TINC TIME ADVANCE
	IF(TUP3(1).GE.TUPPREV+TINC) GO TO 343
	KUP=KUP-1
	GO TO 344
	C UPDATE TUPPREV (T PREVIOUS)
500	343 TUPPREV=TUP3(1)-0.01
••••	344 CONTINUE
	C CHECK TO SEE IF 3B REGION MUST BE USED TO GET TO TMAX
	IF(N3B.EQ.0) GO TO 800
	C INITIALIZE FOR 3B REGION
505	XDN3B(1)=XEND
505	TDN3B(1)=TDN3(N3)
	YDN3B(1)=YDN3(N3)
	QDN3B(1)=QDN3(N3)
	C START CALCULATIONS IN 3B REGION
510	GO TO 350
	346 CONTINUE
	WRITE(6,9030) IPOOL
	C INCREASE TIME INCREMENT TO GET ACROSS POOL IN 40 POINTS

SUBROUTINE STROKER 74/74 OPT=1

e

.

ر ۲

79/01/09. 14.41.14

.

PAGE 10

	TIMINC=TIMINC+TINC
515	IF(N3.LT.40) STOP
	WRITE(6,9040)TIMINC
	GO TO 300
	C CALCULATE 3B REGION
	350 CONTINUE
520	NALLX=0
	DD 354 I=2,40
	N3B=1
	XDN3B(I)=XEND
	TDN3B(I) = TDN3B(I-1) + TIMINC
525	1F(TDN3B(1).GE.TMAX) GO TO 352
	YDN3B(I) = HON(TDN3B(I))
	QDN3B(I)=QDN(TDN3B(I))
	GO TO 354
	352 TDN3B(I)=TMAX
530	YDN3B(1)=HDN(TMAX)
	QDN3B(I)=QDN(TMAX)
	GO TO 356
	354 CONTINUE
	356 CONTINUE
535	WRITE(6,9050)N3B
	IF(TDN3B(1).GE.TDN3B(N3B)) WRITE(6,9060)TDN3B(1),TDN3B(N3B)
	IF(TDN3B(1).GE.TDN3B(N3B)) STOP
	XCP3B(1)=XDN3B(N3B)
	YCP3B(1)=YDN3B(N3B)
540	TCP3B(1) = TDN3B(N3B)
	QCP38(1)=QDN38(N38)
	DO 358 I=1,N3B
	X(I) = XDN3B(I)
	Y(I) = YDN3B(I)
545	T(1)=TDN3B(1)
	Q(1) = QDN3B(1)
	358 CONTINUE
	C K=UPSTREAM X=0 INTERSECT INDEX
	K=1
550	M=N3-1
	N=N3B-1
	DO 368 I=1,M
	NALLX=0
	L=N36+1
555	DO 366 J=1,N
	IP=L
	IS=L-1
	IR=L
560	C SET R AND S POINT VALUES
	XR=X(IR)
	YR=Y(IR)
	TR=T(IR)
	QR=Q(1R)
565	XS=X(IS)
	YS=Y(1S)
	TS=T(IS)
	QS=Q(IS)
	C SOLVE FOR POINT P
570	CALL SOLVER

SUBROUTINE STROKER 74/74 OPT=1 C SET NALLX IF ANY XP HAS NOT CROSSED X=0 TE(XP.GE.0.0) NALLX=1 С C CHECK FOR CROSSING X=0 575 IF(XP.LT.0.0.AND.XR.GE.0.0) GD TO 364 360 CONTINUE C STORE NEW VALUES X(TP)=XP Y(1P)=YP 580 T(IP)=TP Q(IP)=QP C CHECK FOR END POINTS IF(L.EO.N3B) GO TO 362 GO TO 366 585 C STORE IN C+ 362 CONTINUE XCP3B(1+1)=XP YCP3B(I+1)=YP TCP3B(1+1)*TP 590 OCP38(1+1)=0P GO TO 366 C INTERPOLATE UPSTREAM VALUES C AT X=0 364 CONTINUE 595 DELX=XP-XR DX=XP RATIO=DX/DELX XUP38(K)=0.0 YUP3B(K)=YP-RATIO+(YP-YR) 600 TUP3B(K)=TP-RATIO+(TP-TR) QUP3B(K)=QP-RATIO+(QP-QR) K=K+1 GO TO 360 366 CONTINUE 605 C HAVE ALL POINTS CROSSED X=0 - IF SO, STOP CALCULATIONS IR(NALLX;EQ.0) GO TO 376 IF(1.GE.N3) N=N-1 IF(1,GE.N3) GD. TO 368 X(1)=XCP9(1+1) 610 Y(1)=YCP3(1+1) T(1)=TCP3(1+1) Q(1)=QCP3(1+1) 368 CONTINUE 370 CONTINUE 815 C SORT UPSTREAM BOUNDARY ON T K=K-1 DO 372 I=1,K T(1)=TUP3B(1) TINDX(I)=1. 620 372 INDX(I)=0 ILOW=1 TLOW=T(1) DO 378 J=1,K DO 374 I=1.K IF(TINDX(1).LT.0.0) GO TO 374 625 F(T(I).GE.TLOW) GO TO 374 .LOW=1

> С

÷.,

		/=T(I)
		INUE
630		((J)=ILOW
)X(ILOW)=-1.
		176 L=1,K TINDX(L).LT.0.0) GO TO 376
	ILO	
635		(= T (L)
		0 376
		INUE
		INUE
	DO 3	380 I=1,K
640	X(1))=XUP3B(1)
		=YUP3B(1)
)=TUP3B(1)
		=QUP3B(1)
e 4 E		
645		382 I=1,K
		NDX(I) 3B(I)=X(J)
		3B(I)=Y(J)
		98(1)=T(J)
650		3B(1)=Q(J)
		INUE
		TOWN, ODWN, YOWN FOR GATE MOTION CALCULATIONS LATER
		384 I=1,N3B
		S INDEX FOR SAVING T, Q AND Y
655		V=KDWN+1
	J=KI	
		V(J) = TDN3B(I)
		N(J)=QDN3B(I) N(J)=YDN3B(I)
660		(.EQ.1) GO TO 384
		AFTER TINC TIME ADVANCE
		TON3B(1).GE.TONPREV+TINC) GO TO 383
•		N=KDWN-1
		ro 384
665		PREV=TDN38(1)-0.01
		TINUE
		TE(6,9000)ISEQ
		TUP, QUP AND YUP FOR FUNCTIONS QDN AND YDN FOR NEXT POOL
370		386 I=1,K
510		/S INDEX FOR SAVING T, Q AND Y •KUP+1
	N=K	
		(N)=TUP3B(I)
		(N)=QUP3B(I)
675	YUP	(N)=YUP3B(1)
	1F(L.EQ.1) GO TO 386
	C SAVE ONL	Y AFTER TINC TIME ADVANCE
		TUP38(I).GE.TUPPREV+TINC) GO TO 385
600	-	■KUP-1
680		
		PREV=TUP3B(I)-0.01
		TINUE E FOR TMAX FOR NEXT POOL
		TIME=TUP(KUP)
	241	·

•

• •

685	C STORE IN C+3
	DO 388 I=1,N3
	XCP3(1)=XCP3B(1)
	YCP3(1)=YCP3B(1)
690	TCP3(1)=TCP3B(1)
050	QCP3(1)=QCP3B(1) 388 CONTINUE
	IF(TCP3B(1).GE.TMAX) GO TO 800
	C CLEAR FOR ANOTHER PASS THRU 38 BAND
695	DO 390 I=1,40
033	XUP3B(1)=0.
	YUP3B(I)=0.
	TUP3B(1)=0.
	QUP3B(1)=0.
	XDN3B(I)=0.
700	YDN3B(1)=0.
	TDN3B(I)=0.
	QDN3B(I)=0.
	390 CONTINUE
	XDN3B(1)=XEND
705	YDN3B(1)=YCP3B(1)
	TDN3B(1)=TCP3B(1)
	QDN38(1)=QCP38(1)
	GO TO 350
	C REGION 4 - NO BOUNDARY CONDITIONS
710	400 CONTINUE
	C LOAD C+ FROM REGIONS 1 AND 2
	M=N2
	DO 410 I=1,M
	J=N2-I+1
715	XCP4(I)=XCP2(J)
	YCP4(1)=YCP2(J)
	TCP4(I)=TCP2(J)
	QCP4(I)=QCP2(J)
	410 CONTINUE
720	N=N4
	J=N1
	DO 420 I=M,N
	XCP4(1)=XCP1(J)
	YCP4(I)=YCP1(J)
725	TCP4(1)=TCP1(J)
	QCP4(1)=QCP1(J)
	j=j−1
	420 CONTINUE
	C INTERPOLATE C-AT SAME X AS C+
730	XCM4(1)=XCP4(1)
	YCM4(1) + YCP4(1)
	TCM4(1)=TCP4(1)
	QCM4(1)=QCP4(1)
	DO 440 I=2.N
735	DO 430 J=2,N3
	IF(XCM3(J).GT.XCP4(1)) GD IU 430
	DX=XCP4(1)-XCM3(J)
	DELX=XCM3(J-1)-XCM3(J)
	RATIO=DX/DELX
740	XCN4(1)=XCP4(1)
	YCM4(1)=YCM3(J)+RATIO+(YCM3(J-1)-YCM3(J))

.

• •

. .

ĥ

FTN 4.6+428

79/01/09. 14.41.14

PAGE 14

	TCM4(I)=TCM3(J)+RATIO+(TCM3(J-1)-TCM3(J))
	QCM4(I)=QCM3(J)+RATIO+(QCM3(J-1)-QCM3(J))
	GO 10 440
745	430 CONTINUE
	440 CONTINUE
	C K = INDEX FOR UPSTREAM BOUNDARY
	K=1
	DO 450 I=1,N4
750	X(1)=XCP4(1)
	Y(1) = YCP4(1)
	T(1)=TCP4(1)
	Q(1)=QCP4(1)
	450 CONTINUE
755	C SET X=0, T=0 UPSTREAM
	XUP4(1)=0.0
	YUP4(1) = YCP4(N4)
	TUP4(1)=TCP4(N4) QUP4(1)=QCP4(N4)
760	DD 480 I=2,N4
	X(1)=XCM4(I)
	Y(1)=YCM4(1)
	T(1) = TCM4(I)
	Q(1) = QCM4(1)
765	DO 470 J=2,N4
	IP=J
	IR=J-1
	IS=J
	C SET R AND S POINT VALUES
770	XR=X(IR)
	YR=Y(IR)
	TR=T(IR)
	QR=Q(1R) XS=X(1S)
775	X3=X(15) YS=Y(15)
115	TS=T(IS)
	OS=Q(15)
	C SOLVE FOR POINT P
	CALL SOLVER
780	C STORE NEW VALUES
	X(IP)*XP
	Y(IP)=YP
	T(IP)=TP
	Q(1P)=QP
785	C CHECK FOR X=0 CROSSING
	IF(XP.LT.0.0.AND.XR.GE.0.0) GO TO 460
	GO TO 470
	C INTERPOLATE AT X=0 ON C+
700	460 CONTINUE
790	K=K+1 DX=0.0-XP
	DELX=XR-XP
	RATIO=DX/DELX
	XUP4(K)=0.0
795	YUP4(K)=YP+RATIO+(YR-YP)
1.50	TUP4(K)=TP+RATIO+(TR-TP)
	OUP4(K)=OP+RATIO+(QR-QP)
•	470 CONTINUE

;

.

• •

. .

	480	CONTINUE
800		WRITE(6,9000)ISEQ
	C STORE	E IN TUP, QUP AND YUP FOR USE IN FUNCTIONS QON AND HON IN NEXT POOL
		DD 490 I=1,K
		TUP(1)=TUP4(1)
		QUP(I)=QUP4(I)
805	400	YUP(I)=YUP4(I)
	490	CONTINUE
	C BECL	GO TO 800 In 5 - Q Specified on both boundaries
	500	CONTINUE
810		IPREV FOR STORING BOUNDARY VALUES ONLY EVERY
••••		TIME ADVANCE
		TPREV=-(TINC+0.01)
	C LOAD	C+ FROM REGIONS 1 AND 2
		DO 510 I=1,N1
815		$\hat{XCPS}(I) = XCP1(I)$
	-	YCP5(I)=YCP1(I)
		TCP5(I)=TCP1(I)
		QCP5(1)=QCP1(1)
	510	CONTINUE
820		M=N1
		D0 520 I = 1, N2
		XCP5(M)=XCP2(I)
		YCP5(M)=YCP2(I)
0.05		TCP5(M)=TCP2(I)
825		QCP5(M)=QCP2(I)
	520	
	544	CONTINUE DO 530 I=1,N5
		X(1)=XCP5(1)
830		Y(1)=YCP5(1)
		T(1) = TCP5(1)
		Q(I) = QCPS(I)
	530	CONTINUE
	C STORE	E END POINTS
835	540	CONTINUE
		YUP(KUP)=Y(1)
		TUP(KUP)=T(1)
		QUP(KUP)=Q(1)
		YDWN (KDWN) = Y (N5)
840		TDWN(KDWN)=T(N5)
	C 6100	QDWN(KDWN)=Q(N5) After: TMAX
	0 310	IF(T(N5).GE.TMAX) GO TO 590
	C STORE	E ONLY EVERY TIME T HAS ADVANCED BY TINC
845		EP NUMBER OF POINTS IN YUP, YDWN, ETC.
		DXIMATELY THE SAME AS IN THE OTHER POOLS
		DELTAT= T(1)-TPREV
		IF(DELTAT, LT.TINC) GO TO 550
		TPREV=T(1)
850		KUP=KUP+1
		KDWN = KDWN+1
	550	CONTINUE
		DO 580 I*1,N5
855		
000		

SUBROUTINE	STROKER	74/74	OPT=1	FTN 4.8+428	79/01/09.	14.41.14	PAGE	16
860		.EQ.1) G(.EQ.N5) (S POINT (IR) (IR) (IR)	GO TO 570					
865	XS=X YS=Y TS=T QS=Q	(15) (15) (15) (15)						
870	C STORE NEW X(IP	SOLVER						
875	Q(IP							
880	YS=Y TS=T QS=Q XP=0	(15) (15) (15)	1					
885	C C STORE NEW X(IP Y(IP T(IP	VALUES)=XP)=YP)=TP						
890	GÖ T C DOWNSTREA 570 XR±X YR=Y	(IR) (IR)	RY					
895	С	(IR) END BNDRY(1))					
900	T (1P Q(1P) = X P) = Y P) = T P } = Q P						
905	590 CONT WRIT 800 CONT	0 540 1nue E(6,9000) Inue) I SEQ					
910	C TIME INCR	STIC RUN OL	R CALCULATIONS TOD SHORT TIMES, SO TREAT AS ZERO					

. .

47

. .

•

	WRITE(6,9120)
	C CALCULATE D'S VALUES AT TINC INTERVALS FROM END OF REGION 2
915	C TO TIME TMAX
	TP=TDN2(N2)-TINC
	DO 820 I=N2,500
	TP+TP+TINC
	IF(TP.GT.TMAX) TP=TMAX
920	
920	TDWN(I)=TP
	QDWN(I)=QDN(TP)
*	YDWN(I)=HDN(TP)
	KSAVE = I
	IF(TP.GE.TMAX) GO TO 830
925	820 CONTINUE
	C SAVE SAME VALUES FOR U/S END OF POOL
	830 CONTINUE
	KMAX=KSAVE
	DO 840 I=1,KSAVE
930	TUP(1)=TDWN(1)
	QUP(I)=QDWN(I)
	YUP(I)=YDWN(I)
	840 CONTINUE
	SAVTIME=TMAX
935	KUP=KMAX
	KDWN=KMAX
	900 CONTINUE
	C SAVE TMAX FOR NEXT POOL
	TMAX=SAVTIME
940	C SAVE KUP FOR USE IN FUNCTIONS ODN AND HDN IN NEXT POOL
	KMAX=KUP
	C SAVE T, Q AND Y FOR MATCHING IN NEXT POOL
	MAXPT *KMAX
	DO 1000 I=1,MAXPT
945	SAVETUP(I) =TUP(I)
• • •	SAVEQUP(I)=QUP(I)
	SAVEYUP(1)=YUP(1)
	1000 CONTINUE
	C
950	Č
974	C WRITE OUT T. Q AND Y AT BOTH ENDS OF POOL
	C FOR USE IN GATE OPENING CALCULATIONS
	C STRTYPE IS TYPE OF CONTROL STRUCTURE
OFF	C DEPTHS ARE IN THE CHANNEL, NOT IN THE GATE SECTION
955	WRITE(1,9070) IPOOL,KDWN
	WRITE(1,9080) (TDWN(I),I=1,KDWN)
	WRITE(1,9080) (QDWN(I),I=1,KDWN)
	WRITE(1,9080) (YDWN(I),I=1,KDWN)
	WRITE(6,9090)KDWN
960	WRITE(6,9100)KUP
	WRITE(1,9110) IPOOL,KUP, STRTYPE(IPOOL)
	WRITE(1,9080) (TUP(I),I=1,KUP)
	WRITE(1,9080) (QUP(I),I=1,KUP)
	WRITE(1,9080) (YUP(I),I=1,KUP)
965	RETURN
	C FORMATS
	9000 FORMAT(11H END REGION,15)
	9010 FORMAT(5H N3= ,110)
	9020 FORMAT(1X,45HTRANSIENT TRAVEL TIME EXCEEDS TIME AVAILABLE /

-

• •

. 28HTO TMAX. COMPUTATION HALTED. . /1X.GHT2MAX=,F10.3,10X,5HTMAX=,F10.3//) 9030 FORMAT(1X.32HTIME SPAN TOO SHORT TO CALCULATE, . 43H AT UPSTREAM BOUNDARY IN REGION 3 FOR POOL ,15/) 9040 FORMAT(1X.20HNEW TIME INCREMENT =,F10.1) 9050 FORMAT(5H N3B=,I10) 9060 FORMAT(1X,17HSTOP IN 3B. TMIN=,F10.3,6H TMAX=,F10.3//) 9070 FORMAT(1X,3110,10X) 9080 FORMAT(1X,310,10X) 9080 FORMAT(1X,5HKUM=,I5//) 9100 FORMAT(1X,5HKUM=,I5//) 9110 FORMAT(1X,26HTREATING AS ZERO LENGTH POOL) END

49

970

975

٠

1

1

1	SUBROUTINE SOLVER
	C ROUTINE TO SOLVE FOR X,T,Q AND Y AT POINT P
	C USING VALUES AT POINT R ON + CHARACTERISTIC
	C AND VALUES AT POINT S ON - CHARACTERISTIC
5	C METHOD AND NOTATION FOLLOW WYLIE
	C COMMON /SOLV/ XP,YP,TP,QP,XR,YR,TR,QR,XS,YS,TS,QS
	C
	COMMON /ALL/
10	C PHYSICAL PARAMETERS
	. NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	. MANN(50),BOTGRAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ . (51).DEDBAND(51).NGATES.GATECO(11.51).DSINVT(50).USINVT(51).
	C WORKING VARIABLES
15	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
	. STAEND(50),T1,Y1,STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50),DWNSTA(50),NOPDOLS,POOLTYP(50),STRTYPE(51),
~~	. TMAXI, NUMTRNS, USRES, DSRES
20	C REAL NMANN.MANN
	INTEGER TYPPOOL, POOLTYP, STRTYPE, STUDY
	Č
25	CR=C(YR)
	CS=C(YS)
	RR=R(YR)
	AR=A(YR)
30	VR=QR/AR SR=S(VR,RR)
30	RS=R(YS)
	V\$=05/A\$
	SS=Ś(VS,RS)
35	VP=(VR+VS)/2.
	VPREV=VP
	YP=(YR+YS)/2. YPPREv=YP
	TP=((VR+CR)+TR-(VS-CS)+TS-XR+XS)/(VR+CR-VS+CS)
40	XP=(VR+CR) + (TP-TR)+XR
	SO=BOTGRAD(IPOOL)
	AP=A(YP)
	QP=VP+AP
	C ICOUNT STOPS LOOPING IF SOLUTION DOES NOT CONVERGE
45	ICOUNT=1 10 CONTINUE
50	SP=S(VP,RP)
	CP=C(YP)
	tp=(2.+(XS-XR)+TR+(VP+CP+VR+CR)-TS+(VP-CP+VS-CS))/
	(VR+CR-(VS-CS)+2.+CP)
55	C4=GGRAV/2.+(1./CR+1./CP) C3=VR+C4+YR-GGRAV/2.+(SR+SP-2.+S0)+(TP-TR)
53	C3=VX+C4=TR-GGRAV/2.=(Sx+SF-2.=SU)=(TF-TR) C2=GGRAV/2.=(1./C5+1./CP)
	C1=vS-C2+YS-GGR4V/2.+(S5+SP-2.+S0)+(TP-TS)

• •

•

د 1

	YPPREV=YP
	YP=(C3-C1)/(C2+C4)
60	VPPREV=VP
	VP=C3-C4+YP
	AP=A(YP)
	OP=VP+AP
	ICOUNT=ICOUNT+1
65	IF(ICOUNT.GT.50) WRITE(6,9000)
	IF(ICOUNT.GT.50) STOP
	IF(ABS(YPPREV-YP).GT.0.001) GO TO 10
	IF(ABS(VPPREV-VP).GT.0.001) GO TO 10
	XP = XR + ((VP + VR)/2. + (CR + CP)/2.) + (TP - TR)
70	C CHECK THAT FLOW IS NOT SUPERCRITICAL
	CELRITY=C(YP)
	AREA=A(YP)
	IF(ABS(CELRITY+AREA/QP).LE.1.) WRITE(6,9010) XP.YP.TP.OP
	IF(ABS(CELRITY*AREA/QP).LE.1.) STOP
75	RETURN
	C FORMATS
	9000 FORMAT(1X,14HSTOP IN SOLVER)
	9010 FORMAT(1X,22HSUPERCRITICAL FLOW AT
	. /5x,3HX= ,F10.1/5X,3HY= ,F10.1/5X,
80	. 3HT= ,F10.1/5X,3HQ= ,F10.1/)
	END

٠

,

.

1	FUNCTION C(Y)
•	C CELERITY
5	COMMON /ALL/
9	C PHYSICAL PARAMETERS
	NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
	. (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
	C WORKING VARIABLES
10	. TMAX,XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50),
	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51).
	. TMAXI.NUMTRNS.USRES.DSRES
15	C
	REAL NMANN MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
20	C A-AREA
	C TW=TOP WIDTH
	C=SQRT(GGRAV+A(Y)/TW(Y))
	RETURN
	END

FUNCTION R 74/74 OPT=1

.

1

1

5

FTN 4.6+428

79/01/09. 14.41.14

PAGE 1

1

FUNCTION R(Y) C HYDRAULIC RADIUS C A=AREA C P=WETTED PERIMETER R=A(Y)/P(Y) RETURN END

.

٠

.

1	FUNCTION A(Y)
	C CROSS SECTIONAL AREA
	C POOL IS TRAPEZOIDAL CHANNEL - TYPPDOL=1
	C OR HORSESHOE TUNNEL - TYPPOOL=2
5	C OR CIRCULAR TUNNEL - TYPPODL=3
	6
	C BOTTOM WIDTH AND SIDESLOPE OF TRAPEZOIDAL CHANNEL
	C ARE SPECIFIED IN BOTTOM(POOL) AND SIDSLOP(POOL)
10	COMMON /ALL/
	C PHYSICAL PARAMETERS
	. NMANN, 50, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDO
	. (51).DEDBAND(51),NGATES,GATECO(11,51),DSINVT(50),USINVT(51).
15	C WORKING VARIABLES
	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50).
	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51).
20	TMAXI, NUMTRNS, USRES, DSRES
	c
	REAL NMANN,MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
	c
25	C
	IF(Y.LE.O.O) WRITE(6,9001) IPODL,Y
	IF(Y.LE.O.O) STOP
	IF(TYPPOOL.EQ.1) GO TO 50
	IF(TYPPOOL.EQ.3) GO TO 60
30	C IN HORSESHDE TUNNEL SECTI on
	C RAD IS INVERT TO CREST DISTANCE
	RAD=RADIUS (IPOOL)
	C CHECK FOR LOWEST ARC
	Y1=RAD/4.+(3SQRT(7.))
35	IF(Y.GT.Y1) GO TO 10
	A = (Y - RAD) + SQRT (RAD + 2 - (Y - RAD) + 2)
	+RAD++2+ASIN((Y-RAD)/RAD)+P1+RAD++2/2.
	RETURN
40	C CHECK FOR AT SPRINGLINE
40	10 IF(ABS(Y-RAD/2.).GT.0.00001) GO TO 20
	Y2=RAD/2.
	A=(Y1-RAD)+SQRT(RAD++2-(Y1-RAD)++2)
	. +RAD++2+ASIN((Y1-RAD)/RAD)+P1+RAD++2/2.
45	(Y1-Y2) + SQRT(RAD++2-(Y1-Y2)++2)
40	RAD++2+ASIN((Y1-Y2)/RAD)-RAD+(Y-Y1)
	RETURN
	C CHECK FOR BELOW SPRINGLINE
	20 IF(Y.GT.RAD/2.) GD TO 30
50	Y2=RAD/2.
~~	A=(Y1-RAD) + SQRT(RAD++2-(Y1-RAD)++2)
	. +RAD++2+ASIN((Y1-RAD)/RAD)+P1+RAD++2/2.
	. +(Y-Y2)+SQRT(RAD++2-(Y-Y2)++2)
	. +(1):2;+3G(((A))+2;-(1);2;+2;) . +RAD+2+ASIN((Y+2)/RAD)
55	-(Y1-Y2) + SQRT(RAD+2-(Y1-Y2)++2)
	-RAD++2+ASIN((Y1-Y2)/RAD)-RAD+(Y-Y1)
	RETURN

FUI	ICTION A	74/74	QPT=1	F	TN 4.6+428	79/01/09.	14.41.14	PAGE	2
		FOR FILLED							
60		IF(Y.GT.RAD) Y2=RAD/2.	GU 10 4V						
00			QRT (RAD++2- (Y1-R	AD)**2)					
			N((Y1-RAD)/RAD)+						
	•		RT (RAD++2-(Y1-Y2						
			N((Y1-Y2)/RAD)-R						
65			T((RAD/2.)++2-(Y						
			2+ASIN((Y-Y2)/(#						
		RETURN							
	40	WRITE(6,9000) Y,IPOOL						
		STOP							
70		ZOIDAL CHANN	EL SECTION						
	50	CONTINUE							
			OOL)+SIDSLOP(1PC	UL)#Y)*Y					
	0.0100	RETURN Jlår tunnel s	ECTION						
75	60	CONTINUE	COLTON						
75	00	RAD=RADIUS (1	P00L)						
).GT.0.00001) GC	TO 70					
	C HALF-		,, .						
		A=PI*RAD++2/	2.						
80		RETURN							
	70	IF(Y.GT.RAD)	GO TO 80						
	C LOWEI	R HALF OF SEC	TION						
		X=RAD-Y							
		THETA=ACOS (X							
85			+2-X+RAD+SIN(THE	TAJ					
	C 11000	RETURN	7.7.011						
	80	R HALF OF SEC	AD) GO TO 90						
	00	X=Y-RAD							
90		THETA=ACOS (X	(/RAD)					•	
••			+RAD++2+X+RAD+S]	N(THETA)					
		RETURN							
	90	WRITE(6,9000) Y,IPOOL						
		STOP						· ·	
95	C FORM								
	9000			HAN TUNNEL HEIGHT	AT				
	· · · ·		2,9H IN POOL ,15						
			HDEPTH IN POOL,						
	•		IN AREA ROUTINE)					
100		END							

•

.

п D

• •

.

.

1

۴

PAGE

1	FUNCTION TW(Y)
•	C TOP WIDTH
	c
5	COMMON /ALL/ C Physical parameters
3	. NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
	. (51).DEDBAND(51),NGATES,GATECO(11,51),DSINVT(50),USINVT(51),
10	C WORKING VARIABLES . TMAX,XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50),
10	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51),
15	. TMAXI,NUMTRNS,USRES,DSRES C
15	REAL NMANN, MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
	C C
20	C C POOL IS TRAPEZOIDAL CHANNEL - TYPPOOL=1
20	C OR HORSESHOE TUNNEL - TYPPOOL=2
	C OR CIRCULAR TUNNEL - TYPPOOL=3
	C C BOTTOM WIDTH AND SIDESLOPE OF TRAPEZOIDAL CHANNEL
- 25	C ARE SPECIFIED IN BOTTOM AND SIDSLOP
	IF(TYPPOOL.EQ.1) GO TO 50
	IF(TYPPOOL.EQ.3) GO TO 60
	C IN HORSESHOE TUNNEL SECTION C RAD IS INVERT TO CREST DISTANCE
30	RAD=RADIUS (IPOOL)
	C CHECK FOR LOWEST ARC
	Y1=RAD/4.+(3SQRT(7.)) IF(Y.GT.Y1) GO TO 10
	TW=2 SQRT (RAD++2- (RAD-Y) ++2)
35	RETURN
	C CHECK FOR AT SPRINGLINE 10 IF(Abs(y-RAD/2.).gt.0.00001) GD TD 20
	TWERAD
	RETURN
~0	C CHECK FOR BELOW SPRINGLINE
	20 Y2=RAD/2. IF(Y.GT.Y2) GO TO 30
	THETA=ASIN((Y2-Y)/RAD)
	TW=RAD+(2.+COS(THETA)-1.)
45	RETURN C Check for filled tunnel
	30 IF(Y.GT.RAD) GO TO 40
	THETA=ASIN((Y-Y2)/(RAD/2.))
50	TW=RAD+COS(THETA) Return
50	40 WRITE(6,9000) Y, IPODL
	STOP
	C TRAPEZOIDAL CHANNEL 50 CONTINUE
55	TW=BOTTOM(IPOOL)+2.+SIDSLOP(IPOOL)+Y
	RETURN
	C IN CIRCULAR TUNNEL

PAGE

1

	60 CONTINUE
	RAD=RADIUS(IPOOL)
60	IF(ABS(Y-RAD).GT.0.00001) GO TO 70
	C HALF-FULL
	TW=2.+RAD
	RETURN
	70 IF(Y.GT.RAD) GO TO 80
65	C LOWER HALF OF SECTION
	X=RAD-Y
	THETA=ACOS(X/RAD)
	TW=2.+RAD+SIN(THETA)
	RETURN
70	C UPPER HALF OF SECTION
	90 IF(Y.GT.2.+RAD) GD TO 90
	X=Y-RAD
	THETA=ACOS(X/RAD)
	TW=2.+RAD+ŠIŇ(THĖTA)
75	RETURN
	90 WRITE(6,9000) Y,IPODL
	STOP
	C FORMAT
	9000 FORMAT(1X,38HDEPTH GREATER THAN TUNNEL HEIGHT AT
80	3H Y=, F10.2, 9H IN POOL , 15)
	END

57

• •

1	FUNCTION S(V,R)
•	
	C ENERGY GRADE
	C
_	COMMON /ALL/
5	C PHYSICAL PARAMETERS
	NMANN, S0, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51).
	- MANN (50), BOTGRÁD (50), SYFÓNDÝ (50), SYFŇLOS (50), SPĚED (51), PÚMPDQ
	(51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51).
	C WORKING VARIABLES
10	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50).
	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51).
	. TMAXI.NUMTRNS.USRES.OSRES
15	C IMAAI, NUMIARS, USRES
19	
	REAL NMANN, MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
	C
	C
20	C V IS VELOCITY
	C R IS HYDRAULIC RADIUS
	C GET MANNINGS N FOR THIS POOL
	NMANN=MANN(IPOOL)
	S=(V+NMANN/1.49)++2/R++(4./3.)
25	RETURN

.

π α

.

•

•

.

PAGE 1

	1	FUNCTION P(Y)
		C WETTED PERIMETER
		C CDMMON /ALL/
	5	C PHYSICAL PARAMETERS
		NMANN, SO, GGRAY, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
		. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
		. (51),DEDBAND(51),NGATES,GATECD(11,51),DSINVT(50),USINVT(51), C WORKING VARIABLES
	10	. TMAX, XEND, TINC, NXINC, NPODLS, IPOOL, TYPPOOL, STABEG(50).
		. STAEND(50), T1, Y1, STUDY,
		C CANAL DESCRIPTION
		. UPSTA(50),DWNSTA(50),NOPOOLS,POOLTYP(50),STRTYPE(51), . TMAX1,NUMTRNS,USRES,DSRES
	15	C
		REAL NMANN, MANN
		INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY C
		C POOL IS TRAPEZGIDAL CHANNEL - TYPPOOL=1
	20	C OR HORSESHDE TUNNEL - TYPPOOL=2
		C OR CIRCULAR TUNNEL - TYPPOOL=3
		C C BOTTOM WIDTH AND SIDESLOPE OF TRAPEZOIDAL CHANNEL
		C ARE SPECIFIED IN BOTTOM(POOL) AND SIDSLOP(POOL)
1	25	IF(TYPPOOL.EQ.1) GO TO 50
)		IF(TYPPOOL.EQ.3) GO TO 60 C IN TUNNEL SECTION
		G RAD IS INVERT TO CREST DISTANCE
		RAD=RADIUS(1POOL)
	30	C CHECK FOR LOWEST ARC
		Y1≥RAD/4.*(3SQRT(7.)) IF(Y.GT.Y1) GO TO 10
		P=2. + RAD+ACOS((RAD-Y)/RAD)
		RETURN
	35	10 IF(ABS(Y-RAD/2.).GT.0.00001) GD TO 20 Y2=RAD/2.
		P=2.*RAD*(ACOS((RAD-Y1)/RAD)+PI/2ACOS((Y2-Y1)/RAD))
		RETURN
	40	C CHECK FOR BELOW SPRINGLINE 20 Y2=RAD/2.
		IF(Y.GT.Y2) GO TO 30
		P=2.+RAD+(ACOS((RAD-Y1)/RAD)+ACOS((Y2-Y)/RAD)
		ACDS((Y2-Y1)/RAD))
	45	RETURN C CHECK FOR FILLED TUNNEL
		30 IF(Y.GT.RAD) GO TO 40
		P=2. *RAD*(ACOS((RAD-Y1)/RAD)+PI/2ACOS((Y2-Y1)/RAD))
		• +RAD+ASIN((Y-Y2)/(RAD/2.)) Return
	50	40 WRITE(6,9000)Y, IPOOL
		STOP
		C TRAPEZOIDAL CHANNEL 50 Continue
		P=BOTTOM(IPOOL)+Y+2.+SQRT(SIDSLOP(IPOOL)++2+1.)
	55	RETURN
		C IN CIRCULAR TUNNEL 60 Continue

.

.

RAD=RADIUS(IPOOL) IF(ABS(Y-RAD).GT.0.00001) GO TO 70 60 C HALF-FULL P=PI*RAD RETURN 70 IF(Y.GT.RAD) GO TO 80 C LOWER HALF OF SECTION X=RAD-Y 65 THETA=ACOS (X/RAD) P=2. + RAD + THETA RETURN C UPPER HALF OF SECTION IF(Y.GT.2. +RAD) GO TO 90 70 80 X=Y-RAD THETA=ACOS(X/RAD) P=2.+RAD+(PI-THETA) RETURN WRITE(6,9000) Y, IPOOL 75 90 STOP C FORMAT 9000 FORMAT(1X,38HDEPTH GREATER THAN TUNNEL HEIGHT AT . 3H Y=, F10.2,9H IN POOL ,15) 80 END

•

)

1

t		SUBROUTINE BNDRY(IUPRDWN)
		JPSTREAM OR DOWNSTREAM BOUNDARY
		LUPRDWN ZERO FOR UPSTREAM BOUNDARY
-		LUPROWN ONE FOR DOWNSTREAM BOUNDARY
5		Q IS SPECIFIED IN FUNCTIONS QUPST AND QDN
	C 1	NOTATION FOLLOWS WYLIE
	L L	COMMON /SDLV/ XP,YP,TP,QP,XR,YR,TR,QR,XS,YS,TS,QS
	С.	
10	•	COMMON /ALL/
	C 1	PHYSICAL PARAMETERS
		. NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
		MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
15	~ 1	(51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51), WORKING VARIABLES
15		TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
		. STAEND(50), T1, Y1, STUDY,
	C	CANAL DESCRIPTION
	-	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51),
20		TNAXI, NUMTRNS, USRES, DSRES
	C	
		REAL NMANN, MANN
	с	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
25	C C	
23	U	IF(IUPRDWN.EQ.0) GO TO 20
	С	DOWNSTREAM BOUNDARY
	Ċ	INTERSECT C+ WITH BOUNDARY
		CR=C(YR)
30		RR=R(YR)
		AR=A(YR) VR=QR/AR
		SR=S(VR.RR)
		V=VR
35		T=TR+(XP-XR)/(VR+CR)
		TPREV=T
		Y=YR
		X=XEND
40		SO=BOTGRAD(IPOOL)
40		AP=A(Y) O=ODN(T)
		V=Q/AP
		OPREV=Q
	1	O CONTINUE
45		YPREV=Y
		RP=R(Y)
		SP=S(V, RP)
		CP=C(Y) Y=YR+(2.+(VR-V)/GGRAV-(5R+SP-2.+S0)+(T-TR))
50		. /(1./CR+1./CP)
		RP=R(Y)
		SP=S(V,RP)
		ČP≈Č(Y)
		AP=A(Y)'
55		V=VR-GGRAV/2.+(SR+SP-2.+S0)+(T-TR)
		GGRAV/2.+(1./CR+1./CP)+(Y-YR)
		TPREV=T

.

.

.

.

2

	T=2.*(XP-XR)/(V+VR+CR+CP)+TR
	OPREV=O
60	Q=QDN(Ť)
	V=Q/AP
	IF(ABS(QPREV-Q).GT.0.001) GO TO 10
	IF(ABS(TPREV-T).GT.0.001) GD TD 10 IF(ABS(YPREV-Y).GT.0.001) GD TD 10
65	
	TP=T
	YP=Y
70	C CORRECT FOR CHANGE IN CHANNEL CROSS SECTION AT NO GATE D/S BOUNDARY IF(IPOOL.EQ.1) RETURN
	C YBEFORE IS D/S Y CALCULATED FROM INITIAL CONDITIONS
	C AND CONTINUITY OF Q
	C YAFTER IS D/S Y CALCULATED FROM ENERGY BALANCE
75	C YBEFORE AND YAFTER SHOULD BE NEARLY EQUAL FOR
/5	C A VALID SOLUTION ACROSS THE CHANGE IN SECTION
	IF(STRTYPE(IPOOL-1).EQ.4) WRITE(6,9000) YP IF(STRTYPE(IPOOL-1).EQ.4) YP=HDN(T)
	IF(STRTYPE(IPOOL-1).EQ.4) WRITE(6,9010) YP
	IF(STRTYPE(IPOOL-1).EQ.5) WRITE(6,9000) YP
80	IF(STRTYPE(IPOOL-1).EQ.5) YP=HDN(T)
	IF(STRTYPE(IPOOL-1).EQ.5) WRITE(6,9010) YP
	RETURN C UPSTREAM BOUNDARY
	C INTERSECT C- WITH BOUNDARY
85	20 CONTINUE
	CS=C(YS)
	RS=R(YS)
	AS=A(YS) VS=QS/AS
90	SS=S(VS.RS)
	V=VS
	T=TS+(XP-XS)/(VS-CS)
	TPREV=T Y=YS
95	X=0.
	SO=BOTGRAD(1POOL)
	AP=A(Y)
	Q=QUPST(T)
100	V=Q/AP OPREV=Q
	30 CONTINUE
	YPREVEY
	RP=R(Y)
	SP=S(V,RP)
105	CP=C(Y)
	Y=YS-(2.*(VS-V)/GGRAV-(SS+SP-2.*S0)*(T~TS)) /(1./CS+1./CP)
	SP=S(V, RP)
110	CP=C(Y)
	AP=A(Y) V_VC-CCDAV/2 +/85+58=2 +50)+/7-75)
	V=VS-GGRAV/2. *(5 S+5 P-2.*50)*(T-T5) +GGRAV/2. *(1./CS +1./CP)*(Y-YS)
	TPREV*T

79/01/09. 14.41.14

115	T=2.*(XP-XS)/(V+VS-CS-CP)+TS
	OPREV=Q
	O=OUPST(T)
	V=O/AP
	IF(ABS(QPREV-Q).GT.0.001) GD TO 30
120	IF(ABS(TPREV-T).GT.0.001) GD TO 30
	IF(ABS(YPREV-Y).GT.0.001) GD TO 30
	VP=V
	TP=T
	YP*Y
125	0P=0
	RETURN
	C FORMATS
	9000 FORMAT(1X,9HY BEFORE=,F10.3)
	9010 FORMAT(1X,9HY AFTER=, F10.3/)
130	END

FUNCTION HDN(T) 1 C DOWNSTREAM BOUNDARY DEPTH C T IS TIME IN SEC С 5 COMMON /ALL/ C PHYSICAL PARAMETERS . NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51), MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ . (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51), 10 C WORKING VARIABLES . TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50). STAEND(50), T1, Y1, STUDY, C CANAL DESCRIPTION . UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51), . TMAXI, NUMTRNS, USRES, DSRES 15 С REAL NMANN.MANN INTEGER TYPPOOL, POOLTYP, STRTYPE, STUDY С 20 С C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND COMMON /SCRATCH/ DUMMY1(8570) . 25 ,H(48) . , DUMMY2(5668) . ,KMAX • ,SAVETUP(500),SAVEYUP(500),SAVEQUP(500) C 30 C MAKE ENERGY BALANCE DEPTH CHANGE AT NO GATE CHANGE IN CROSS-SECTION IF(IPOOL.EQ.1) GO TO 10 IF(STRTYPE(IPOOL-1).EQ.4) GO TO 40 IF(STRTYPE(IPOOL-1).EQ.5) GO TO 40 10 CONTINUE 35 TIMEHR=T/3600. ITIME=TIMEHR ITIME=ITIME+1 IF(ITIME.LT.1) ITIME=1 IF(ITIME.GT.48) ITIME=48 40 IF(ITIME.GT.1) GO TO 20 C T1, Y1 IS LAST COMPUTATION POINT ON D/S BOUNDARY IN REGION 2 C C MATCH WITH T1.Y1 IN 1ST HR C THIS ASSUMES T1.LT. 1 HR 45 C CHECK WAVE TRAVEL TIME IF IN DOUBT IF(T1.GE.3600.) WRITE(6,9000) T1 DELY=H(2)-Y1 DELT=3600.-T1 DT=T-T1 50 DY=DELY+DT/DELT HDN=Y1+DY RETURN C LINEARLY JOIN H(ITIME) AND H(ITIME+1) IF(ITIME.EQ.48) GO TO 30 20 55 DELY=H(ITIME+1)-H(ITIME) DELT=3600. I=ITIME-1

FUNCTION HON

	TBEG=I
	TBEG=TBEG=3600.
60	DT=T-TBEG
	DY=DELY+DT/DELT
	HDN=H(ITIME)+DY
	RETURN C Hold Depth constant after 47th Hour
65	30 HDN=H(ITIME)
•••	RETURN
	C MODIFIED NEWTONS METHOD FOR ENERGY BALANCE
	C_YUP+vUP++2/2+G=YDOWN+vDOWN++2/2+G
	40 CONTINUE
70	C SET DOWNSTREAM VALUES
	C FIND DEPTH IN DOWNSTREAM SECTION
	DO 50 I=2,KMAX J=I
	IF(T.LE.SAVETUP(I)) GO TO 60
75	50 CONTINUE
	C T GREATER THAN TMAX - USE FINAL DEPTH
	YD=SAVEYUP(KMAX)
	GO TO 70
~	C INTERPOLATE FOR Y
80	60 CONTINUE
	DELY=SAVEYUP(J)-SAVEYUP(J-1) DELT=SAVETUP(J)-SAVETUP(J-1)
	DT=T-SAVETUP(J=1)
	DY=DELY+DT/DELT
85	YD=SAVEYUP(J-1)+DY
	C_GET AREA AND Q IN DOWNSTREAM SECTION
	70 CONTINUE
	C QDN RETURNS Q UPSTREAM OF TURNDUT
90	
30	CALL TRNDUT(DELQ.T)
	QDS=Q0-DELQ
	QUS=Q0
	C SET IPOOL FOR AREA ROUTINE
95	IPOOL=IPOOL-1
	TYPPOOL=POOLTYP(IPOOL)
	C IF SYPHON, CORRECT DEPTH FOR SYPHON LOSSES AND INVERT DROP
	IF(STRTYPE(IPOOL-1).NE.4) GO TO 75 C Syphon Effects only - no change in cross-section of channel
100	C CHANGE IN CROSS-SECTION, IF ANY, IS TAKEN INTO ACCOUNT LATER
	Y=Y0
	ABELOW=A(YD)
	YSYPHON=SY FONDY (IPOOL)
105	
105	C1=QDS*+2/(2.*GGRAV*ABELOW++2)+YD-YSYPHON+SYPHON*QDS*+2 RAD=RADIUS(IPOOL)
	71 CONTINUE
	IF(TYPPOOL.EQ.2.AND.Y.GE.RAD) Y=RAD-0.1
	IF(TYPPOOL.EQ.3.AND.Y.GE.2.*RAD) Y=2.*RAD-0.1
110	IF(Y.LT.0.0) Y=0.1
	F=Y+QDS++2/(2.+GGRAV+A(Y)++2)-C1
	FPRIME=1QDS++2/(GGRAV+A(Y)++3)+TW(Y)
	YPREV=Y
	Y*Y-F/FPRIME

•

.

PAGE

115	IF(ABS(Y-YPREV).GT.0.001) GO TO 71 YD=Y
	C CALCULATE EFFECT DUE TO CHANGE IN CROSS-SECTION
	75 CONTINUE AD*A(YD)
120	
120	C RESET IPOOL FOR U/S POOL IPOOL=IPOOL+1
	TYPPOOL=POOLTYP(IPOOL)
	YU×YD C icount stops program if no converging
125	ICOUNT STOPS PROGRAM IP NU CONVERGING
123	
	RAD=RADIUS (IPOOL) 80 continue
	F=-YU+YD+(1./(2.*GGRAV)+(QDS++2/AD++2-QUS++2/A(YU)++2))
130	FPRIME=-1.+QUS++2+TW(YU)/(GGRAV+A(YU)++3)
	YU=YU-F/FPRIME
	IF(YU.LT.0.1) YU=0.1
	IF(TYPPOOL.NE.2) GO TO 90
	IF(YU.GE.RAD) YU=RAD=0.1
135	90 CONTINUE
	IF(TYPPOOL.NE.3) GO TO 100
	IF(YU.GE.2.+RAD) YU=2.+RAD-0.1
	100 CONTINUE
	ICOUNT=ICOUNT+1
140	IF(ICOUNT.GT.20) WRITE(6,9010)
• • •	IF(ICOUNT.GT.20) STOP
	IF(ABS(YU-YPREV).GT.0.001) GO TO BO
	RETURN
145	C FORMATS
	9000 FORMAT(1X, 3HT1=, F10.3.7H IN HDN)
	9010 FORMAT(1X.11HSTOP IN HDN)
	END

.

۲

)

79/01/09. 14.41.14

PAGE 1

t

1	FUNCTION ODN(T)
	C DOWNSTREAM FLOW AT EACH POOL
	C SPECIFY Q AT POOL 1 IN OD
	C O CONTINUITY IS MAINTAINED FOR ALL OTHER POOLS
5	C T IS TIME IN SEC
•	
	COMMON /ALL/
	C PHYSICAL PARAMETERS
	. NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
10	. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
	(51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51).
	C WORKING VARIABLES
	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
	. STAEND(50), T1, Y1, STUDY,
15	C CANAL DESCRIPTION
19	(TATE (FA) DUNCES (FA) NODOOL & DOOL TYD/FA) FTATION / FA)
	. TMAXI, NUMTRNS, USRES, DSRES
20	REAL NMANN, MANN
20	INTEGER TYPPOOL, POOLTYP, STRTYPE, STUDY
	C C
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
25	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
23	COMMON /SCRATCH/
	. DUMMY1(8618),QD(48),DUMMY2(5620),KMAX,
	. SAVETUP(500),SAVEYUP(500),SAVEQUP(500) C
30	C USE SAVETUP. SAVEQUP FOR SECOND AND FOLLOWING POOLS
30	IF(1PODL.GE.2) GO TO 10
	C Q STEPS AT EACH HOUR
	TIMEHR≖T/3600.
	ITIME=TIMEHR
35	ITIME=ITIME+1
99	IF(ITIME.LT.1) ITIME=1
	1F(1T1ME.GT.48) 1T1ME=48
	ODN=OD(ITIME)
	C CHECK FOR TURNOUT
40	CALL TRNOUT(DELO,T)
- v	ODN=QDN+DELQ
	RETURN
	C Q FOR SECOND AND FOLLOWING POOLS IN EACH REACH
	C LINEAR INTERPOLATION OF UPSTREAM O FROM PREVIOUS POOL
45	10 CONTINUE
	DO 20 I=1, LIM
	K=1
	IF(T.GE.SAVETUP(I),AND.T.LT.SAVETUP(I+1)) GO TO 30
50	20 CONTINUE
	IF(T.EQ.SAVETUP(KMAX)) GO TO 30
	C LET T RUN BEYOND TMAX FOR MOST UPSTREAM POOL FOR LAST POINT
	FF((T.GT.SAVETUP(K)).AND.(IPOOL.EG.NPOOLS)) GO TO 30
	WRITE(6,9000) T, IPOOL
55	STOP
	30 CONTINUE
	DT=T-SAVETUP(K)

ו ו

.

	DELT=SAVETUP(K+1)-SAVETUP(K)
	RATIO=DT/DELT
60	QDN=SAVEQUP(K)+RATIO+(SAVEQUP(K+1)-SAVEQUP(K))
	C CHECK FOR TURNOUT
	CALL TRNDUT(DELQ,T)
	QDN=QDN+DELQ
	RETURN
65	C FORMAT
	9000 FORMAT(1X,18HQ(T) NOT FOUND AT ,F10-3,
	13H SEC FOR POOL, 15/)

OPT=1

END

•

ŧ

1	FUNCTION QUPST(T)
	C UPSTREAM FLOW
	C SPECIFY Q IN QU FOR MOST UPSTREAM POOL
	C T IS TIME IN SEC
5	C C
	COMMON /ALL/
	C PHYSICAL PARAMETERS
	NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
	. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
10	(51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
	C WORKING VARIABLES
	. TMAX,XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50),
	. STA END(50), T1,Y1,STUDY ,
	C CANAL DESCRIPTION
15	. UPSTA(50),DWNSTA(50),NOPDOLS,PODLTYP(50),STRTYPE(51),
	. TMAXI, NUMTRNS, USRES, DSRES
	C
	REAL NMANN, MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY
20	C
	C
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
	COMMON /SCRATCH/
25	DUMMY1(8666),QU(48),DUMMY2(7073)
	C
	C Q STEPS AT EACH HOUR
	TIMEHR=7/3600.
~~	
30	ITIME=ITIME+1
	IF(ITIME.LT.1) ITIME=1
	IF(ITIME.GT.48) ITIME=48
	QUPST=QU(ITIME)
35	RETURN
35	END

SUBROUTINE TRNOUT 74/74 OPT=1

1

•

•

•

.

1

1

PAGE

1	SUBROUTINE TRNOUT(DELQ,T)
	C ROUTINE TO GET TURNOUT Q FOR USE IN FUNCTION QON
	C
	C
5	COMMON /ALL/
	C PHYSICAL PARAMETERS
	. NMANN,SO,GGRAV,PI,BOTTOM(50),SIDSLOP(50),RADIUS(50),BOTGATE(51),
	. MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ
	. (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
10	C WORKING VARIABLES
	. TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50),
	. STAEND(50), T1, Y1, STUDY,
	C CANAL DESCRIPTION
	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51),
15	. TMAXI, NUMTRNS, USRES, DSRES C
	REAL NMANN MANN
	INTEGER TYPPOL.POOLTYP.STRTYPE.STUDY
	C
20	č
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES
	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
	COMMON /SCRATCH/
	. DUMMY1(8714),97(48,50),DUMMY2(4673)
25	C INITIALIZE TURNOUT Q
	DELQ=0.0
	C
	C NUMTRNS IS NUMBER OF TURNOUTS IN THIS REACH
	IF(NUMTRNS,EQ.O) RETURN
30	TIMEHR=T/3600.
	ITIME=ITIME+1
	IF(ITIME.LT.1) ITIME=1
35	IF(ITIME.GT.48) ITIME=48
33	DÉLQ=QT(ITIME,IPOOL) Return
	END

SUBROUTINE GATEMO 74/74 OPT=1 FTN 4.6+428 SUBROUTINE GATEMO 1 C ROUTINE TO CALCULATE GATE OPENINGS C AND PUMP SCHEDULES, IF ANY 5 C COMMON /ALL/ C PHYSICAL PARAMETERS . NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLDP(50), RADIUS(50), BOTGATE(51), MANN(50), BOTGRAD(50), SYFONDY(50), SYFNLOS(50), SPEED(51), PUMPDQ . (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51), 10 C WORKING VARIABLES . TMAX, XEND, TINC, NXINC, NPOOLS, IPOOL, TYPPOOL, STABEG(50), STAEND(50),T1,Y1,STUDY, C CANAL DESCRIPTION UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51), 15 . TMAXI, NUMTRNS, USRES, DSRES . С REAL NMANN, MANN INTEGER TYPPOOL, POOLTYP, STRTYPE, STUDY 20 С C C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND COMMON /SCRATCH/ . DUMMY1(12000) 25 , TD(500), QD(500), YD(500) . ,TU(500),QU(500),YU(500) , DUMMY2(787) . С 30 С #RITE(6,9000) C READ U/S T,Q,H OF FIRST STRUCTURE C IF THIS IS A GATE, THE DEPTH D/S OF THE GATE MUST C HAVE BEEN SPECIFIED IN DSRES IF THIS IS A PUMP, SKIP CALCULATIONS AS Q WAS SCHEDULED 35 С READ(1,9010) LMAX READ(1,9020) (TU(1),1=1,LMAX) READ(1,9020) (QU(I), I=1, LMAX) READ(1,9020) (YU(I), I=1, LMAX) C MOST D/S STRUCTURE IS IN ARRAYS(51) 40 IF(STRTYPE(51).EQ.1) GO TO 10 C CALCULATE GATE OPENINGS FOR GATE OPENING INTO C CONSTANT LEVEL RESERVOIR AT D/S END OF REACH YDN=DSRES 45 1P00L=0 JP00L=1 KMAX=0 ISTRTYP=2 WRITE(6,9030) IPOOL, KMAX, ISTRTYP WRITE(6,9030) JPOOL, LMAX 50 C CALCULATE GATE OPENINGS AT TIMES T+TINC TMAX=TU(LMAX) C LIMIT TO 24 HOURS IF(TMAX.GT.86400.) TMAX=86400. 55 T=0.0 C CALCULATE "AT 5 MINUTE INTERVALS

TINC=300.

1

PAGE 1

79/01/09. 14.41.14

- •

PAGE 2

		4 CONTINUE C INTERPOLATE UPSTREAM
	60	M=LMAX-1
		DO 7 1+1,M
		K=I
		IF(T.GE.TU(I).AND.T.LE.TU(I+1)) GO TO 8
		7 CONTINUE
	65	8 CONTINUE
		DT=T-TU(K)
		DELT=TU(K+1)-TU(K)
		RATIO=DT/DELT
		QUP=QU(K)+RATID+(QU(K+1)-QU(K))
	70	C Q THRU GATE IS Q U/S OF GATE LESS TURNOUT Q AT GATE
		CALL TRNOUT(DELQ,T) IPOOL=0
		QDN=QUP-DELQ
	75	YUP=YU(K)+RATIO+(YU(K+1)-YU(K))
		C U/S SIDE OF GATE
		C SET CHANGE IN INVERT ELEVATION COMING INTO GATE
		EC=0.0
		EG=-USINVT(51)
	80	SYPHON=0.0
		YSYPHON=0.0
		IPOOL=IPOOL+1
		TYPPOOL=POOLTYP(IPOOL)
	85	IUPROWN=1
1	83	CALL GATEY(QUP,YUP,EC,EG,SYPHON,YSYPHON,YGATE,QDN,IUPRDWN) YUP=YGATE
<u></u> з		IPOOL=IPOOL-1
		C CHECK THAT U/S DEPTH IS GREATER THAN D/S DEPTH
		IF(YUP.LT.YDN) GD TO 500
	90	C ····································
		C CALCULATE GATE OPENING
		G=YUP
		IF(ABS(YUP-YDN).LT.0.01) GO TO 11
		9 GPREV=G
	95	GOY=G/YUP
		1F(GOY, LT. 0.0) GOY=0.0
		IF(GOY.GT.1.0) GOY=1.0
		C SET IPOOL FOR COEFFICIENT ROUTINE 1POOL=51
	100	COEFF = CD (GOY)
		C RESET IPOOL
		IPOOL=0
		ADN=BOTGATE(51)#YDN
		C SET IPOOL FOR AREA ROUTINE
	105	1P00L=1P00L+1
		TYPPOGL=POGLTYP(IPOGL)
		AUP=YUP+BOTGATE(51)
		C RESET IPOOL FOR D/S POOL
		IPOOL = IPOOL-1
	110	G=QDN/(BOTGATE(51)+COEFF+SQRT(2.+GGRAV+(YUP-YDN)
		+QDN++2/AUP++2)) IF(G.GT.YUP) G=YUP
		G=0.5*(G+GPREV)
		IF(ABS(G-GPREV).GT.0.001) GO TO 9
		. (Abola Grachtariath an in a

• •

PAGE

-17

115	11 CONTINUE
	WRITE(2,9040) T,G,YUP,YDN
	T=T+TINC
	IF(T.LE.TMAX) GO TO 4
120	C READ IN DOWNSTREAM AND UPSTREAM T,Q,H OF GATE C Index IPOOL IS on downstream side of gate
	C INDEX 1900E 13 ON DUMNSTREAM SIDE OF GATE
	C GATE TYPE IS DATA ON DOWNSTREAM SIDE OF GATE
	c
	C ISTRTYP=0 POOL NOT USED
125	C =1 PUMPS
	C =2 NORMAL GATE
	C =3 SYPHON DOWNSTREAM OF GATE
	C =4 SYPHON WITH NO GATE C =5 no gate
130	
	10 CONTINUE
	READ(1,9030) IPOOL,KMAX,ISTRTYP
	IF(EOF(1)) 400,20
	20 CONTINUE
135	WRITE(6,9030) IPOOL,KMAX,ISTRTYP
	READ(1,9020) (TD(1),I=1,KMAX) READ(1,9020) (QD(1),I=1,KMAX)
	READ(1,9020) (VD(1),1=1,KMAX)
	READ(1,9030) JPOOL, LMAX
140	IF(EOF(1)) 35,30
	30 WRITE(6,9030) JPOOL,LMAX
ĥ.	READ(1,9020) (TU(1),I=1,LMAX)
••	READ(1,9020) (QU(1),1=1,LMAX)
145	READ(1,9020) (YU(1),I=1,LMAX) GO TO 36
	C FINISHED IF LAST STRUCTURE IS NOT STROKED
	35 IF(STUDY.EQ.1) GO TO 400
	36 CONTINUE
	C SKIP NO GATE BOUNDARIES
150	IF(ISTRTYP.EQ.4.OR.ISTRTYP.EQ.5) GO TO 10
	C CALCULATE GATE OPENINGS OR PUMP DISCHARGES AT TIMES T+TINC TMAX=TU(LMAX)
	C LIMIT TO 24 HOURS
	IF(TMAX.GT.86400.) TMAX+86400.
155	T=0.0
	C CALCULATE AT 5 MINUTE INTERVALS
	TINC=300.
	40 CONTINUE C Interpolate downstream
160	M=KMAX-1
	DO 50 1=1,M
	K=I
	IF(T.GE.TD(I).AND.T.LT.TD(I+1)) GO TO 60
	50 CONTINUE
165	60 CONTINUE
	DT#T-TD(K) DELT=TD(K+1)-TD(K)
	RATIO=DT/DELT
	QDN=QD(K)+RATIO+(QD(K+1)-QD(K))
170	YDN=YD(K)+RATIO=(YD(K+1)-YD(K))
	C INTERPOLATE UPSTREAM

2

.

.

٠

4

T

C SET U/S DEPTH JUST IN CASE THIS IS A GATE AT MOST U/S END OF REACH YUP=USRES IF(IPOOL.EQ.NPOOLS) GO TO 85 175 M=LMAX-1 DO 70 I=1.M K=1 IF(T.GE.TU(I).AND.T.LE.TU(I+1)) GO TO 80 70 CONTINUE 180 CONTINUE 80 DT=T-TU(K) DELT=TU(K+1)-TU(K) RATIO=DT/DELT QUP=QU(K)+RATIO+(QU(K+1)-QU(K))YUP=YU(K)+RATIO+(YU(K+1)-YU(K)) 185 CONTINUE 85 C IS THIS A PUMP IF(ISTRTYP.EQ.1) GO TO 600 IF(ISTRTYP.NE.2) GO TO 200 190 C CALCULATE Y IN NORMAL GATE STRUCTURE C SET CHANNEL X-SECTION TYPE FOR AREA ROUTINE TYPPOOL=POOLTYP(IPOOL) C IPOOL HAS BEEN READ IN ABOVE C ZERO OUT SYPHON PARAMETERS 195 SYPHON=0.0 YSYPHON=0.0 C D/S SIDE OF GATE C INVERT DROP TO TRAPEZOIDAL CHANNEL C EC IS CHANNEL INVERT ELEVATION C EG IS GATE INVERT ELEVATION 200 С EC=0.0 EG=DSINVT(IPOOL) C IUPROWN =0 FOR D/S SIDE OF GATE, =1 FOR U/S SIDE 205 IUPRDWN=0 CALL GATEY (QDN, YDN, EC, EG, SYPHON, YSYPHON, YGATE, QDN, IUPRDWN) YDN=YGATE C U/S SIDE OF GATE IF(IPOOL.EQ.NPOOLS) GO TO 310 C SET CHANGE IN INVERT ELEVATION COMING INTO GATE 210 EC=0.0 . EG=-USINVT(IPOOL) IPOOL=IPOOL+1 TYPPOOL=POOLTYP(1POOL) 215 IUPRDWN=1 CALL GATEY (QUP, YUP, EC, EG, SYPHON, YSYPHON, YGATE, QDN, IUPROWN) YUP=YGATE 1P00L=1P00L-1 TYPPOOL=POOLTYP(IPOOL) 220 GO TO 310 200 IF(ISTRTYP.NE.3) GO TO 10 C SYPHON С C SET CHANNEL X-SECTION TYPE FOR AREA ROUTINE 225 TYPPOOL=POOLTYP(IPOOL) C D/S SIDE OF GATE C SET SYPHON HEAD LOSS AND SYPHON DROP

SYPHON=SYFNLOS(IPOOL)

	YSYPHON=SYFONDY(IPODL)
230	C SET GATE AND CHANNEL ELEVATIONS
	C INVERT DROP FROM GATE THRU SYPHON LUMPED IN SYFONDY
	EG=0.0
	EC=0.0
	IUPRDWN=0
235	CALL GATEY (QDN, YDN, EC, EG, SYPHON, YSYPHON, YGATE, QDN, IUPRDWN)
235	YDN=YGATE
	C U/S SIDE OF GATE
	1F(1POOL.EQ.NPOOLS) GO TO 310
	C SET CHANGE IN INVERT ELEVATION GOING INTO GATE
240	SYPHON=0.0
	YSYPHON=0.0
	EG=-USINVT(IPODL)
	IPO0L=IPO0L+1
245	TYPPOOL=POOLTYP(IPOOL)
	IUPRDWN=1
	CALL GATEY (QUP.YUP, EC, EG, SYPHON, YSYPHON, YGATE, QDN, IUPROWN)
	YUP=YGATE
	IPO0L=1PO0L-1
250	TYPPOOL=POOLTYP(IPOOL)
	310 CONTINUE
	C CHECK THAT U/S DEPTH IS GREATER THAN D/S DEPTH
	IF(YUP.LT.YDN) GO TO 500
	C
255	C CALCULATE GATE OPENING
	C DEPTHS AND OS ARE INSIDE GATE SECTION
	G*YUP
	IF(ABS(YUP-YDN).LT.0.01) GO TO 330
	320 GPREV=G
260	GOY=G/YUP
	1F(GOY.LT.0.0) GOY=0.0
	IF(GOY.GT.1.0) GOY=1.0
	COEFF=CD(GOY)
0.05	TYPPOOL=POOLTYP(1POOL)
265	ADN=YDN+BOTGATE(IPOOL)
	C GET AREA IN UPSTREAM SIDE OF GATE SECTION
	AUP=YUP+BOTGATE(1POOL)
	G=QDN/(BOTGATE(IPOOL)+COEFF+SQRT(2.+GGRAV+(YUP-YDN)
	+QDN++2/AUP++2))
270	IF(G.GT.YUP) G=YUP
	G=0.5+(G+GPREV)
	IF(ABS(G-GPREV).GT.0.001) GO TO 320
	330 CONTINUE
	WRITE(2,9040) T,G,YUP,YDN
275	T=T+TINC
	IF(T.LE.TMAX) GO TO 40
•	GO TO 10
	400 REWIND 1
	REWIND 2
280	RETURN
	C REVERSE FLOW THRU GATE - STOP
	500 CONTINUE
	WRITE(6,9050) IPOOL,JPOOL,ISTRTYP,T,YUP,YDN
0.0E	
285	C PUMP STROKING

SUBROUTINE GATEMO

74/74

OPT=1

PAGE

5

79/01/09. 14.41.14

FTN 4.6+428

L

ЧĽ

• •

•

•

	600 CONTINUE	
	WRITE(2,9040) T,QDN,YUP,YDN	
	T=T+TINC	
	IF(T.LE.TMAX) GO TO 40	
290	GO TO 10	
	C FORMATS	
	9000 FORMAT(1X,9HIN GATEMO/1X,	
	30H POOL KMAX STR TYPE/)	
	9010 FORMAT(1X,10X,110)	
295	9020 FORMAT(1X,10F10.3)	
	9030 FORMAT(1X,4I10)	
	9040 FORMAT(1X,4F10.3)	
	9050 FORMAT(1X,43HU/S DEPTH LESS THAN D/S DEPTH BETWEEN POOLS,	
	. 15,4H AND,15/1X,9HGATE TYPE,15/1X,5HAT T=,F10.3	
300	. /1X.10HU/S DEPTH=,F10.3/1X,10HD/S DEPTH=,F10.3)	
	END	

1

.

.

.

1	SUBROUTINE GATEY(QCHANNL,YCHANNL,ECHANNL,EGATE,SYPHON,YSYPHON,
	YGATE, QGATE, IUPRDWN)
	C ROUTINE TO CALCULATE DEPTH IN GATE STRUCTURE FROM CHANNEL DEPTH C
5	COMMON /ALL/
	C PHYSICAL PARAMETERS
	NMANN,SC.GGRAV,PI,BOTTOM(50),SIDSLOP(50),RADIUS(50),BOTGATE(51), MANN(50).BOTGRAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ
	. (51), DEDBAND(51), NGATES, GATECO(11,51), DSINVT(50), USINVT(51),
10	C WORKING VARIABLES
	. TMAX.XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50), . STAEND(50),F1,Y1,STUDY,
	C CANAL DESCRIPTION
15	. UPSTA(50),DWNSTA(50),NOPOOLS,POOLTYP(50),STRTYPE(51), . TMAXI,NUMTRNS,USRES,DSRES
13	C C
	REAL NMANN, MANN
	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY C
20	C
	C IUPRDWN=0 FOR D/S SIDE OF GATE, =1 FOR U/S SIDE IF(IUPRDWN-EQ.)) go to 20
25	C D/S SIDE OF GATE
20	Ç Y≖YCHANNL
	ACHANNL=A(Y)
	C1=QCHANNL**2/(2.*GGRAV*ACHANNL**2)+YCHANNL+ECHANNL-EGATE YSYPHON+SYPHON*OCHANNL**2
30	C GATE BOTTOM WIDTH
	B=BOTGATE(IPOOL)
	C2=QCHANNL++2/(2.+GGRAV+B++2) 10 CONTINUE
	C USE RECTANGULAR SECTION AT GATE
35	IF(Y.LE.O.) Y=0.1 F=Y+C2/Y++2→C1
	FPRIME=12.+C2/Y++3
	YPREV=Y
40	Y=Y-F/FPRIME IF(ABS(Y-YPREV).GT.0.001) G0 T0 10
	YGATE=Y
	RETURN
	C U/S SIDE OF GATE
45	C
	C IPOOL AND TYPPOOL WERE SET IN GATEMO FOR THE U/S POOL 20 Continue
	Y=YCHANNL
50	ACHANNL=A(Y) C Reset to d/s pool for gate properties
30	IPOOL=IPOOL=1
	IF(IPOOL.EQ.0) IPOOL=51
	TYPPOOL=POOLTYP(IPOOL) C1=OCHANNL++2/(2.+GGRAV+ACHANNL++2)+YCHANNL+ECHANNL-EGATE
55	C GATE BOTTOM WIDTH
	B=BOTGATE(IPOOL)
	C2=QGATE++2/(2.+GGRAV+B++2)

.

.

٦,

1

C RESET TO U/S POOL BEFORE RETURN TO GATEMO IF(IPOOL.EQ.51) IPOOL=0 60 IPOOL=IPOOL+1 TYPPOOL=POOLTYP(IPOOL) 30 CONTINUE C USE RECTANGULAR SECTION AT GATE IF(Y.LE.O.) Y=0.1 65 F=Y+C2/Y**2-C1 FPRIME=1.-2.*C2/Y**3 YPREV=Y Y=Y-F/FPRIME IF(ABS(Y-YPREV).GT.0.001) GO TO 30 70 YGATE=Y RETURN END

	FUNCTION CD	74/74	OPT=1	FTN 4.6+428	79/
1	FL	JNCTION CD	(607)		
-				DEFFICIENT AS FUNCTION	
		DPENING/		CITETER AS FORCETOR	
	C				
5	-	MMON /ALL	/		
		L PARAMET			
				TOM(50),SIDSLOP(50),RADIUS(50),BOTGATE(51)	•
		ANN (50) . B	OTGRAD(50).	SYFONDY (50), SYFNLOS (50), SPEED (51), PUMPDO	/•
		51) DEDRA	ND(51).NGAT	ES, GATECO(11,51), DSINVT(50), USINVT(51),	
10		VARIABLE			
		MAX.XEND.	TINC.NXINC.	POOLS, IPOOL, TYPPOOL, STABEG(50).	
			.T1.Y1.STUD		
		DESCRIPTIO			
				NOPOOLS, POOLTYP(50), STRTYPE(51),	
15			RNS, USRES, D		
	С	-			
	RE	EAL NMANN,	MANN		
	11	NTEGER TYP	POOL, POOLTY	P, STRTYPE, STUDY	
	C				
20	Ç.				
	Ć FIT PAF	RABOLA TO	3 POINTS NE	NR GOY	
	K	=GOY + 10. + 1	•		
	11	F(K.LT.1)	K=1		
		F(K.GT.9)	K=9		
25	•.	FFSET=K			
		=GOY * 100	FFSET		
		IPOOL			
				GATECO(K+1,I)+GATECO(K+2,I))	
				GATECO(K,I))	
30		=GATECO(K			
		D=A1+X++2+	B1+X+C1		
		ETURN			
	E	ND			

79/01/09. 14.41.14

PAGE

1

- - - -

79

••

,

• •

1	SUBROUTINE FOLGWER C Routine to follow gate stroking gate motions to determine C start times and final positions of gates
5	C OR TO TURN PUMPS ON AND OFF C C
	C SPEED IS GATE SPEED IN FT/MIN C dedband is difference allowed in gate opening between C actual position and stroking solution before moving gate
10	C C PUMPDQ IS INCREMENTAL DISCHARGE FOR PUMPS Common /All/
	C PHYSICAL PARAMETERS NMANN,SO,GGRAV,PI,BOTTOM(50),SIDSLOP(50),RADIUS(50),BOTGATE(51), MANN(50),BOTGAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ
15	. (51),DEDBAND(51),NGATES,GATECO(11,51),DSINVT(50),USINVT(51), C WORKING VARIABLES . TMAX,XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50), . STAEND(50),T1,Y1,STUDY.
20	C CANAL DESCRIPTION . UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51), . TMAXI, NUMTRNS, USRES, DSRES
	C REAL NMANN, MANN
25	INTEGER TYPPOOL,POOLTYP,STRTYPE,STUDY C C
	C SCRATCH AREA TO BE OVERLAID IN THE VARIOUS SUBROUTINES C to keep memory within some sort of reasonable bound common /scratch/
30	. DUMMY1(12000) T(500).G(500).TMIN(500).GPOSN(500) DUMMY2(1787) C
35	C EQUIVALENCE Q AND G SO PUMP STROKING VARIABLE NAMES MAKE C. Some sense C if this is a pump, gatemo wrote Q; if it is a gate, gatemo C wrote gate opening, g
40	C DIMENSION Q(500),QLAST(500) EQUIVALENCE (Q(1),G(1)),(QLAST(1),GPOSN(1)),(PUMPO,GATEOPN)
	C C C C
45	REWIND 2 Rewind 5 IPOOL=51
	C READ IN T AND GATE OPENING NGATE=1 10 I=1
50	IEOF=0 READ(2,9010) T(1),G(1) IF(EOF(2)) 70,20
55	20 I=I+1 READ(2,9010) T(1),G(I) IF(EDF(2)) 70,30
	30 IF(T(I).NE.0.0) GD TD 20 BACKSPACE 2

ŝ

• •

	40 MAX=1-1
	C CALCULATE START TIMES
60	C INITIAL OPENING
••	C TIME IN MINUTES NOW
	TMIN(1)=0.0
	GPOSN(1)=G(1)
	GATEOPN=GPOSN(1)
65	1=2
	C FIND POOL D/S OF THIS GATE
	42 IF(STRTYPE(IPOOL).EQ.2) GO TO 45
	IF(STRTYPE(IFOOL).EQ.3) GO TO 45
	C SKIP STROKING MOST D/S PUMP
70	
/0	IF(1PDOL.EQ.51) GO TO 44
	IF(STRTYPE(IPOOL).EQ.1) GO TO 80
	44 CONTINUE
	IF(IPOOL.EQ.51) IPOOL=0
~~	IPOOL=IPOOL+1
75	GO TO 42
	45 CONTINUE
	DO 50 J=2,MAX
	IF(ABS(GATEOPN-G(J)).LT.DEDBAND(IPOOL)) GO TO 50
	C MOVE GATE
80	DELY=ABS(GATEOPN-G(J))
	DELT=DELY/SPEED(IPOOL)
	TMIN(I)=T(J)/60DELT
	GPOSN(I) = G(J)
	GATEOPN=G(J)
85	I=I+1
	50 CONTINUE
	NOMOVE = I - 1
	WRITE(6,9020) NGATE,NOMOVE
	C SAVE FOR ROUTINE WRITEIT TO OUTPUT IN REVERSE ORDER
90	WRITE(5,9020) NGATE,NOMOVE
	NGATES=NGATE
	DO 60 I=1, NOMOVE
	WRITE(5,9010) TMIN(1), GPOSN(1), SPEED(IPOOL)
	60 CONTINUE
95	WRITE(6,9000) DEDBAND(IPOOL)
	NGATE=NGATE+1
	IF(IPOOL.EQ.51) IPOOL=0
	IPOOL=IPOOL+1
	IF(IEOF.EQ.0) GO TO 10
100	REWIND 5
	RETURN
	/0 IEOF=1
	GO TO 40
	C PUMP STROKING
105	80 CONTINUE
	C SET INITIAL DISCHARGE TO N+PUMPDQ
	N=0
	85 CONTINUE
	FN=N
110	QTEST=PUMPQ-FN+PUMPDQ(IPOOL)
	IF(QTEST.LT.0.0) GD TO 90
	N=N+1
	GO TO 85
	90 N=N-1

0)

2

-

.

د ،

PAGE 3

115		FN=N
·		PUMPQ=FN+PUMPDQ(IPODL)
		QLAST(1)=PUMPQ
		DO 110 J=2,MAX IF(ABS(PUMPQ-Q(J)).LT.PUMPDQ(IPDQL)) GO TO 110
120	C 7000	PUMP ON OR OFF
120	CTURN	IF(PUMPQ.LT.Q(J)) GO TO 100
	C THEN	PUMP OFF
		TMIN(I)=T(J)/80.
	95	CONTINUE
125		QLAST(1)=PUMPQ-PUMPDQ(IPOOL)
		PUMPQ=QLAST(I)
		IF(ABS(PUMPQ-Q(J)).GE.PUMPDQ(IPODL)) GO TO 95
		1=1+1
		GD TO 110
130	C TURN	PUMP ON
	100	CONTINUE
		TMIN(1)=T(J)/60.
	105	CONTINUE
		QLAST(I)=PUMPQ+PUMPDQ(IPOOL)
135		PUMPQ=QLAST(I)
		IF(ABS(PUMPQ-Q(J)).GE.PUMPDQ(IPODL)) GO TO 105 I=I+1
	110	CONTINUE
		NOMOVE=I-1
140		WRITE(6.9030) NGATE, NOMOVE
		WRITE(5.9030) NGATE.NOMOVE
		NGATES=NGATE
		DO 120 1=1,NOMOVE
		WRITE(5,9040) TMIN(1),QLAST(1)
145	120	CONTINUE
		WRITE(6,9050) PUMPDQ(1POOL)
		NGATE=NGATE+1
		IPOOL=IPOOL+1
150		IF(IEOF.EQ.0) GO TO 10 Rewind 5
150		RETURN
	C FORM	
	9000	FORMAT(1X.24HGATE MOVEMENT DEADBAND =.F10.3.3H FT)
	9010	FORMAT(1X, 3F10.3)
155	9020	FORMAT(1X, 4HGATE, 15, 110, 2X, 9HMOVEMENTS)
	9030	FORMAT(1X, 4HPUMP, 15, 110, 2X, 9HCHANGES)
	9040	FORMAT(1X, 2F10.3, 10X)
	9050	FORMAT(1X,14HPUMP DELTA Q =,F10.3)
		END

))

1	SUBROUTINE WRITEIT
	C ROUTINE TO MERGE TURNOUT SCHEDULES, GATE SCHEDULES C and pump schedules into input file for unsteady model
	C FILE ON TAPE B IS POSITIONED AT END OF INITIAL CONDITIONS
5	C OUTPUT IS FROM UPSTREAM TO DOWNSTREAM
	C COMMON /ALL/
	C PHYSICAL PARAMETERS
	NMANN, SO, GGRAV, PI, BOTTOM(50), SIDSLOP(50), RADIUS(50), BOTGATE(51),
10	. MANN(50),BOTGRAD(50),SYFONDY(50),SYFNLOS(50),SPEED(51),PUMPDQ . (51).DEDBAND(51),NGATES,GATECO(11,51),DSINVT(50),USINVT(51),
	C WORKING VARIABLES
	. TMAX,XEND,TINC,NXINC,NPOOLS,IPOOL,TYPPOOL,STABEG(50),
15	. STAEND(50),T1,Y1,STUDY, C CANAL DESCRIPTION
13	. UPSTA(50), DWNSTA(50), NOPOOLS, POOLTYP(50), STRTYPE(51).
	. TMAXI, NUMTRNS, USRES, DSRES
	C C C C C C C C C C C C C C C C C C C
20	REAL NMANN,MANN Integer Typpool.pooltyp.strtype.study
	C C
	C C Scratch area to be overlaid in the various subroutines
	C TO KEEP MEMORY WITHIN SOME SORT OF REASONABLE BOUND
25	COMMON /SCRATCH/
	. DUMMY1(8618),QD(48),QU(48),QT(48,50),DUMMY2(886), . TMQVE(500),GO(500),SPED(500),DUMMY3(2287)
	C
	DIMENSION Q(500)
30	C ÉQUIVALENCE GATÉ OPENING, GO, FOR GATES WITH Q FOR C pumps so variable names will make some sense.
	C GO AND Q ARE IN THE SAME FIELD ON TAPE 5.
	c
35	EQUIVALENCE (GD(1),Q(1))
•	C START AT UPSTREAM END
	NGATE=NGATES
	JPOOL=1 K=NOPOOLS
40	C WAS U/S STRUCTURE A GATE OR A PUMP
	IF(STRTYPE(K).EQ.1) GO TO 50 C gate
	C GATE C FIND GATE SCHEDULE ON TAPE 5
_	REWIND 5
45	10 READ(5,9110) IGATE, IMOVE
	DO 20 I=1,IMOVE READ(5,9120) TMOVE(I),GO(I),SPED(I)
	20 CONTINUE
50	IF(IGATE.NE.NGATE) GD TD 10
50	C SET FOR NEXT D/S STRUCTURE NGATE=NGATE=1
	WRITE(9,9130) JPOOL,STRTYPE(K),IMOVE
	DO 30 I*1,IMOVE
55	WRITE(9,9140) TMOVE(I),GO(I),SPED(I) 30 continue
	GO TO 120
	C PUMP

PAGE 1

.

Š

4

•

.

	50 CONTINUE
	C WAS PUMP SCHEDULED OR STROKED
60	IF(STUDY.EQ.2) GO TO 80
	C SCHEDULED
	C EXTRACT Q CHANGES FROM QU
	IMOVE=1
	TMOVE(1)=0.0
65	Q(1) = QU(1)
	DD 60 J=2,48
	IF(QU(J), EQ.QU(J-1)) GO TO 60
	IMOVE=IMOVE+1
	TMOVE(IMOVE) = (J-1) + 60
70	Q(IMOVE)=QU(J)
	60 CONTINUE
	WRITE(9,9130) JPOOL,STRTYPE(K),IMOVÉ
	DO 70 1=1, IMOVE
	WRITE(9,9150) TMOVE(I),Q(I)
75	70 CONTINUE
	GO TO 120
	C STROKED
	BO CONTINUE
	C FIND PUMP SCHEDULE ON TAPE 5
80	REWIND 5
	90 READ(5,9110) IGATE,IMOVE
	DO 100 I+1, IMOVE
	READ(5,9120) TMOVE(1),Q(1)
	100 CONTINUE
85	IF(IGATE.NE.NGATE) GO TO 90
	C SET FOR NEXT D/S STRUCTURE
	NGATE=NGATE=1
	WRITE(9,9130) JPOOL,STRTYPE(K),IMOVE
	DO 110 I=1, INOVE
90	WRITE(9,9150) TMOVE(I),Q(I)
	110 CONTINUE
	C IS THERE A TURNOUT AT D/S END OF POOL
	120 CONTINUE
	DO 130 I=1,48
95	1F(QT(1,K).NE.0.0) GD TD 140
	130 CONTINUE
	GO TO 200
	C EXTRACT TURNOUT Q CHANGES FROM QT
	140 CONTINUE
100	IMOVE=1
	TMOVE(1)=0.0
	Q(1)=QT(1,K)
	DO 150 J=2,48
	IF(QT(J,K),EQ.QT(J-1,K)) GD TO 150
105	IMOVE = IMOVE+1
	TMOVE(IMOVE)=(J-1)+60
	Q(IMOVE)=QT(J,K)
	150 CONTINUE
	ITRNTYP=99
110	WRITE(9,9130) JPOOL, ITRNTYP, IMOVE
	DO 160 I=1, INOVE
	WRITE(9,9150) TMOVE(I),Q(I)
	160 CONTINUE
	C

PAGE	3
------	---

SOBROOTIN	= WR31211	/4//4 0	~ ! = !	
115	C INTERI	OR BOUNDARIES		
	Č			
	200 0	ONTINUE		
		EWIND 5		
		(=K-1		
120		POOL=JPOOL+1		
		F(K.EQ.0) GO	E AT U/S END (THIS DOOL
			EQ.4) GO TO 3	
	1	F(STRTYPE(K).	EQ.5) GO TO 3	00
125	1	F(STRTYPE(K).	NE.1) GO TO 24	10
	C PUMPS	• • • •		
		UMP SCHEDULE		
		EAD(5,9110) I		
130		0 220 I=1.IMO		
130		EAD(5,9120) T Continue	MUVE(1),4(1)	
			ATE) GO TO 210	,
		R NEXT D/S ST		•
		IGATE=NGATE-1		
135		RITE(9,9130)	JPOOL, STRTYPE	(K),IMOVE
		0 230 I=1,IMO		
		RITE(9,9150)	TMOVE(I),Q(I)	
		ONTINUE		
140	C GATE	0 10 300		
174		ONTINUE		
		ATE SCHEDULE	ON TAPE 5	
		EAD(5.9110) I		
	t	0 260 I=1,IMO	VE	
145			MOVE(I),GO(I),	,SPED(I)
		ONTINUE		
			ATE) GO TO 250)
		NR NEXT D/S ST Igate=ngate-1	RUCIURE	
150			JPOOL STRTYPE	(K) IMOVE
		0 270 1=1,IMO		
			TMOVE(I),GO(I)	SPED(1)
		ONTINUE		
			AT D/S END OF	THIS POOL
155		ONTINUE		
		0 310 I=1.48	A AL CO TO 200	•
		ONTINUE	0.0) GO TO 320	,
		0 10 200		
160			TURNOUT Q FROM	A OT
		ONTINUE		•
	1	MOVE = 1		
		MOVE(1)=0.0		
4.00)(1)=QT(1,K)		
165		0 330 J=2,48	AT	
		MOVE=IMOVE+1	OT(J-1,K)) GD	10 330
		MOVE(IMOVE)=(J-1)+60	
		(IMOVE)=QT(J,		
170		ONTINUE		
	1	TRNTYP=99		

~ *****

Con San

4

PAGE

		WRITE(9,9130) JPOOL, ITRNTYP, IMOVE
		DO 340 I=1.IMOVE
		WRITE(9,9150) TMOVE(1),0(1)
175	340	CONTINUE
		GO TO 200
	С	
	C MOST	D/S STRUCTURE
	С	
180	900	CONTINUE
	C Q WA	S SCHEDULED IN QD
	C IS T	HIS A PUMP
		IF(STRTYPE(51).NE.1) GO TO 950
	C PUMP	
185	C EXTR	ACT CHANGES IN Q FROM QD
		IMOVE = 1
		TMOVE(1)=0.0
		Q(1)=QD(1)
		DD 910 J=2,48
190		IF(QD(J).EQ.QD(J-1)) GD TO 910
		IMOVE = IMOVE+1
		TMOVE(IMOVE)=(J-1)+60
*	910	Q(IMOVE)=QD(J)
195	910	CONTINUE
195		WRITE(9,9130) JPOQL,STRTYPE(51),IMOVE
		DO 920 I=1,IMOVE WRITE(9,9150) TMOVE(I).Q(I)
	920	CONTINUE
	94V	GO TO 1000
200	C GATE	
	950	CONTINUE
		READ(5,9110) IGATE, INOVE
		WRITE(9,9130) JPOOL, STRTYPE(51), IMOVE
		DO 960 I=1.IMOVE
205		READ(5,9120) TMOVE(I),GO(I),SPED(I)
		WRITE(9,9140) TMOVE(1),GO(1),SPED(1)
	960	CONTINUE
	1000	CONTINUE
		REWIND 5
210		REWIND 9
		RETURN
	9110	
	9120	· · · · · · · · · · · · · · · · · · ·
	9130	
215	9140	FORMAT(3F10.3)
	9150	FORMAT(2F10.3,10X)
		END

٠

-