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GLOSSARY

total area of injection nozzles (3 nozzles)
area of draft tube throat

depth of the wicket gate

chord length of the wicket gate

draft tube inlet diameter

diameter of injection nozzle

- frequency of the pressure pulsations during surge

functions

‘gravitational constant

head

nozzle coefficient

draft tube length

length of injection nozzle throat

number of wicket gales

Reynolds number

power

rms value of surge condition

rool-mean-square (rms) pressure puisation ampiitude

flow

bypass discharge

turbine discharge

radial coordinate

radius to the center of the exit from a wicket gate passage (see fig. 10)
radius of trailing edge of wicket gates (see fig. 2)

radius of the wicket gate spindle centers

dimensionless radial coordinate, r/c

minimum spacing between one wicket gate traiiing edge and the adjacent wickel gate
(see fig. 10)

momentum parameter

critical momentum parameter

radial component of velocity

temporary velocity (variable)

x compenent of velocity

y compenent of velocity

normalizing velocity in the original plane = Q/2 =B,

circumferential component of velocity

dimensionless magnitude of the total velocity vecior in the original plane
dimensionless magnitude of the total velocity vector in the transformed plane
axial velocity in draft tube throat bypass

dimensionless radial component of velocity v, /v,

dimensionless circumferential component of veiocity vg /v,
circumferential velocity in draft tube throat

circumferential velocity at wicket gate exit {see fig. 2)

width of injection nozzle throat

dimensionless coordinates of the canesian coordinate systems

flow angle (see fig. 10)

average flow angle leaving the wicket gates

density of water

turbine efficiency :
angular coordinate in the polar coordinate system expressed in radians
mass density

kinematic viscosity

angle of fluid injection

speed coefficient




GLOSSARY-Continued

¥ stream function
w angular velacity of the turbine runner
f angular momentum flux
A bar (7) over a variaole signifies a mass averaged vaiue.
Subscripts
i evaluated al the exit of the wicket gates
B related 1o bypass flow
T related 1o turbine tiow
5 7 spindel of wicket gate
v indicates the critical swirl condition




SUMMARY AND CONCLUSIONS

Injection Nozzle Studies

Experimental studies with ‘respect to eliminating
draft tube surge by injecting fluid inta the draft tube
counter to the existing swirl resulted in the following
observations.

* As the ratic of injected fluid Qg/Q7 is increased,
both the surge frequency and the unsteady surge
pressure decreases in magnitude.

* The use of various nozzles of a fixed Ap/Ar
indicates no measurable change in the effec-
liveness of the nozzle in reducing or eliminating
surge. Similarly, nozzle injection angles up to 45°
show no difference in their effectiveness in reduc-
ing surge. On this basis, the nozzle geometry would
be selected primarily on the basis of hydraulic ef-
ficiency and ease of fabrication.

* Empirical data are presented which permits es-
timating the area of the injection nozzles and the
guantity of bleed fluid required for turbines of
specified performance characteristics.

* At a given momentum parameter, the quantity
Qg/Qr reguired o eliminate surge decreases as
higher head turbines cor lower specific speed
machines are considered.

* Further investigations are required to gather data
indicating the influence of draft tube shape on the
effectiveness of fluid injection in reducing drait tube
surge.

s The hydrodynamic effects, such as cavitation
arising from the interaction of the draft tube flow
with the high-velocity injection jets, should be ex-
perimentally investigated.

Analysis of Flow Field Through Wicket Gates

A twe-dimensional potential flow solution has been
presented for the flow through a radial cascade,
such as the wicket gates of a hydraulic turbine.
Comparisons of the predicted flow angles from the
potential solution and the angles measured in an air
model of a wicket gate system indicate that the
potential theory very adequately describes the real
fluid characteristics. For the wicket gate system in-
vestigated, little difference was found between the
potential flow solution and a graphical method cur-
rently used. A purely analytical study of cambered
wicket gates was conducted which showed a
slightly larger deviation between the two methods. It
is expected that the potential solution yields the

more accurate results, although this conclusion was
not verified experimentally. For the present, the
main advantages of the potential flow solution are
the ability to obtain a more detailed solution of the
flow and the ability to include upstream effects if
they are considered to be influential. The pressure
distribution on the wicket gates is also obtained,
and the force and moment coeflicients for the
wicket gate spindles can be computed.

INTRODUC'I_‘ION

A study was undertaken to evaluate a prdposed

"method of preventing the occurrence of draft tube

surge in hydroelectric pump-turbines. It is generally
accepted that the origin of draft tube surge is
related to the amount of angular momentum or swirl
left'in the discharge flow from the turbine. The swirl
gives rise to unstable flow patterns, which causes
pressure pulsations described as draft tube surge.
The adverse consequences of surge are noise,
vibration, .vertical movement of the runner and
shaft, variations in power output, and pressure
puisations in the penstock.

Realizing that the draft tube surge is associated with
the amount of swirl present in the discharge flow,
the obvious solution would consist of eliminating
the swirl. Straightening vanes and fins located in the
draft tube have been suggested and tried but have
resulted in either efficiency losses or structural and
cavitation damage as reported in [1]'. Injection of
air has, in some cases, reduced the magnitude of
the pressure pulsations. Appendages afiached in
the draft tube, such as a hollow cylinder 1o contain
the vortex core or solid fairings to reduce the inten-
sity of the vortex, have met with limited success.
The majority of the methods attempted cause ex-
cessive energy losses, result in cavitation damage,
or induce excessive structural vibrations.

A method is needed that will reduce the rotation in
the draft tube flow at off-design conditions without
attecting the efficiency of the machine when
operating at or near its point of best efficiency. It
must not consist of appendages in the draft tube or
impair the performance of the machine when it is
operating as a pump. The method should be effec-
tive with either positive or negative swirl.

The method considered and evaluated in this report
consists of a series of flush-mounted nozzles

located in the draft tube immediately downstream of

! The numbers in brackets refer to listing in the
Bibliography.




the turbine rotor. A schematic of the arrangement is
shown on figure 1. The nozzles inject fluid in the
draft tube counter to the peripheral motion of the
discharge flow. Although not shown on figure 1, two
separate rows of nozzles could be provided with
one row capable of injecting fluid in a direction op-
posite o that of the other. An arrangement such as
this permits the reduction of either positive or
negative swirl. It was envisioned that the nozzles
would be directly connected to the high-pressure
fluid in the spiral casing or penstock. An ap-
propriate system of valving, activated on the basis
of wicket gate opening, would control the flow to the
nozzles and could control the number of nozzles
discharging.

An alternate arrangement to that shown on figure 1
would- consist of swirl nozzles individually con-
nected to the spiral casing by separate piping and
valving. The flush-mounted nozzles cn the wall of
the draft tube provide minimum flow disturbance
when the swirl nozzles are inactive. The nozzies
shaould not cause a loss in efficiency or cavitation
resistance of the machine when they are inactive.

SPIRAL

_ RELIEF CASE
PORT
' % [ ——STAY VANE
[T WICKET GATE
; WEARING fé}
> RUNNER PLATES
ltm
A SWIRL A
! NOZZLE MOTOR-
DRIVEN
TYPICAL PUMP
CROSS SECTION VALVE
ORAFT TUBE EnLRNcltégSRENTlAL

SECTION A-A THRU
SWIRL NOZZLE
TYPICAL 3 PLACES
EQUALLY SPACED

1 Figure 1. — Schematic of proposed means cf
: preventing draft tube surge.

This report presents an experimentai study of the
efficiency of various nozzle geometries with respect
to the removal of swirl in the draft tube. The
resulting empirical data were applied to specific tur-
kine applications to illustrate a methed to predict
the amount of bypass fluid and to specify the nozzle
geomelry required o suppress draft tube surge.

Also, a potential solution of the flow through a two-
dimensional radial cascade of airfoils is presented,
wherein the airfoils in the cascade can be of any ar-
bitrary shape. This solution is applicable to the
wicket gates of hydraulic turbines and was
developed as an aid in the prediction of draft tube
surge. The method of solution consists of trans-
forming the radial cascade into a two-dimensional
rectangular cascade by using a conformal transfor-
mation. A previously available cascade analysis
program, known as the Douglas-Neumann
Cascade Program, was utilized to obtain the poten-
tial flow solution in the transformed -plane. Using a
model of a wicket gate and draft tube system, with
air as the fluid, experiments to measure the flow
angles downstream of the wicket gates were con-
ducted to evaluate the accuracy of the prediction
method. A very good correlation was found
between the measured and predicted fluid angles.
The computer program for solving the flow field
through the wicket gates and its application to a
typical wicket gate geometry is included as appen-
dix B.

" INJECTION NOZZLE STUDIES
Estimate of Bypass Flow

A theoretical estimate of the bypass flow required to
implement the proposed means of surge elimina-.
tion shown on figure 1 shall be established first.
This fluid shall be assumed to be piped from the
spiral casing and discharged into the draft tube.
The bypassing of such fluid represents an energy
loss that, far purposes of analysis, will be con-
sidered as totally unrecoverable. On this basis, the
swirl in the draft tube must be reduced to some
specified value with a minimum rate of injected fluid
if the described technique is to be successtul.. An
engineering estimate of the ratio of the bypassed
flow to the flow through the turbine can be obtained
on the basis of momentum considerations.

The momentum parameter S describing the ratio of
angular to axial mementum flux in the draft tube is
defined in [2]. Figure 2 illustrates the nomenclature
and stations considered, where:
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The conservation of angular momentum is as-
sumed constant between the wicket gate exit and
the draft tube throat. The quantlty V4, represents a
mass averaged axial velocity in the J'aft tube. The
assumption is made that the radial distribution of
tangential velocity at a given section.in the draft
tube is represented by a potential vortex. On this
basis, the mass averaged quantity Vg at a given
section of the draft tube would occur at the diameter
D associated with the mean area of the draft tube.
This can be exprassed algebraically as:

_ Dz _ D =
Ve, = 5 (Vg,) = 2(1414)(V9) (@)

and substituted in (1) to give

§ = rgg(vﬂr/VA%) ®

It is propased to reduce the ratic of angular to axial
meomentum flux that exists in the draft tube at any
given gate opening to that level which exists prior to

the occurrence of periodic draft tube surge. This
level would be attained when the angular momen-
tum of the draft tube flow and that of the injected
fluid is summed to give a resultant momentum
parameter S, which is less than that at which
periodic draft tube surge is predicted to occur, S*.

If the critical momentum parameter S* is not to be
exceeded in the dratt tube, then the amount of fluid
that must be directed through the injection nozzles
can be evaluated. The quantities of flow and
velocity associated with the critical momentum
parameter shall be noted by an asterisk. The quan-
tity of bleed fluid required to obtain the critical
momentum parameter S* in the draft tube can be
determined by equating the difference between the
angular momentum from the turbine discharge Q7
Vgy and that of the bleed fluid Qg 2gh 1o the
angular momentum at the critical conditian OTVar

Thus,
(Qr Vgy) Qs Vagh
O ) OF v

(4)

[OT V"T] = 222 5
T




Equation {4) can be rearranged to pravide a ratio of
bypass flow to draft tube flow in terms of the
momentum parameters S and §* as

Vi Vi
2.22 V4 s(—T)— s (—I)
) AT[ VZT VAT_ (5)
V2gh

The decrease in efficiency An of the turbine due to
bleeding bypass fluid to'the injection nozzles, as-
suming that none of the bypass fluid energy is
recovered, Is:

Qg
Qr

_ Qs (6)
An = 100(OT)

If eq. (5) is considered for a given S, the numerater
is essentially constant, independent of turhine
head. This is based on the assumption, for cavita-

tion purposes, that the velocity at the design condi-

tion in the draft tube throat for conventional turbine
instavllations has some upper limit. The ratio of

Qp/Q7 specified by (5) decreases as some
reciprocal function as head is increased. On this
basis, eq. (6) indicates the decrease in efticiency,
due to bleeding bypass tluid to the swirl nozzles, will
be less in a high head turbine than in a low head
turbine. The performance characteristics for a tur-
bine, such as presented for the Grand Coulee Third
Powerplant units [3], provides the quantities re-
quired for eq. (5) to estimate-the ratio of bypass to
draft tube flow at a given momentumn parameter.

Test Apparatus

Investigations on the performance of various injec-
tion nozzle geometries were conducted in an airflow
facility which is shown on figure 3. Similar studies
[2, 4] have shown that the use of air as a working
fluid has been quite successtul in characterizing the
momentum parameter in draft tube flow and in
predicting the occurrence of draft tube surge. The
main air supply was provided by ‘a variable-speed,
centrifugal blower and was measured by an orifice
meter arrangement. The metered airflow was dif-
fused as it entered the stilling chamber; screens
were used to reduce flow turbulence across the stil-
ling chamber flow field. The air entered the
cylindrical draft tube radially through wicket-gate-
type swirl vanes. The angle between the vanes and
a radial line could be set at any angle between 0°

WICKET GATES INJECTION FLOW
SCREENS : ENTRANCE T0
MANIFOLD
N " .. LOCATION OF PRESSURE
g’ﬂ FRING S T PICK-UP AND FLOW-FIELD
! : ~+ TRAVERSING, LiD = 4.40
7 g [ .
{ é
g FLOW FROM _ J_ 5 VIEW A-4
VARIABLE- > CYLINDRICAL
' SPEED BLOWER DRAFT TUBE
et NOZZLE - LiD =45
TEST SECTION
STILLING CHAMBER/ INJECTION
MANIFOLD

(41t CUBE}

METERING

INJECTION

ORIFICE
—_— E r
FLuIC dl

O

Figure 3. — Schematic of airflow tacility.



(radial position) and-82.5° (closed position). It can
be shown "that the dimensionless momentum
parameter 20/p Q? reduces to K (tan ') for this test
tacility, where K = constant and «’ is the average
flow angle leaving the wicket gates. Traverse data
across-the trailing edge of the wicket gates, using a
prism probe, were used to determine flow angles
for various wicket gate settings. These data were
used to develop a relationship for. the momentum
parameter as.a function of -gate setting. Injection
fluid provided by an auxiliary air supply and
measured by an oritice meter arrangement entered
the manifold of the injection nozzle test section
located just below the wicket gates. Any ratio of in-
jection fluid flow Qg, to fluid flow through the gates
{turbine flow) Q7 could be provided by the proper
setting of a butterlly valve on the auxiliary air supply
blower. The nozzle test seclion provided three
points of fluid injection equally spaced in a cir-
cumferential plane perpendicular to the draft tube

centerling. Nozzle geometries tested are shown in
table 1. It should be pointed out that in 1able 1, A,
nozzle area, was defined as the sum of the three
separate nozzle areas. After passing through the
nozzle test section, the airflow entered the
cylindrical draft tube (L./D = 4.56). Pressure taps
and probe holes were located all along the length of
the tube. The cylindrical draft tube could be
replaced with an elbow-type {i.e., Fontenellg) draft
tube. .

The unsteady pressure produced by the swirling
flow in the draft tube was monitcred at the last pres-
sure fap (L/D = 4.40) on the draft tube by a
dynamically calibrated differential pressure trans-
ducer. The pressure signal was sent to a Spectral-
Dynamics real-time analyzer in conjunction with an
ensemble averager from which the frequency f of
the surging condition could be established.

Table I
NOZZLE SHAPES TESTED
/

]
"\ D

-

3 INJECTION NOZZLES
INTO DRAFT TUBE

Table 1. — Nozzle shapes tested

Injection Nozzle

Nozzle angle, ¢ area, Ay ApfAr

number {deg)  (mm?) (in?) (%) L /W,
1 30 381 1.500 5.09 8.0
2 19.0 0.750 2.54 4.0
3 l 9.5 0.375 1.27 0.5
4 286 1.125 3.84 1.5
5 0 19.0 0.750 2.54 1.0

s L L
45 )

6 30 4.8 c.1e8 0.64 4.0 -
7 19.0 0.750 2.54 . 025
8 15.5 0.510 2.04 circle*
9 33.7 1.325 4.48 circle*
10 9.5 0.375 1.27 1.0
11 4.0
12 0.25
13 381 1.50 5.04 1.0
14 4.0
15 * ‘ # 0.25

D = 12.7mm(0.5in)
“*D' = 19.0mm (0.75in)




Figure 4 shows typical data received from_the
analyzer. The rms (root mean square) value, V% of
the surging condition was read from an rms meter
after the signal was passed through a line filter with
a characteristic 48 dB per octave rolloff. The band
pass of the filter was set at 20 to 120 Hz for al! tests.
The frequency of all observed pressure surges was
between 35 and 70 Hz. Directly across from the
draft tube pressure pickup tap was a probe hole
used for flow field measurements. A prism probe
was used to obtain total pressure, static pressure,
and fluid flow angle as a function of radial distance
across the draft be for various flow conditions.
The basic parameters used in this study to describe
the surging condition were the dimensionless
groups suggested by Falvey and Cassidy [5],
namely pressure parameter D“\/ﬁ—zf’ pQ? and fre-
quency parameter fDYQ. '

Discussion of Experimental Resulte

The effect of various fluid injection angles and noz-

zle geom etries was investigated on the basis of their

eﬂectweness in reducing the unsteady pressure

am plnude measured in the draft tube. All tests were
I

at Reynolds numbers above 80,000 as recom-
mended in reference [4] and at velocities low
enough o prevent compressible .effects. A typical
spectral analysis indicating the reduction in the
amplitude of the unsteady surge pressure is shown
on figure 4. It is apparent that both the amplitude
and the frequency of the surge are reduced as the
ratio of Qg/Qy is Increased. The spectral analysis
indicates nc pressure peaks at a Qg/Qr of 16
percent indicating that surge has been ellmmated at
this condition of fluid lnjectlon

The angle of fluid m;ectlon ¢ as defmed in table 1
was studied with respect to its effect on reducing
surge for a given swirl in the draft tube. The four
angles of injection investigated were: 0°, 15°, 30°,
‘and 45° {see table 1). The nozzle geometry used in
these tests was No. 5, described in table 1, and the
results are shown on figure 5 for.an § (momentum
parameter) of C.8.and 1.18. The most significant
result is that, up to the 45° angle tested, the reduc-
tion of surge pressure amplitude is independent of
injection anigle. The lower end peoints of the curves
on figure 5 represent that ratio of Qg/Qr required to
completely eliminate surge and it is evident that the
quantity of Qg/Qr required is equal for the four
injection angles tested.
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An injection angle ¢ of 30° was selected for the
tests 10 investigate the effects of the length-to-width
ratio of the injecticn nozzle as well as the ratio of the
area of the injection nozzles to the draft tube throat
area. The ratio Qp/Qr is plotted against the surge
pressure parameter for a series of nozzle
geometries at the momentum parameters on figure
6. The lower extremity of each curve represents a
condition where surge is eliminated and thereby in-
dicates the ratic of Qg/Qr required to-eliminate
surge for a given An/At ratic. Figure 6 illustrates
that for a given ratio of Qg/Q7, the reduction in the
surge pressure amplitude is greater as An/Ar
decreases. This results directly from the tact that to
inject a given-ratio of Qg/Qr into the draft tube, the
head and, hence, the velocity must increase as
Ap/Ar decreases. Since the momentum of the in-
jected fluid increases as the square of the spouting
velocity from the nozzles, smaller ratios ot Qg/Qr
are required to eliminate surge as the head on the
turbine increases. )

Table 1 lists the nozzle geometries tested and
defines their characteristic dimensions. The rather
surprising result was that for the L,/W; nozzles
tested, no measurable difference was cbserved in
the ratio of1Q5/Q7y required to eliminate surge at a
given An/Ar. This result suggests that the choice of
a nozzle geometry to obtain a given Ap/At would
consist of selecting that geometry which would give

the least hydraulic losses and permit the easiest
fabrication. On this basis, a cylindrical nozzle which
would be elliptical at its intersection with the barrel
of the draft tube would seem appropriate.

The tangential and axial velocity components of the
flow in the draft tube were measured at a station of
L/D = 4.40 indicated on tigure 3 by means of a
prism probe, which provided a time averaged
reading of the local static, total pressure, and flow
angularity. The velocity distributions are shown on
figure 7 for momentum parameter values of 0.24,
0.41, 0.80, and 1.18. The dashed line in these
figures represents similar traverse data having the
wicket gates at a sefting corresponding to a
momentum parameter of 0.8, but with fluid injected
1o eliminate surge. It is evident that the reversal of
axial flow at the axis of rotation is eliminated and
considerable swirl has been removed from the flow
when fluid is injected.

Without injection, the outer portion of the flow ap-
proaches a free vortex or constant angular momen-
tum distribution with -solid body rotation near the
center. The peripheral velocity distribution
downstream of a turbine runner may deviate from
that indicated on figure 7. The effect of such varia-
tion has not been investigated in the present studies
but deserves future consideration.
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Comparison of Test Results with Predictions

The ratio of bleed flow to turbine flow was
previously derived -in eq. (5), assuming ideal
momentumn transfer between the injected and draft
tube flow. On the basis of the preceding ex-
perimental data, it is possible to obtain an empirical
relation that applies to pump-turbines. The bypass
flow can be expressed as:

Qg = Ky (2gh)'"? Ay (7

Where K is a nozzle coefficient and assumed equal
to 0.9.

The flow through the turbine can be written as:

= v (7) ®

The ratio of bleed fiow to turbine flow is then

% _ At pz
G- = 39100 vp (A )h 8l

B
Q AT [Ap i Byt
O_? = 451 P_T, (7‘%) h*2 INCH-POUND

Experimental data results indicate that for a given

An/A7, the ratio of Qg/Qr required to eliminate
surge at the two S values are shown on figure 8. A
curve fitting of this data indicates the following
relationship:‘

For S - 1.18

_g.i_ = 0719 (%%’) " (10)
For S = 0.80

9 - 0473 (j_;f) (11)

Using a value of S = 1.18, it is possible by sub-

‘stituting {10) in {9) to obtain a relation for OB/QT of,

Qs _ 1 "8l

Or  2054(m ARTH T T 12y
P/ o

Qa _ 1. INCH-POUND

Qr '

104.7(*1 Ar) & .
= L

in similar fashion, the substitution of {11) in (9)
provides a relation of Qg/Q7 for $ = 0.8

Qs _ - s,
ANosms o '
OT - 1460 (nP T) h 0887 (13)
Qg _ i 1 INCH-POUND
ar = 115 »(n‘AT>o‘5mh0867
P

An elbow-type draft tube was also evaluated to in--
dicate the influence of draft iube shape. The draft
tube tested was similar to the-Fontenelle configura-
tion described in [4]. The™data and equations
relating Ay/At to Qg/Qr required to eliminate surge
for this draft tube are shown on figure 9. By apply-
ing the same analysis as indicated for the
cylindrical draft tube, the ratio of bypass flow to tur-
bine flow for the elbow-type draft tube was
calculated. Using performance, geometrical data,.
and a speed coefficient ¢4 of 0.8 for the model of
the Grand Coulee Third Powerplant units given in
[3], the bypass flow rates were determined for a
cylindrical and an elbow-type draft tube. The
results are shown in table 2.

Table 2. — Grand Coulee Third Powerplant
bypass flow rates

§=08 $=1.18
Predicted
Ideal-Eq. 5 Qp/Qr=6.35% Qg/Qr =5.62%
Empirical ’ ' - :
(cylindrical) Qg/Q7=10.3% Qg/Qy = 13.9%
Empirical
(elbow) Qp/Qr=11.5% Qg/Qy = 13.0%

The above comparison indicates that the em-
pirically derived quantity of Qg/Qy required to
aliminate surge at § = 1.18 is about 2.5 times



greater than that predicted assuming an ideal
momentum transfer. At S = 0.80, the difference
between the empirical and estimated values of
Qp/Qr is not as great. The availability of perfor-
mance characteristics and geometries of other ex-
isting or new turbine installations weuld permit mak-
ing similar estimates of the .required Qg/Qr to
eliminate surge at the specified values of momen-
tum parameter.

It should 'be emphasized that solution of eq. (12)
and {13) in conjunction with figure 8 also specifies
the Ap/A 7 required, for a given turbine, to eliminate
surge at a value of S equal to 0.8 or 1.18.
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ANALYSIS OF FLOW FIELD
- THROUGH WICKET GATES

Preliminary Assumptions
and Governing Equatlons

Experimental studies have shown that for a given
draft tube shape, the frequency and pressure
parameters are independent of Ng (Reynolds
number) for Reynolds numbers greater than 1 X 108
[2, 5, B]. This is an important consideration, since
turbine prototype Reynolds numbers exceed 1 X
108, and, thus, studies of surge can be conducted
eliminating Ngas a variable. It has also been found
experimentally [2, 5, 6] that, for a particular draft
tube, the frequency and pressure parameters cor-
relate with the momentum parameter; and a critical
value of the momentumn parameter QD/pQ? exists
above which surge will occur. These facis have
enabled extensive studies to be conducted on




models of various types of draft tubes and for dif-
ferent values of L/D, from which the pressure and
frequency parameters can be correlated with the
momentum parameter and used to predict surge for
prototype installations [4].

The most convenient way to evaluate the momen-
tum parameter is to determine the angular momen-
tum of the flow leaving the wicket gates and subtract
from this value the angular momentum removed by
the turbine runner. The momentum parameter for
the flow in the draft tube can thus be written as:

PD

~ o0 (14)

I

power output of turbine

angular velocity of the turbine runner

The first term on the right is the momentum
parameter for the flow leaving the wicket gates and
is currently evaluated using the graphical appreach
[5] and is illustrated by figure 10. Using this ap-
proach, the flow is assumed to leave the wicket
gates perpendicular to the minimum cross section
between the trailing edge of one wicket gate and the
adjacent wicket gate. Referring to the nomenclature
defined in figure 10, the momentum parameter at
the exit of the wicket gates can be computed by the
following expression:

5] -

D sina
BNs

(13)

where:
B = depth of the wicket gates.
N = number of wicket gates.
s

:defined on figure 10.

11

The second term on the right of eq. (14) represents
the change in angular momentum across the tur-
bine runner and is evaluated from the turbine per-
formance characteristics usually obtained from -
mode! studies.

WICKET GATES

Figure 10. — Schematic of two wicket gates illustrating the
graphical method of determining the tlow angle and,
hence, the momentum parametsr.

Although the most convenient way of calculating
the momentum parameter is to use the approach
expressed by eq. (14), references in [3] and [4] in-
dicate that the graphical method of evaluating the
first term of eq. (14) may seriously affect the ac-
curacy of using the momentum parameter to cor-
relate experimental data and to predict the occur-
rence and characteristics of draft tube surge. For
this reason, it was felt that more attention must be
given to the details of the flow through the wicket
gates. It was also realized that the upstream stay
vanes or the inlet spiral may influence the flow leav-
ing the wicket gates; however, these factors ob-
viously cannot be accounted for until an analysis
was employed which considered the delails of the
actual flow process, which is beycnd the capability
of the graphical approach.

With the above considerations in mind, the follow-
ing presents a method to obtain a potential solution
of the flow through the wicket gates and presents
the results of an experimental study conducfed to
evaluate the accuracy of this approach. A potential
flow solution was developed because it represents
the first step usually taken in a preblem of this
nature, which can be used as a basis for a more ex-
act model, if necessary. Since the flow through the



wicket gates is an accelerating flow, the potential
flow'solution is expected to yield quite satistactory
results by itself,

Several methods for analyzing the potential flow
through two-dimensional rectangular cascades are
presently available. One of the most general of
these, capable of handling airtoils of any arbitrary
shape is @ method developed at Douglas Aircraft
Corporation and referred to as the Douglas-
Neumann Cascade Program. A conformal transfor-
mation of a radial flow cascade to a rectangular
cascade enables the use of the Douglas-Neumann
Cascade Program to analyze the flow in the trans-
farmed plane.

The first assumption required to analyze the flow
through the wicket gates is that the flow is two-
dimensional. For most turbine installations this is a
very reasonable assumption, since the wicket gates
themselves are two-dimensional, and the flow at the
wickel gate inlet and exit is predominately two-
dlmensmnal A schematic of a turbine cross section
is presented in figure 11, showing the spiral case,
stay vanes, wicket gates, turbine runner, and draft
tube. This figure illustrates that the flow passage in
the region of the wicket gales is usually a straight
section, which is the justification for assuming the
flow is two-dimensional. Using the two-dimensional
flow assumption, the geometry of a segment of the
wicket gate system to be analyzed is presented (fig.
12). Figure 12 also indicates the coordinate system
used.

SPIRAL CASE

STAY VANE

DRAFT TUBE " TURBINE RUNNER

Figure 11. — Schemalic of a turbine ¢ross section illustrating the -
geometry of the llow passage in the region of the wicket
qgates.

The other necessary assumplions are those which
are fequired to enable the flow lo be cansidered a
potential flow. It is therefore assumed that there are
no bedy forces and that the flow is steady, in-
compressible, inviscid, and irrotational. The in-
viscid flow assumption is the only assumption re-
quiring some justilicalion. Because the flow is ac-
celerating through the wicket gates, the effects of

12

the boundary layers will be minimal, and thus, an
inviscid solution is actually qunte realistic in this
situation.

\

Figure 12. — Schematic of a seclor of a wicket gale system in
the real cocordinate system.

With the above assumptions, the governing equa-
tions for the flow are the equation for zero vorticity
and the continuity equation. These equations ex-
pressed in polar coordinates and in terms of dimen-
sionless variables are as follows:

o iVg Vg 1 dVq
Zera vorticity: — R =0
Y P + A -3 (18)
Continuity: VA N Ve 1 "“Vﬁ -0 (7
R R R

A stream function ¢ is defined, such that by its
definition it satisfies the continuity equation.

Vp = B (18)
Vg _ 9y (19)
3R



Substituting eqg. (18) and (19) into eg. (16) yields

the familiar Laplace equation in polar coordinates. )

Ak AP N P B

6R* R aR  R? 99° 0

(20)

Equation (20) is solved indirectly through a trans-
formation.to obtain the flow field solution through
the wicket gates. The boundary conditions which
must be satisfied in conjunction with eq. (20} are:

1. A specified flow direction at infinity or far up-
stream.

The wicket gates must constitute a streamline,
or in other words, the velocity normal to the
wicket gate surface must be zero.

The Kufta condition must be satisfied at the
trailing edge of the wicket gates.

Transformation of the Flow Field

A conformal transformation was used to transform
the wicket gate system into a two-dimensional linear
cascade, so that the flow in the transformed plane
could be analyzed using available procedures.
Since the flow in the original plane is considered a
potential flow and the transtormation in conformal,
the flow in the transformed plane is also a potential
flow and can be analyzed accordingly. The trans-
formation used is as follows:

In R

By applying the chain rule and eq. (21) and (22), it
is found that eq. (20) is transformed into Laplace's
equation in cartesian coordinates, eq. (23).

2 ;2
i._\f__g_(_’#:o

7%t 3 (23)
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where:

Velocity component in the x direction,

” (24)
v, = W
Velocity component in the y direction, - (25)
ay
Vy = — —
Y ax

The transformation of eq. (20) into eqg. (23) was car-
ried out to illustrate that, with the transformation
employed, the flow in the transformed plane is in-
deed a potential flow and, thus, obeys the same
fundamental laws as the flow in the original plane.
In the actual flow analysis, the wicket gates were
transformed, and the linear cascade of airfoils ob-
tained were analyzed as if this plane were the real
plane. The transtormation is illustrated by figure 13,
where the wicket gate geometry previously shown
in figure 12 is shown in the transformed plane. The
circular arcs labeled 1, 2, 3, and 4 in figure 12
become veritcal lines of constant x value in figure
13 and are similarly labeled fcr a comparison of the
two planes. It is interesting to note that the arc of A
= 1 becomes the y-axis of the cartesian coordinate
system in the transformed plane, while the point at

R = 0 corresponds to x = — in the new plane.
y 2 3.4
1 4

AN

e

NN NN

Figure 13. — Schematic of the two-dimensional cascade ob-
tained by transforming the wicket gate system.




Similarly, radial lines of the original plane become
lines of constant y value in the transformed plane.
The x-axis corresponds to the radial line at 8 = 0.

Thé boundary conditions in the transformed plane
are identical to those in the real plane. Since flow
angles are not changed by a conformal transforma-
tion, the specified inlet flow angles are the same in
both planes. In addition, the velocity component
normal to the surface of the transformed airfoil must
be zero, and the Kutta condition must be satisfied,
as in the original plane.

Relationships between the velocity components in
the Itwo planes can be found by applying the chain
rule and eq. {21) and (22) to the derivatives of ¢
with respect to 4 and R. It is first found that:

A )

WAy (26)
and,

W1 o

4R A dx

From eq. (26) and (27) and the definitions of the
stream function, the desired relations between the
velocities in the two planes are obtained:

Va Vx

1
= (28)

1
) = 5 vy (29)

The relationship- between the magnitudes of the
total velocity vectors can then be expressed as:

Von'gmafplane = V vp? + Vﬂz’
l \/ .2 4+ V.2 =
R X y

(30)

Dy
J=] fransformed plane
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Meathod of Solution In the Transformed-Plane _

The Douglas-Neumann cascade solution [7] was
used for analyzing the flow through the transformed
cascade because this method of solution is capable
ot handling infinite cascades of airfoils of an ar-
bitrary shape. A solution is obtained by applying a
distribution of sources on the surface of the airfoils
in the cascade, such that the combination of the
onset velocity, the source at the particular point,
and the induced velocity from the remaining source
distribution satisfy the boundary condition of zero
normal velocity at the surface. In a similar manner,
the vorticity distribution on the airfoils is obtained by
employing. the same set of equations with the
velocity vector of the sources rotated 90°. ‘

The source distribution is determined by repre-
senting the airfoils as a series of straight-line seg-
ments, with the source strength assumed constant
over each segment and the boundary condition
satisfied at the segment midpoint. With this approx-
imation, the induced velocity at the midpoint of a
particular segment can be represented by a sum-
mation of a set of integrals representing the induced
velocity from the remaining segments. Since the
source strength is assumed constant over the seg-
ment, the integrals can be evaluated analytically,
which results in a set of algebraic equations that
must be solved simultaneously for the source
strength of each segment. This technique will ap-
procach an exact solution as the number of seg-
ments approaches infinity, but sufficient accuracy
is achieved as long as the straight-line segments
are small enough to adequately describe the airfoil
shape.

The solution to the general problem is obtained by
calculating the potential flow tor three basic flows
consisting of the solution for a flow with zero angle
of attack, 90° angle of attack, and a pure circulatory
flow. These three solutions, which all satisty the
boundary condition of a zero velocity component
normal to the surface, are then combined in such a
manner to satisfy the specified inlet angle and the
Kutta condition. The complete solution enables the
velocity components and the static pressure 1o be
determined at any point in the flow field, and-also
yields the overall angle by which the cascade turns
the flow.

Discussion of Normallzing Parameters
and the Reverse Transformation

Thus far, the equations governing the flow in both
planes have been presented, and the method of
obtaining a solution in the transformed plane has




been discussed. The eguations relating the velocity
components in the two planes have also been
given. However, before these equations can be
specifically applied, consistent normalizing
velocities must be selected in each plane. Since itis
known from the conservation of mass equation that
the average x component of velocity is constant
both upstream and downstream of a rectangular
cascade, V, represents a convenient parameter to
normalize the velocity in the transformed plane.
Although the Douglas-Neumann cascade solution
uses as a normalizing parameter the modulus of the
average velocity vector upstream and downstream
of the cascade, the output can easily be converted
so that the velocity is normalized by v, .

In the original plane, the velocity component cor-
responding to ¥, is the radial component.. The
average radial velocity component is not constant,
but, once again from the conservation of mass
equation, it is known that r %, = constant. Using this
. relationship, if a reference value of ris selected, a
corresponding reference value of 7, can be ob-
tained. The value of r which is convenient for this
purpose is the radius of the wicket gate spindle
centers, ry . Selecting ry as the reference radius
results in the following definition- of the normalizing
velocity in the original plane.

= G
e T BrBr, (31)

It is apparent from the definition that v, represents
the average radial velocity which would exist at the
spindle radius if the wicket gates were not present.

Rewriting eq. (28) in terms of dimensional guan-
tities allows the relationship between the velocities
in the planes 1o be determined when they are nor-
malized using the above parameters. For the pre-
sent, v, will be normalized by the temporary
variable, v,gr

Yo (9) N (32)

V,-S 7 Vref

To.relate the two narmalizing velogities, it is known
that v, should equal v, when v, = v, andr=r;.
Solving eq. (32) for v, after inserting these values
yields - )

Vet = Vx(%) (33)

Substituting eq. (33) back into eq. (32) provides the
new relationship for- relating the dimensionless
radial velocity in the original plane to the x compo-
nent of velocity in the transformed plane.

Vo=l (e) e - ()
v e N

s
- (ﬁ)v_x |
R/ v, (34)
Similarly,
Vi RS)_VL :
Vg = =[—= 35
6 Vrg (Fi‘ Vy ( . )
and,
v “Voriginal plane
Vr‘s :

_ (__FE) Viransiormed plane (36)
R v,

These equations provide the necessary relation-
ships for the reverse transformation of the solution
from the transformed plane to the original plane. It
should be noted that the fluid angles are not
changed by the transformation; thus, the above
equations need only to be applied when interested
in the velocity magnitudes. Eq. (38) is used in the
computer program to transform the local velocity on
the surface of the blades, thus enabling the pres-
sure distribution on the wicket gate to be deter-
mined. The definition of the pressure coefficient
employed and sample results are presented in ap-
pendix B with the description of the computer
program.

Analytical Study Conducted

The method of transforming the wicket gates and
employing the rectangular cascade analysis to ob-
tain a potential flow solution was used to analyze the
flow through the wicket gates of an air model. Thig
model, which was primarily fabricated to conduct
draft tube surge studies, is described in the section
on the experimental study. The wicket gates shown
in figure 12 are a scale drawing of the real wicket
gates in the model. These wicket gates have no




camber, a chord length of 39.7 mm (1.562 in), and
a maximum thickness of 5.44 mm (0.214 in).

Solitions were obtained for the wicket gates with
angular settings between 0 and 80° in 10° incre-
ments. These angles are measured between the
wicket gate chord and a radial line. The closed
position is at the angular sefting of 83°. Two solu-
tions were obtained for each wicket gate setting,
oné with the flow entering radially and the other
solution with the flow at a zero angle of aftack in the
transformed plane. These two solutions were ob-
tairied 1o evaluate the intluence of the upstream flow
on the fluid exit angle. It was found that for the pre-
sent wicket gate geometry, the inlet angle did not af-
fect tha exit angle. This conclusion cannot be made
for all systems, however, since even for a potential
flow solution the spacing between gates will affect
the' amount of turning the cascade can perform.
The present method ot solution could be used by
testing various spacings to determine what spacing
is needed to eliminate upstream effects.

The graphical method indicated by figure 10 was
also carried out, and these results are presented
along with the experimental resulls and potential
flow solution. Initial results comparing the fluid exit
angles predicted by the graphical approach and
the potential flow solution revealed very little dit-
ference. The guestion was then raised, would
cambered wicket gates demonstrate a larger devia-
tion between the fluid angles predicted using the
two methods? To study this possibility, an analytical
study was conducted for cambered wicket gates
similar to the study for the symmetrical wicket gates.
For this case, the results from the potential solution
also revealed no significant dependence on the in-
let angle. However, a slightly larger deviation was
found between the fluid exit angle predicted by the
potential solution and the graphical approach. The
actual numerical results is presented in the section
on analytical and experimental results.

Experimental Program

A sketch of the test facility used ta obtain ex-
perimental data for comparison with the potential
flow solution is shown an figure 14. In this facility,
flow surveys were made at a constant radius behind
several wicket gate channels, with measurements
made every 1.5°. In addition to the open inlet cen-
figuration shown in the figure, tests were also con-
ducted with an inlet spiral installed. The tests with
and without the inlet spiral enabled the effects ofthe
inlet flow angle on the exit flow from the wicket
gates to be investigated. The draft tube has an inlet
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diameter of 186 mm (6.125 in) and the probe was
located at a diameter of 229 mm (8.0 in).

Total pressure, static pressure, and the flow angles
were measured using a three-hole prism-type
probe. The flow angle was determined by nulling
the probe. The total pressure was measured from
the center hole, and the static pressure was
calculated from the average pressure of the two
side holes and a pressure coefficient obtained dur-
ing a static pressure calibration of the probe. All
pressures were measured with a variable-
reluctance differential pressure transducer with the
voltage output measured by an integrating digital
voltmeter.

FLOW FIELD

MEASUREMENT
STATION

\

SUCTION FAN

DRAFT TUBE

HONEYCOMB

WICKET GATES |
STILLING CHAMBER

METERING QRIFICE

Figure 14, — Sketch of the wicket gate and draft lube model
used to experimentally evaluate the polential flow solution.

The velocity magnitude and flow angles, which
varied across a wicket gate channel, were used to
calculate the momentum parameter by numeri-
cally integrating the flow characteristics across a
channel 1o obtain the flow rate and the angular
momentum flux, This momentum parameter was
then used to calculate an average flow angle for
camparison with the theoretical predictions. For a
flow with unifarm velocity, it can be shown that the
only flow characteristic influencing the momentum
parameter is the flow angle, as expressed by the
following relation:

D

ZWB(tan a')

Qo _
pQ*

(37)

whare:

the flow angle tor a uniform flow, or
the average flow angle for a non-
uniform flow yielding the equivalent
moment parameter.

All other symbols have been
previously defined.




Eg. (37) was used for calculating o' from the
momentum parameter oblained experimentally. An
average flow angle was also calculated by simply
computing the arithmetic average of all the
measured local flow angles. These two average
angles were aimost identical, however, and future
references to the average angle will not mention the
methad of calculation.

Discussion of Analytical and Experimental
‘Results

The downstream flow angle obtained from the
potential flow solution in the transformed plane is
the angle of the uniform flow thecretically achieved
at negative infinity. For all practical purposes,
however, uniform flow of constant angularity is
achieved a short distance from the trailing egge of
the blades. When applying the potential flow solu-
tion to a real situation, the flow may or may not
become uniform before it reaches the location of
the turbine runner. It should be pointed out that
even if sutficient spacing for the flow to become
uniform is not availabte, the uniform flow angle still
‘applies for calculating the momentum parameter,
since no change in the momenturn parameter will
occur between the trailing edge and the location
where uniform flow would be achieved. With this in
mind, the flow angle calculated by the potential
theory tor the symmetrical wicket gate is presented
on figure 15 as a function of wicket gate angle. The
angles from the potential theory are represented by
the solid line.

The average fluid angles obtained experimentally
are also presented on figure 15. No difference was
found in the measured angles for the two sets of
tests conducted both with and without the inlet
spiral; thus, only one set of data is presented. The
fact that the exit flow angles did not change with the
different inlet configurations is consistent with the
predicted data which also showed no effect with the
change in the angle of attack.

The graphical method for predicting the momentum
parameter, indicated by figure 10, was used to
calculate the exit flow angle from the wicket gates to
provide an additional comparison and demonstrate
whether any improvement is achieved by the poten-
tial flow sclution. The flow angle « defined on figure
10 is not the average flow angle, however, since the
angle is defined within the wicket gate passage and
does not represent the angle obtained when the

flow becomes uniform. The angle « can be used

with eq. (15) to calculate the momentum parameter,
and then with the momentum parameter the
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Figure 15. — Average flow angle versus wicket gate angle ab-
lained from the potential flow solution, graphical prediction
method, and experimental data.

average flow angle a’can be calculated from eq.
(37). The average flow angles calculated in this
manner are the data represented by the circles on
figure 15.

For the system with the symmetrical wicket gates,
as shown by figure 15, the results from both the
potential flow solution and graphical method agree
very closely with the experimental data. At the
higher wicket gate angles the potential solution is
only approximately 1° low in its prediction of the
fluid angle. At the lower wicket gate settings the
potential solution predicts values approximately 2°
higher than the measured angles. On the cther
hand, the graphical methcd shows its greatest
deviation at the higher wicket gate angles, where
tlow angle is under-predicted by approximately 4°.
At the lower wicket gate angles, the fluid angles
from the graphical method and the experimental
data are approximately equal.

With the deviation between the predicted and ex-
perimental data of such a small magnitude, it is dif-
ficult to conclude whether the deviation is due to a
minor shoricoming of the prediction methods or
due to an error in the experimental data. The fact
that the experimental data does not appear to be
exactly approaching the origin leads one to believe
the deviation may be due to experimental error. At



the lower wicket gate angles the probe traverses
were nearer to the trailing edge of the wicket gates,
and: some measurements were, therefore, made
with the probe partially in the wakes of the gates. If
the measurements were not perfectly centered
around the wakas, the error in the angle measure-
ments would not be completely canceled out by the
averaging process, resulting in one possible source
of error. An additional source of error could be the
angle of the wicket gates. The linkage, which con-
trols the angles of the wicket gates, has some
hysteresis, which may be enough to allow the gates
to be at a slightly difterent angle than expected.

Over the full range of wicket gate angles the poten-
tial solution appears 1o be slightly more accurate
than the graphical method for the symmetrical
wicket gate geometry. However, the very small dif-
ference between the predictions by both methods
and the experimental data does not give cne
method a significant advantage over the other. It
was' for this reason that an analytical study of a
system with cambered wicket gates was under-
taken to determine whether the two methods differ
more significantly for cambered wicket gates. The
geomelry of the wicket gate selected for the study is
shown in appendix B, since this wicket gate
geometry is also used 0 documant the computer
program. The results from the study are presenied
on figure 16, where the fluid angles predicted by
the two methods are plotted similarly to the previous
data. Figure 18 shows a slightly larger difference
between the two methods than was observed for the
symmetrical wicket gate, although the difference is
still not extremely large. For the cambered wicket
gate the maximum difference is approximately 6°,
while for the symmetrical wicket gate the difference
is approxmatew 3.5°. For the cambered wicket
gates the potential flow solution is expected to yield
the more accurale results, since it can account for
the details of the wicket gate shape. This conclusion
is mostly speculation, however, and cambered
wicket gates should be studied experimentally in
the future. One advantage of the potential flow solu-
tion is that stay vanes can be added tothe analysis
for cases where the gate spacing is such that inlet
conditions to the gates will affect the exit flow angle.
The pressure distribution on the wicket gates can
also be obtained from the potentiai flow solution,
from which the force and moment coefficients for
the spindle can be calculated.
i
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Figure 18. — Comparison of the fluid exit angles predicted for
the cambered wicket gate system using the potential flow
solution and the graphical approach. ‘

Before concluding this section on the theoretical
and experimental results, an additional com-
parison is made between the local fluid angles
measured and the fluid angles predicted at the
probe radius for the symmetrical wicket gate. Cnly
the potential flow solution is capable of calculating
the local flow properties, and the comparison of the
flow angle distributions is made to demonstrate
these capabilities. Figure 17 presents the flow
angles predicted and measured downstream of

. several wicket gate passages. The positive direction
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of the circumferential location coordinate is in the
same directicn as the mean swirl of the flow and op-
posite to the positive # direction shown on figure
12. In general, figure 17 shows that the predicted
and measured data have the same trends and that
the slope of data is almost identical. The mean
value of the two sets of data is the main difference,
which tends to make the pradiction lock worse than
it is. The mean values only differ by approximately
2°. It should be pointed out that the large extreme
angles in the experimental data are erroneous
measurements made with the probe in the wake of
wicket gates. Eliminating these points would make
the predicticn appear more accurate.
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Figure 17. — Loca! fluid angle versus circumierantial location
measured downstream of the wicket gates and predicted by
the potential flow solution.
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Appendix A

Results of Preliminary Tests Indicating Effect of
Test Apparatus Geometry on Surge Pressure

The test facility for the draft tube surge study as shown in Figure
3 was not the original test apparatus considered in the program.
The original draft tube surge test facility was designed, fabricated,
and assembled as shown in Figure 14% The main difference between
the original test facility and the one finally used for testing
is the location of the air supply flow fan. In the original test
facility, (Figure 14), air was drawn from the open atmosphere into
the test section and dumped into a stilling chamber by means of
a flow fan downstream of the draft tube. In the final test facility,
(Figure 3¥, air was blown into a stilling chamber first, then passed
through the test section and dumped to atmosphere.

Examination of the sketches of the two facilities would seem
to indicgte that the important flow characteristics (pressure parameter
and frequency parameter) produced in either test facility would
be essentially the same. The authors felt that it was important
for the test facility to produce relations between the surge parameters
and the momentum parameter similar to those obtained by Palde [4].
Preliminary tests in the original test apparatus provided a relation
between frequency parameter and momentum parameter much like that
obtained by Palde. However, pressure parameter as a function of
meomentum parameter was essentially constant, which radically disagreed
with Palde's data. In an attempt to obtain pressure parameter data
similar to Palde's, various pressure pick-up devices were tried
at various locations along the draft tube. After repeated failure
to obtain the desired data in the original test facility, a test
facility similar to that used by Palde (i.e., pushing air through
the draft tube and dumping to atmosphere) was constructed as shown
in Figure 3. Surging characteristics obtained in the modified test
facility agreed very well with Palde's data. The altered test facility
solved the problem but raised a question. Why was the pressure
parameter much lower for the original test facility compared to
that obtained in Palde's or the final test facility? Velocity profiles
obtained in the draft tube at L/D=4.40 for each facility at various
momentum parameters were compared. Figure A.l shows that the velocity
profiles are quite similar for both test facilities.

In an effort tc answer this question a brief series of tests
were performed to investigate the effects on pressure parameter
of dumping the draft tube flow into a stilling chamber and then
dumping to atmosphere. Tests were performed on both the cylindrical
and elbow type draft tubes. Tables A.l and A.2 show the different
geometries that were investigated, With any given facility geometry
tested, a survey of pressure parameter as a function of momentum
parameter was obtained. The flowrate through the test facility
was measured by an orifice meter and the surge pressure was measured
through a dynamically calibrated pressure transducer by an RMS meter
as earlier described in this report.

*
Refers to the figures in the text
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Table A.l

1. STILLING CHAMBER AND AIR SUPPLY DOWNSTREAM OF DRAFT TUBE

- WICKET
/\ +~ GATE
- ASSEMBLY
' : AIR
OPEN D —— 36D
ATMOS PHERE I N :B SUPPLY
v DRAFT TUBE 7 T STILLING CHAMBER

2. NO STILLING CHAMBIR, UPSTREAM AIR SUPPLY

D

v

AlR g—_- DISCHARGE TO ATMOSPHERE
SUPELY . '
v ROX ENCLOSURE AROUND WICKET GATE ASSEMBLY (ref Fig 3)

3, STILLING CHAMBER DOWNSTREAM OF DRAFT TUEE, UPSTREAM AIR SUPPLY

-

CAIR ' D 160 BISCHARGE TQ
SUPPLY - " ATMOSPHERE

c

4. STILLING CHAMBIER AND AR SUPPLY UPSTREAM OF DRAFT TUBE

)

AIR Jﬁ ) o : DISCHARGE TO
SUPPLY ] T ATMOSEHERE

5. STILLING CHAMBER WITH SCREEN DOWNSTREAM OF DRAFT TUBE, UPSTREAM AIR SUPPLY

SCREEN

AIR E 36DC7 DISCHARGE
SUPELY ' ™ 10 ATMOSPHERE

(
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'Table A.2

1. NO STILLING CHAMBER, UPSTREAM AIR SUPPLY

/\ WICKET GATE ASSEMBLY

AIR ~ ELBOW DRAFT TUBE

SUPPLY

U

2. STILLING CHAMBER DOWNSTREAM OF DRAFT TUBE, UPSTREAM AIR SUPPLY

AR SUPPLY A
]' ﬁ ]’ STILLING CHAMBER -

| DISCHARGE TO ATMOSPHERE

BOX .
ENCLOSURE 360D DISCHARGE TO
AROUND ATMOSPHERE

WICKET GATE ASSEMBLY

ELBOW DRAFT TUBE

3. STILLING CHAMBER {SHORT CONNECTION) UPSTREAM OF DRAFT TUBE. UPSTREAM AIR SUPPLY
/ SHORT CONNECTION

»

AR
36D
SUPPLY b D

-

4 DISCHARGE TO ATMOSFPHERE

4. STILLING CHAMBER {LONG CONNECTION) UPSTREAM OF DRAFT TUBE, UPSTREAM AIR SUPPLY

T

LONG CONNECTION
AIR /

SUPPLY D 160D 0

D

€

'

DISCHARGE TO ATMOSPHERE
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————— ORI[GINAL TEST FACILITY
~—~——- MODIFIED (FINAL) TEST FACILITY

Figure A.l - Axlal and Tangential Velocities in the Original and
Modified Test Facility

Figure A.2 shows the results of this investipation for the
cylindriecal draft tube and likewise, Figure A.3 corresponds to the
Fontenelle (elbow type) draft tube. The numbers on the curves in
Figures A.2 and A.3 correspond to the geometries so numbered in
Tables A.1 and A.2. Comparison of curves (1) and (2) in Figure A.2
shows the effects of a stilling chamber below the draft tube on
pressure parameter. Looking at all the curves of both Figures A.2
and A.3, it is cobvious that the use of the stilling chamber in all
cases reduced the pressure parameter magnlitude. Notice that screens
placed across the stilling chamber (curve (5), Figure A.2) forced
the pressure parameter relation of the original test facility to
become almost identical to those of Palde and curve (2).

Out of this brief study comes speculation that stilling chambers
placed downstream of a turbine runner may be an effective means
of reducing draft tube surge in hydroelectric pump-turbines., Further
study is required in this area.
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Figure A.2 - Pressure versus Momentum Parameter for the Cylindrical
Draft Tube as a Function of Test Facility Geometry

A second complication has been suggested by H. Falvey of The
Bureau of Reclamation. This involves the geometry of model test
loops which have stilling chambers located up or downstream of model
pump-~turbines. The water level and geometry of these chambers could
provide surge characteristics, based on medel tests, that are inconsistent
with those of the prototype,
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Appendix B

Description of the Computer Code to Solve the Flow Field
Through the Wicket Gates and a Sample Problem

Introduction

The purpese behind the development of the following computer
program was to obtain a fast and accurate means of determining the
fluid exit angle from the wicket gates of a hydraulic turbine. This
information was needed as an aid in the prediction of draft tube
surge., It was felt that an analysis of the actual flow field through
the wicket gates would be required to obtain a solution with improve-
ments over the currently employed graphical approach. The details
of the techniques employed are described in Section 3 of the main
body of this report. The input to the program was to be the wicket
gate geometry and the inlet flow conditions, and the primary desired
output, as previously mentioned, was the fluid exit angle. These
requirements were easily met. However, with the Douglas-Neumann
program used to cbtain a potential flow solution in a transformed
cascade, additional output, such as the pressure distribution on
the wicket gates, force and moment coefficients for the wicket gate
spindles, and local velocities at points off the body were also obtained.

The major portion of the computer code consists of the original
Douglas-Neumann cascade program which is documented in Reference
[7]. The input was modified to accommodate the geometry of the wicket
gate system. Since the Douglas-Neumann cascade program is a generalized
program, numerous control codes could also be set constant internally
because they did not apply to the type of solution under consideration.
With the geometry of the wicket gate system as input to the program,
a section was then added which transformed the original geometry
into a rectangular cascade in the required form for the Douglas-Neumann
solution. The solution then provides the flow exit angle, local
velocities at the midpoints of the segments on the airfoil, and,
if desired, velocity components at points off the boedy. The modification
to the exit angle consisted of only a change in the sign, which was
necessary” to coincide with the convention adopted for the wicket
gate system. The velocities on the airfoil surface and the off-body
point velocities were transformed back to the original plane using
the equations of Section 3.4. Integration of the pressure distribution,
which was cbtained from the known velocities at the segment midpoints,
yvielded the desired force and moment coefficients for the wicket
gate spindle.

Description of Input and Qutput

Input

The input to the program and the various optilons available when
running the program will be defined as each required input card is
described. Figure B,1l, which has an enlarged schematic of a single
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'wicket gate and a schematic of the radial cascade of wicket gates,
defines all of the geometric parameters involved and the slgn conventions
used. The x and y coordinate system drawn on the wicket gate at £=0

also shows how the wicket gate coordinates relate to the radial

cascade.

SPINDLE DIRECTION FOR COORDINATE
Y CENTER INPUT STARTING AT THE T.E.

LINE PARALLEL TO CHORD
THROUuH SPINDLE CENTER

+X

]

Figure B.1 - Schematic of a Wicket Gate and the Cascade of Wicket Gates
Describing the Program Input and Qutput Parameters

The following set of input cards are required by the program.
These sets can be repeated numerous times with the program continuing
to process additional runs until terminated by an input code,

CARD 1 Heading Card

The first card is simply a heading card, which can be punched
with any desired heading describing the run. This heading will

.. appear at the top of each page of printed output. The entire card

can be used. FORMAT(20A4)
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CARD 2 Run Control Card

From this card, values for the following four integer variables
are read:

FLGO2 FLGO8 FLGO9Y FLG12 FORMAT(411)
These parameters control the various options available in the program.

FLGO2 FLGO2 is a nonzero integer if the flow is to be
determined at points off the body.

FLGOS As described in Section 3.3 of the main body of
this report, the Dcouglas-Neumann program obtains
a particular solution by combining 3 basic solutions.
If the wicket pate gecometry of the current run is
identical to the previous run (i.e., only the flow
inlet angle is changed), the three basic soluticns
need not be computed again, but the program can go
directly to obtaining a new solution from the basic
solutions. FLGOB 1s input as a nonzero integer to
direct the program to go directly to the combination
solution. If FLGO8 is nonzero, cards 3 and 4 are
still necessary.

FLGO9 If the flow is to be determined at points off the
body, the coordinates of these points can be read
into the program er calculated internally. Giving
FLGO9 a nonzero value directs the program to use
the remaining number of available points (100 -
number of body ccordinates) and calculate
coordinates equally spaced across one wicket gate
sector at a specified constant radius. The first
point is at 8=0 and the last point occupies a
similar position with respect to the next wicket
gate. The radius for these points, ROFFB, is
punched on a subsequent card. This option can
only be used at radii upstream or downstream of
the wicket gate leading and trailling edges, respectively.

FLG12 The program will attempt to continually process
additional runs until FLG12 is input as a nonzero
integer. Termination of the program, thus, requires
a heading card, which can be left blank, and a run
control card with a nonzero integer punched in
column 4,

CARD 3 Body Coordinate Control Card
Card 3 and a similar card used for the off-body coordinates

supply the program with data concerning the coordinates. The values
for the following variables are punched on card 3.
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NN BDN SUBKS  ROFFB FORMAT(I5,3X,211,F10.0)

NN NN is the number of ccordinates, which for this
card is the number of body coordinates. The
total number of body coordinates and off-body
coordinates is 100. NN must be right justified
in column 3.

BDN BDN is an integer variable which tells the program
whether body coordinates or off-body coordinates
are to follow. For card 3, BDN must be nonzero.

SUBKS SUBKS is an integer variable punched in column 10
which for card 3 gives the option of using the X
and 'Y body coordinates from the previous case.
SUBKS 1s given a nonzero value to use the previous
coordinates, thus eliminating the need for
duplicate decks of body coordinates. None of
the other geometric variables need to be the
same to apply this option.

ROFFB  ROFFB is the radius for the off-body points
when calculating the coordinates internally,
Although ROFFB appears in the same READ statement
as the 3 previous parameters, it need not be
specified at this time.

CARD 4 System Geometric Data

Values for the following parameters are punched on card 4 with the
given format.

t

NLE ©KWG WGA FALPHR RS XS ¥S FORMAT(215,5F10.0Q)

NLE Coordinates for the body are read into the
program in a counter clockwise direction starting
at the trailing edge. This direction 1s indicated
on the enlarged sketch of the wicket gate in
Figure B.1. NLE is the number of the coordinate
at the leading edge of the wicket gate and is
required to identify the leading edge in the
transformation. NLE must be right justified in
column 5.

NWG NWG 1s the number of wicket gates in the system,
'NWG must be right justified in column 10.

The following 5 parameters are each punched in a field of ten columns
' starting in column 11. A decimal point must be punched.

WGA WGA is the wicket gate angle in degrees which

is denoted by f in Figure B.l. The configuration
shown in the figure represents a positive angle.
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FALPHR FALPHR is the flow inlet angle in degrees denoted
by ¢ in Figure B.l. The positive direction is
indicated in the figure. ‘

RS RS is the radius of the spindle centers expressed
in chord lengths.

X5 & YS XS and ¥S are the coordinates of the spindle
center with respect to the origin of the cartesian
system located at the leading edge of the wicket -
gate. - These values are indicated on the enlarged
sketch of the wicket gate in Figure B.1. X5 and
YS must be expressed in chord lengths.

Coordinate Data FORMAT(2F10.5)

The next NN cards contain the X and Y coordinates of the wicket
gate with respect to the cartesian system designated in Figure B.1.
Values cf X and Y for each point are punched in the first two fields
of ten columns cn the cards with the decimal point present., These
values must be in terms of percent chord. It is also essential
that the order of the data starts at the trailing edge, progresses
counterclockwise around the wicket gate, and ends at the trailing
edge with the first point repeated. The direction for the coordinate
input is also indicated in Figure B.l. This set of cards 1s eliminated
if FLGO8 is nonzero or if SUBKS is nonzero.

Input for O0ff-Body Points, if Desired
CARD 1B

Card 1B contains the same parameters for the off-body coordinates
as card 3 did for the body coordinates. The values for the following
parameters are required: .

NN  BDN SUBKS ROFFB FORMAT(I5,3X,211,F10.0)

NN NN is the number of off-body coordinates, This
value must be right justified in column 5. If
the off-body coordinates are calculated internally,
the value of NN read in is ignored.

"BDN For card 1B, BDN must be zero and is punched
in column 9.

SUBKS SUBKS has the same function for the off-body points
as it had for the body coordinates. SUBKS is a
nonzero integer punched in column 10 if the off-
body points from the prévious case are to be used
in the current run.

ROFFB ROFFB is the radius for the off-body points when
calculating the coordinates internally. ROFFB
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must be expressed in chord lengths and punched
in columns 11 through 20 with the decimal
present. If the off-body cocrdinates are not
calculated internally, no value needs to be
specified for ROFFB.

0ff-Body Coordinate Data FORMAT(2F10.5)

The off-body coordinates are read into the program with the
same format as the body coordinates. In this case, -the ccordinates
are R and 6, where R is the radius nondimensionalized by the chord
and £ is the angular location in deprees. The cards with these
coordinates are eliminated if FLGO9 or SUBKS are nonzero.

As previously mentioned, the preceding sets of cards can be
repeated as often as desired for making multiple runs of different
geometries and inlet conditions, until the program is terminated
by making FLG12 nonzero. If FLGO8 is nonzero, only the first 4 cards
are required. The sets of ccordinate data can also be eliminated,
if they are identical with the previous run, by making SUBKS nonzero.
The off-body coordinates are eliminated if FLGO9 is nonzere. ‘

Following this description of the input and output 1s the listing
of the computer code. The program is written in FORTRAN and currently
uses & files on magnetic tape for storage. Following the program
listing is a listing of the input for a sample problem with the
wicket gate geometry shown in Figure B.1, For this sample problem,
WGA=640. 0, aI=60.O and the cff-body coordinates are input from cards,

Output

On the first page of output from the program the input parameters
which control the rum are listed. These parameters are identified
using the nomenclature just defined. Before describing the remaining
output, several mew coefficlents need to be defined. It is recalled
from Section 3.4 that vy_ is the normalizing velocity used to
nondimensionalize the veiocity in the original plane. A pressure
coefficient is also formed using vr as the normalizing velocity and
is defined as follows:

2
Vo PS_Q“PSrS

Cp =1 - vrg| = l.p : 5 (B.1)
2" s
where
vy is the local velocity at a point on the wicket gate
and

Psy is the local static pressure .
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Psy. i8 the reference static pressure defined in terms of vrg and the

total pressure, P

1 2
Psyg = Pp ~ 7P Vrg - (B.2)

The flow field solution yields the dimensionless local velocity
and the pressure coefficient at the midpoint of each segment defining
the bedy. Using the pressure distribution on the wicket gate, the
force components (Fy and FR) and the moment (M) acting on the spindle
can easily be calculated, The positive sign convention for the forces
and moment are indicated on the wicket gate at 6=0 in Figure B.l.
Three coefficients are defined which represent Fg, Fp and M in
dimensionless terms.

-8 _
CFe ) 1 v 2 cB (B-3)
2 P Vrg
F
CFR = E—____EE—_— . (B.4)
7 P vrg ©B
M
Cyy NI 7 (B.5)
2 P Ts

With the definitions of the preceding three coefficlents and
the pressure coefficient, all of the output parameters have been
defined and are easily identified on the computer output. At the top
of each page of output for the on-body data, the descriptive data is
printed, the flow inlet and exit angles are given, and values for the
three coefficients are given. Following these data are the original
body ccordinates in percent chord, and between the original
coordinates are the coordinates of the midpoints of the segments.
Directly over from the midpoint coordinates is the dimensionless
velocity and the pressure coefficient calculated for that segment
midpoint., The off-body data is the last part of the output, giving
the R and 8 coordinates and the two dimensionless velocity components
for the off-body points. A sample output for the case previously
mentioned in the input section is presented following the listing
of the input data. A plot of the pressure distribution computed for
this sample problem is presented in Figure B.2 for an indication
of the type of results obtained.
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Figure B.2 - Sample Pressure Distribution for the Cambered Wicket Gate
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PROGRAM LISTING




/7 *P3497,T=3004R=30000,5=2B0,4600"', 'DAVIS R F!
/*FULLSKIPS
/7 EXEC SETTAF,FORMS=16y TRAIN=TN
// EXEC FHCG,PARM=NQOUMP1S
J/SYSIN DD * =~
COMMON IMyMER¢NT4NB+NCFLG,RP1,R2PI,5P,CLyALPHA,FALPHA
14 DALFA,CHORDFLGO2 yFLGO34FLGO4+FLGO5,FLGOSFLGOT,FLGOB,FLGOY,
2FLGLO)FLGL1+FLG12) NDyNLF,SUMDS XSy YSsRSWGANWG
DIMENSION NDCLO)NLF{10),5UMDS(10)
COMMON/BLKL/HEDRI20},THETA
COMMON/CLKZ/ Z21100)4+Q(100),SINA{LOO)},COSAL100)
COMMON/BLK3/ X{100)s¥(100)sXMPI1C0)YMPI100),R(100}
COMPLEX 1M.Z4Q
INTEGER FLGOZ+FLGI3+FLGO44FLGD5+FLGDS+FLGOT+FLGOA,FLGDY,
-FLG10+FLG114FLGL2
10 CALL PART1
IFIFLGO8 .NE. O) GO TO &0
CALL PARTZ
20 CALL PART4
30 CALL PARTS .
60 CALL PARTS
GO TO 10
END
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aAoOOoOOOO

OO0

T00
601

4

602

920
930

80

SUBRDUTINE PARTL

COMMON IMeNLE2HMTINByNCFLGsRPIsR2P1SPCLyALPHA FALPKA

13 DALFASCHURD ¢ FLGO2 y FLGO3,FLGD4 1 FLGO5+FLGOSFLGOTFLGO8,,FLGOG,
2FLGLO+FLGLILyFLG12)y NDyNLF »SUMDS XS, YS RSy WA NWG
COMMGM/BLKL/HEDRI20), THETA

COMMON/BLKZF Z1100),Q1100),5INACL100),COSALL1CO) )
CUMMON/BLKY/S X{100 ),y Y(100})} ,XMP(I00):YMP{100)4+RI(100)
DIMENSION DELS{100),NDI10)4NLFI10),SUMDS(1Q)

CONMPLEX [MyZ,4Q

INTEGER BDN,SUBKS

INTEGER FLGUZ,FLGI3,FLGO4,FLGOS5,+FILGOAOFLGOT,FLGO8,FLGO9,
~FLGLO FLG11,FLGE2 ‘

P1=3,141593

[M={0.041.0]) '

READ (5,700} [HEDR([)+]1=1,20)

FORMAT (20A4)

HRITEI6+601)

FORMAT{ "1, 10X, *INPUT PARAMETERS'/)
READ(S,4)}FLGO2,FLS506,FLGOB,FLGL2

FORMAT(4]1}

FLGDZ 1S NONZERO 1F FLOW 1S TO BE DETERMINED AT POINTS OFF THE B8QDY
FLGUB 15 NUNZERO TO GO DIRECTLY TO THE COMBINATION SOLUTIONS OF
THE PREVIDUS CASE. THIS FLAG CAN ONLY BE USED IF THE WICKET
GATE GEOMETRY [S UNCHANGEDs I[Ey ONLY THE FLOW INLET ANGLE

IS CHANGED.

FLGC9 15 NONZERO [ F OFF-80DY CDORDINATES ARE CALCULATED INTERNALLY.
FLGLl2 IS NONIERO TO TERMINATE THE PROGRAM

WRITE{(&,602)FLGO2, FLGOB,FLGO9,FLGL2

FCRMAT{Y 7, L3X,'FLGOZ = "1 1L/14X,'FLGO8 = ',11/14X,'FLGO9 = *,I1/
116X, "FLGL2 = "4, 11)

NE = NUMBER OF CASCADESs NB GT 1 WAS USED IN ORIGINAL DN PROGRAM
FOR INTERACTION PIOBLEMS

NB=1

FLGD3 THRU FLGO7 ARE CONTRAL CODES USED IN ORIGINAL DN PROGRAM
FLGO3=0

FLGU&=0

FLGOS=1

FLGN6=0

FLGOD7=0

FLGLD AND FLGLYL ARE NOT USED

FLG10=0

FLGL11=0

DALFA=0.0

IF{FLGL2.NE.Q)GO TO 920

GO TD 80

WRITE(&4+930)

FORMATI1X.// 1X+*'END OF PROGRAM - DATA HAS BEEN EXHAUSTED')

STQP .
IF{FLGOB.NE.DIGO TO 121

NT=0

NCFLG=2

REWIND 4

REWIND 9
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OO0 QOO0 000

REWIND 13
D0 120 1=1,10
NLFIT1)=0.
SUMDS(1)=0.
120 ND(1)=0,
121 CONTIKNUE
K2 = TOTAL NUMBER OF CODORDINATES SETS
K2 = NUMBER OF BOJI1ES [+1 1F USING OFF=-BODY POINTS)
K2=Np
IF {FLGD2 .NE. O} K2=NB+l1
ISTR=1
15TAP=0
DO 2000 L=1,K2
LML=L~1
CL» ALPHA, AND DALFA ARE INPUT PARAMETERS IN THE ORIGINAL
DN PROGRAM, THEY ARE NOT USED IN THIS PROGRAM
CL=0.0
ALPHA=0.0
DALPHA=0.0
READ(S, L5INN,BON,SUBKS,RUFFB
15 FORMAT(IS3X,211,F10.0)
WRITEl&,603 )N EDY ,SUBKS,ROFFB
603 FORMAT{' ", 13X, 'NY = ",13/14X,"BDN = %,11/14X,*SUBKS = *,]1/
ll“x,'ROFFB = '|F10|7)
1FIFLGO9 ' NE.Q+.AND. BDN.EQ.O0)INN=L0O~ND (LML}
IF{BONMNELOIREADIS y LEINLEsNWG yWGA, FALPHR RSy X5,YS
16 FORMAT(21545F10.0})
IF{BONHECDIWRITEl 6,504 INLE,NWG,WGA yFALPHR 4 RS54 XS4 YS
604 FORMAT(Y ', 13X,'NLE = ', I2/L4Xs"NHG = "4+I2/14Xy"WGA = ',F9.5/
114X, *FALPHA = ' ,F9.5/1aX,'RS = *,F10.7/14X4"XS = *,F10.7/
214X 'YS = "WFll.7)
FALPHA==FALPHR
IFIFLGDB.NE.QIGD TD 9119

NLE = NUMBER DF THE LEADING EDGE COORDINATES
NWG = NUMBER OF WICKET GATES
WGA = WICKET GATE ANGLE ANGLE FROM THE RADIAL POSITION (DEG.)

FALPHA = [NLET FLOW ANGLE, MEASURED FROM A RADIAL LINE (DEG.)

RS = RADIUS OF THE SPINDLE CENTERS (CHORD LENGTHS)

XS AND YS ARE SPINDLE COORDINATES (CHORD LENGTHS)

ROFFE = RADIUS FDR QOFF-BODY POINTS [F COORDINATES ARE CALCULATED
INTERNALLY (CHORDS LENGTHS)

NN = NUMBER OF CDJIRBINATES TO BE READ IN

BDN AND SUBKS ARE CONTROL VARIABLES

8ON = 0 IF OFF-BOJY CDORDINATES FOLLOW

BON IS NONZERD IF BODY COORDINATES FOLLOW

SUBKS IS NOMNZERO TO USE THE UNMODIFIED COORDINATES OF THE BODY OF
THE PREVIQUS.CASE

NLFF=0

NLFF = PARAMETER IN ORIGINAL DN PROGRAM USED TO MAKE CALCULATIONS

FGR NON-LIFTING BODIES

ND{L )=NN

NLF(L)=NLFF

NT=NT+NN '

43




IF(LLEQ.LIGD TO 17
1STR=[STR+NO(LM1)
17 1STOP=1STOP+NN
1ST2=1STR-L+1
15TP2=1STOP-L
IFINLFF LEQ, O) NCFLG = NCFLG#1
IF( BDN +EQ. 01 NCFLGSNCFLG-1
[F(SUBKS .EQ. 0) 50 TO 140
REAG (13} (x(I),I=ISTR,I1STOP)
READ (131 (Y(I1),1=ISTR,iSTOP)
IF(BONJNE.OIGD TO 139
DO 138 I=1STR,ISTOP
: Y{I)=Y{11%P1/1B0.0
138 CONTINUE
GO TO 211
139 READ(13}(SKIP,1=15T2,15TP2)
READ(13)(SKIP,I=[ST2,ISTP2)
GO TO 150
140 IF(FLGO9,NE.O.AND, BDN.EQ.0)GO T ‘143
DO 142 1=1STR,15TOP
READ(5,20) X(I),YiT)
20 FORMAT{2F10.,5)
142 CONTINUE
GO TO 145
143 RNWG=NWG
RISTR=ISTR
RNN=NN
RNN1=RNN-1.0
DO l&4 I=1STR,1STOP

X{I1=ROFFB
RI=1
R1=RI-RISTR

Y{I)=RI%360.0/RNWG/RNN1
144 CONTINUE
145 WRITE(13){X{I)s1=15TR,15TOP)
WRITE (131 {YU1),1=[5TR,I5TQP)
IF(BON.NE.OJGD TO 150
DO 146 I=1STR,1STOP
Y{I)=Y{I1)*P1/1B0.C
146 CONTINUE
150 IF(BDN.EQ.OIGO TO 211
[F{SUBKS «NE.Q) 63 TO 200
XMP AND YMP ARE THE COOQRDINATES OF THE MIDPOINTS OF THE SEGMENTS
DO 160 I=15T2.+15TP2
XMP(1)=(XCI+1)+XI[)}/2,
160 YMP{I}=(YCL+1)+Y(I))/2, .
WRITE(13) (XMP(1),1=15T2,18TP2]
WRITE(L3} (YMP{I)y[=1ST2,18TP2)
200 CONTINUE
WGAR=WGA®PL/180.0
CWGA=COS{WGAR)
SWGA=SINIWGAR)
DO 201 I=I1STR,ISTOP




aoon

X{I)=X{1}/7100.0
Y{1)=Y{1}/100.0
201 CONTINUE
0O 210 I1=1S5TR,15TIP
X AND Y ARE CHANGED SO THAT THE WICKET GATE [S ROTATED
WGA DEGREES AND THE TURBINE AXIS IS THE CENTER OF THe
COORDINATE SYSTEM
XTax(Il
X{I)=RS+ [ XS~XTI*CHGA+(Y(])~Y5)*SHGA
YOI =(XS=-XT)*SHGA-(Y{I}-Y5)*CWGA
THE WICKET GATE AT X = RSy Y = 0 [S TRANSFORMED
XT=x(1) .
R{II=SQRT(XT**2+Y| [ }*%2)
X{1)=ALOGI(R{I})
YOCI)I=ATANLY (L }/XT)
210 CONTINUE
THE CRIGIN IS TRANSFERED TO THE LEADING EDGE AND +X IS REVERSED
XLE=X(NLE)
YLE=YINLE)
GO Ta 213
211 DO 212 I=1STR,ISTOP
RII)I=X(])
X{LI=ALOG{XII})
212 CONTINUE | .
213 DO 220 I=ISTR,ISTOP
X{I)=XLE~X(1)
Y(I)=yY{(I}-YLE
220 CONTINUE
IF(BONLEQ.OIGD TO 221 :
CHORD = THE CHORD OF THE TRANSFORMED BLADES
SP = SPACING BETWEEN THE TRANSFORMED BLADES
H=Y[NLE}-Y(1)
W=X{1)=-X{NLE)
CHORD=SQRT(H¥**2+W¥ %2)
RNWG=NWG
SP=2.0%PI/RNWG/CHIRD
THETA=ATAN(H/WI
THETA = STAGGER ANGLE OF THE TRANSFDRMED BLADES
221 DO 230 I=1STR,ISTOP
X{I)=xt1)/CHORD
Y{Il=Y{L)/CHORD
230 CONTINUE
IF(BON .EQ. O} GO TO 500
SUMS=0,0
DO 400 1=15T2,15TP2
Tl=X(I+1)1=-X{1}
T2=Y(1+1}=-Y(1)
XMPIII=(X(T+1)+X112) /2,
YMP LTy =(Y{I+13+¥I(I))/2,
TDS=SQRTITL#T1+72%T2)
DELS(I)=TDS
SUMS=SUMS+TDS
SUMDS{L)=SUMDS(LI+TDS
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400

500

550
600

2000

9119

COSA(I)}=TL/TDS

SINAII)=T2/TUS.

ZUTI=CMPLX{XMP T )y YMP(IL))

QUIY=CMPLX(X{1},Y( 1))
CIISTOP}=CMPLXIX(ISTOP)¥Y(ISTOP))

GO TO 600

[S3=15TP2+1

D0 550 1=15T2,153

IPl=1+1

ZI1}=CHMPLYECIXIIPL}y YUIPL))

CONT INUE

[2=15TP2

IF(BON.EQ.0YI2=12+1

WRITE (9) (Z11),I=15T2,12}

IF{OEN .EQ. 0) GO TO 200

WRITE(G) [SINAI1)},1=15T2,ISTP2)

WRITE(4) {SINA{])y1=I5T2,I5TP2)

WRITE(9) {COSALI), I=IST2,1IS5TP2)

WRITE(4) (COSALI},1=IST2,I57P2)

WRITE(9) (QU1),1=ISTR,ISTOP)

CONTINUE

NT=NT- NB-ND{NB+1)

NT = TOTAL WNO. OF ELEMENTS

RETURN

END '
SUBRDOUTINE PARTZ2

COMMON IM I MNER¢NTeNBeNCFLG¢RPIJR2PI4SPCLyALPHAZFALPHA
1,DALFA,CHORD,FLGO2 ,FLGO3,FLGO4,FLGO5,FLGD6,FL.GATFLGOB,FLGO9,
2FLGLlO+FLGLYLyFLG12y NDyNLFsSUMDS XSy YSsRS s HGA s NWG
COMMON/BLK1/HEDR(20Q), THETA

INTEGER FLGOZ4FLGD34FLGO4FLGOS+FLGOS  FLGOTFLGOBsFLGOY,
~FLGLO,FLGL1,FLGL2

CCMMON/BLKZ2/ Z11001,Q{100}+SINA(100},COSA(100)
DIMENSION ND(L10) 4AL100),BELOA), SUMDS{L10) yNLF{10) ,YNS{1000),

= VTS(100Q)

COMPLEX IMeZ2yQrWly W2 TF4T2,T1,CLOG,CSINH
RP1=0.318309
RZ2PI=0D.159154

REWIND 9

REWIND 10

REWINDLL

M=1

N=NDI(13}-1

Ml=1

NL=ND{1)

OD 100 L=14+NB

READI9)Y {(2{1)yI=M,N)
READI(9) (SINA{I)sI=M,N}
READI9) (COSALL),IaMyN)
READ(9) (Q{I)yI=Ml4N1}
M=N+1

N=N+ND{L+1)-1

Ml=N1+1
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100

200

500

550

650
700
120

750
800

1000

1200

N1=N1+ND{L+1)

K=NLxNT

0a 200 I=1,K

YNS({I1=20.0

vis{i)=0,0

NPFLG=0

A2=0-0

B2=0.0

L=NT

DO 1500 J=1,L

Ml=1

N1=ND(1)-1

Jl=J=L

J2=0

Ja=0

TLl=COSA{J)Y~IMXSINA(J)

DO 1200 1=1,N8

Jl=J1l+L

Ja=J44+1
TEF=CSINH(3,14159%(Z{J)=-Q(ML1)}/SP]}
DO 1000 K=M1,NlL

J2=Jz2+l

IF(SP .GT.0.0)GC TO &50 -
CALL FORML (JoKyJ2+4ZvQsSINALCOSA WL}
IF(5P +EG.0.0)G0O T3 700

CALL FORM2 (JsKyd242+Q45INA,COSAH2I
IFI(NPFLG .NE. 0} GO TO 550

T2 = CONJGIW2)*T1
AZ=AIMAGI(T2)

B2=REAL{T2)

GO TO 720

A2==AIMAGIW2)

B2=REAL{WZ)

GG TO 750

CALL SPGTO(J+K 2y SP+TF129QeSINALCOSAHWL)
IF(NPFLG .NE. 0) GO TO 750
T2=CONJG(W1}%T1

Al=ATMAGIT2)

I[F{J +EQ. J2) Al=ABS{Al)
B1=REALI(T2}

GO TO 80C

Al=-AIMAG{W]] .
BRI=REALI{W])
YNS{JLI=VNSIJLl)-Bl+B2
VTISIJL)=VTSIJl)}+Al-A2
AlJ2)1=A1+A2

B(J2)=Bl1+B2
VNS{JL)=VNSTJL)/SJMDS(J%)
VTISTJLI=VTSI{JL1}/50MDSLJ4)
MlaN1+2

N1=NI+ND(]I+1)

WRITE(10} (A{lly4I=1,NT}
WRITE(10) (B{I),I=1,NT)}
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10
1300

1500

1800
2000

15
3000

3100

3292

N
[F(FLGOT7 .EG. Q) GO TO 1300

FORMATIIHO L2H AJK ROW 14 //{6F15.8))
WRITE {615) Jo{AII) 1 1=1,4MT)

WRITE (6410) Jy(BUL}yI=1¢NT)

FORMAT{1HO L2H BJK ROW 14 /7 (&F15.8)) o
IF(NT +LE. 135 DR« NPFLG «NE. O ) GO TD 1500
WRITE(LL) (ACLlolal NT)

WRITE(11) (B{I)yI=1,NT)

CONT INUE

M=1

N=L

'DO 2000 J=1:NB

[F INLF(J} .NE. O) GD TO 1BOO

WRITE{4) [VNS(I)eIaM,N}

WRITEL4) (VTS(T),1=M,N)

M=N+1

N=N+L

IF (FLGUT +EQ. 0) GO TO 3000

N=NB®L

WRITE(6&415) {VNS(I1,[=1y4N)

WRITE(6520) (VTSI )sI=1,N}

FORMATILHO/ZLOX 3HYNS /// (6F15.8))
FORMATI1HO/ 10X 3HVTS 7// (6F15.8))

IF(FLGOZ .EQ. O «OR. NPFLG .NE. 0O ) GO TO 9292
NPFLG=1 g

L= ND(NB+1)

READIF) (Z(I)el=1e L)
K=NB=L

DD 3100 I=1:K
VNS(11=0.0
VTSU1)=0.0

GC TO 500

RETURN

END

SUBRROUTINE PART4

COMMON IM NERyNT4VByNCFLG,RPIsR2PI+SP+CLyALPHAFALPHA
1+0ALFAyCHORD,FLGO2 +FLGO3,FLGO4,FLGOS,FLGOE+FLGO7,FLGOB+FLGO9,
ZFLGIOWFLGLLyFLGL2y NDyNLFSUMDS XSy YS+RSyHGANWG
COMMON/BLKL/HEDR(Z0) + THETA

INTEGER FLGO24FLG]3,FLGD4,FLGOS+FLGO6+FLGOTFLGOBFLGOD,
~FLG10sFLGLL1,FLGL2 ’

COMPLEX IM

OIMENSION A{135,135)4R{135,10)ND(10}+NLF(10)

DIMENSION SUMDS(10)

REWIND 3

REWIND 4

REWIND 10

M=1

N=ND(1)~-1

DD 100 K=},NB

READ(4) (RI1+1)s1=MyN)

READ {4} (R{Ls2)s13M4NI]

M=N+1
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100

150
180

200
250

300

350
500

100

150
200
250

N=N+NDU{K+1)=~1

PRECEEDING READS IN SINES,COSINES.DNSET FLOWS NEXT (IF ANY).,
IF (MCFLG «LE. 2 ) GO TO 180

00 150 J=3.NCFLG

READ (4) (RU]sd)elelsNT)

READ (4)

DO 200 J=2:NCFLG

DO 200 I=1,NT

R{lyJ)==RiI, 4}

CO 300 I=1,NT

READ (10) (A({I4d)yJ=1,NT}
READ (10)

DET=1.

CALL MISL (A NT,1354RNCFLG,NERR,DETI

1F (NERR NE. O ) WRITE .6,3501

FORMAT ( 1H]1 23H MATRIX AJK IS SINGULAR )

DO 500 J=1sNCFLG

WRITE (3) (RU14J)yI=14NT)

RETURN

END

SUBROUTINE PARTS

COMMON IMyNERyNTyNByNCFLG)RPI4R2PI+SP,CL ALPHA,FALPHA
1+DALFA,CHDORDyFLGO2 + FLGD3 s FLGO4FLGOSyFLGOSFLGOT? FLGO8 4 FLGOY,
2ZFLGLOsFLGLY ¢y FLG12y NDyNLF s SUMDS+XS+YS+RS+HGA+NWG
COMMDN/BLK1/HEDRI{Z20),THETA

CCMMON/BLK3/ X{100)+Y(LDO}4XMP{100),YMP(100),R{100}
INTEGER FLGOD2.,FLGD3.FLGQ4,FLGOS, FLGObyFLGU?uFLGUB-FLGOQ-
-FLGLOyFLG1Y4FLG12

COMPLEX IM

DIMENSTON B(100),VFI100:5},51G(100¢5}+4T(100,5),ND(10)}
DIMENSION NLFI10), SUMDS(10)

REWIND 3

REWIND 4

REWIND 10

REWIND 11

M=]

N=ND(1)-1

DO 100 K=1,NB

READ(4) (TU1,:2),1=M4N)

READ(&)Y (T{I,1),I=MyN)

READS [N SINES AND COSINES

M=N+1

N=N+ND(K+1]1-1

IF (NCFLG +LEe 2 ) GD TO 200

DO 150 J=3,NCFLG

READI4)

READ{4) (T{I,J}ys1I=14NT)

DO 250 J=1+NCFLG

READI3) (SIGII,J)e1=14NT)

DO 400 I=14NT

READ(10D)

READ(L10) (BIL)sL=L4NT)

DO 400 J=1,NCFLG
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300
400

500

PR=0.0

DO 300 L=1,NT

PR=PR+B(LI*SIG{LJ)

VT{T+J)=PR+T{14J)

DO 500 J=1.NCFLG

WRITEULL] (VT(Isd)yI=14NT)

RETURN

END

SUBROUTINE PARTSE

COMMON IMyNER¢NTNByNCFLG RP1,R2PI,SP,CLyALPHA,FALPHA
1y DALFA,CHORD,FLGI2,FLGO3,FLGO4,FLGAS,FLGOE+FLGOT+FLGODB+FLGD?,
ZFLGLO,FLGL1,FLG12yND,NLFysSUMDS X5+ Y5sR5 ¢ HGA 1 NHG
COMMON/BLKL1/HEDR(2Q)} 4 THETA

COMMOMN/BLKZ/ 2{100),Q(10C),SINA{1QO0),COSA(L100)
COMMON/BLK3/ X1100),Y(10C)yXMP(100)yYMPL100),R{10O)
COMPLEX IMsis@

INTEGER FLGUZ2+FLGI3,+FLGO4+FLGO54FLGO6FLGOT+FLGOBsFLGOY,
-FLG10yFLGL1,4FLG12

DIMENSICN vC{100),CP{100C) +NDIL1O}sNLFLLO},
1SUMDS(L10),GAM{G 1 DVT{F,10}40VI9,9)¢SIGTILOO),
3XTEMP(1000) s YTEMP( 1000} VXL{100)4VYL(LOC)+XTJ11CQ0)»YIJ{100),0VA(9,
48),0VX(9,10)ZTEMP{100)

EQUIVALENCE (GAMyD¥T), (DV4DVT{10}}, (DVA,DVT{19)}
1y (VEXLeXMPlodVYLeYMP) 2 (XTJ9SINA}(Y]IJCOSA)
2y ZTEMP, XTEMP(200) )

PI=3,141593

IF{FLGOB .EQ. O ) GO TO 40

IF{FLGO2 .EQ. O) GO TO 40

REWIND 10

J=2%NT

DO 30 I=1,J

30 READ {10)

C %

LOOP SKIPS BOTH DN~BODY MATRICES

40 NER=0

50

DET=1.

K=NCFLG-2

REWIND 3

REWIND 4

REWIND 11

REWIND 13

DO 50 J=1,10

DO 50 I=1.9

pVX{14J)=0.0

vTil.,J}=0.0

1FIFLGD3 EQe O +AND. FLGO4 .EQ. O .AND. FLGDS EQ. 0) GO TO 1000
IF {FLGD4 .NE. O) ALPHA=DALFA
IF(FLGOS «NEa. 0) ALPHA=0,0
ALPHA=ALPHA/S57.29578
CSALF=COSC(ALPHA }
SNALF=SIN(ALPHA)

REAG{LL) (XTEMP(I) yI=1,4NT)
READ(LL)Y (YTEMPII) »I=14NT)
M=1
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N=ND(1)-1
RO 100 Is1,N8
GAM{I)=(XTEMP(M)+XTEMP [N} }%CSALF
GAMIT)==(GAM{ L)+ (¥ TEMP(M)+YTEMP{N] )&SNALF)
M=N+1
100 N=N+ND(I+1)~-1
1FIK LEQ.0) GO TD 160
DO 150 J=1,K
READ {11) [ZTEMPIL}41=1,NT)
M=]
N=NDI1)-1
DO 150 I=14NB
DVA(LsJ)= ZTEMP(M)+ZTEMP(N)
DVX(I,d)= DVALI,J}
M=N+1 :
150 N=N+ND(I+11-1
160 REWIND 11
IFt K .EQ. NB} GO TQ 200
M=NCFLG-1
DO 170 I=M,NB
DvVall.l)=1.0
170 DVX(1,1)=1.
200 CALL MISS (DVA,NBy 9+GAM,1,NER,DET)}
IF { NER Nk, 0 ) HWRITE {&6,210)
210 FORMAT {1H1 3BHCOMBINATION PROGRAM MATRIX [S SINGULAR }
IF (FLGO3 .NE. 0] GO TO 5000
IF (FLGO6 .NE. 0) GO TO 2000
DALFA=DALFA/57.29578
T=0.
DO 220 I=1,K
220 T=T+GAM(T]
=.5%T/5P
DALL=ATAN2(2.0%T*C SALF,1.0-T*T)
IF( ABS(DAL1-DALFA] .LT. .0005) GO TO 420
ALFl=ALPHA
ALF2= ALFLl+2.*|DALFA-DALL)
ITER=0
250 CSALF=COS{ALF2)
SNALF=SIN{ALFZ)
M=1
N=ND{11-1
DO 300 I=1,NB
GAMIT)=(XTEMP(M)+X TEMP(N) ) *CSALF
GAM{I)==(GAMUI}+(YTEMPIMI+YTEMP (N} ) *SNALF)
M=N+1
300 N=N+ND(I+1)-1
DO 320 I=1.NB
DO 320 J=1,N8B
320 DVALI»J)=0VXiTsJ)
DET=1.
CALL MISS (DVA,NBs9,GAM,1,NER.DET}
IF (NER .NE. O IWITE (64210}
T=0.0
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DC 350 I=1,K
350 T=T+GAM{I1]
T=.5%T/5P
DALZ=ATANZ2(Z2.*T#CSALFy 1.-T23T)
IF | ABS(DALZ-DALFA) .GE. .0005) GO TO 450
400 ALPHA=ALF2
420 DALFA=DALFA®S57.295T78
GO TO 5000
450 [TER=ITER+]
IF {ITER .LT. 20} GO 7O 550
WRITE(6+500)
500 FORMAT{1H1,65HALPHA COMPUTATION I[TERATIONS EXCEED 20. LAST VALUE O
-F ALPHA USED. )
GO TO 400
550 T=ALF1l%*(DAL2-DALFA)/(DALT=DALL)+ALF23(DALFA-DALL}/(DAL2-DALL)
ALFL1=ALF2
ALF2=T
DALL1=DAL2
GO TO 250
1060 IF { FLGOS .NE. 0 ) GO TO 1005
WRITEI6y1002) ‘
1002 FORMAT{1H1,30HFLASS 3, %+ 5+ AND & ARE lERO. //
1 36H COMBINATION PRDGRAM CANNDT PROCEED. |
RETURN
1005 IF | FALPHA .NE. 90.0 «AND. FALPHA .NE. 270. ) GD TO 1020C
WRITE(6, 1010)
1010 FORMAT{1H1 33H UNALLOWABLE [INLET ALPHA IS INPUT )
RETURN
1020 FALPHA=FALPHA/S5T.29578
TNA=SIN(FALPHA1/COS{FALPHA)
DO 1040 J=1.NCFLG
READIL1L) (XTEMP(I }41=214NT)
M=1
N=ND(Ll)=1
DO 1040 1=1,NB
DVTIL¢JI=XTEMP{N)+XTEMP(M]
M=N+1
1040 N=N+ND(I+1)=1
REWIND 11
I=NE+1
DVT{1+1) ==THA
DVTII,2)=1.
[Fl K .EQ. D ) GO TO 1120
F=.5/5P
DO 1100 J=34NCFLG
1100 DvT(1,J) =F
1120 DO 1140 J=lsI1
1140 GAMIJ} = -GAMIJ)
IF | K +EQ. NB} GD TO 1200
DO 1160 J= NCFLG+I
1160 DV(J=lsd)=1. :
1200 CALL MISS (DV41,9+4GAM)1+NER4DET}
IF {NER .NE. 0) WRITE(&,210!

52




1220
2000

2020

2050

2100

2150

2200

2550
2600
5000

5020
5040

5070

GAM{1) = TANIALPHA}, GAM(2] = GAM(1)/COS{ALPHA=~ SOLVE FODR GAM{])}

ALPHA = ATAN{GAM(11}

CSALF= COSCALPHA) '

DO 1220 I=1+K

GAMUT)=GAM(I+1)% CSALF

GO 1O 5000

CLi=0.0

DO 2020 I=1,K

CLI=CLLl+ GAM{I)

CLl1as 2.%CL1

IF ( ABS({CL-CL1l} .LT, .0005) GO TO 5000
ALF1=0.0

ALF2=.2%(CL-CL1)

ITER=0

CSALF = COS(ALF2)

SNALF=SIN{ALF2)

M=1

N= ND(1l)-1

DO 2100 I=1.NB

GAM( T )}=(XTEMP(M)+XTEMPIN) ) ®CSALF
GAM(I)= =1 GAMLI)+ (YTEMP(MI+YTEMP(N) }*SNALF)
M=N+1

N=N+ND{1+1)-1

DD 2150 I=1,NB

DO 2150 J=1.NB

DVA(T1+J)=DVX(I4+J)}

DET=1.

CALL MISS (DVA.NB,9,GAM,}NER,DET}
IF{NER .NF. 0) WRITE(64210])

CL2=0.

DO 2200 J=1,K

CL2=CL2+GAMIJ)

CL2=CL2%2.0

IF{ABRS({CL2-CL) LLT. .0005 ) GO TO 2600
ITER=ITER+]

1F{ ITER .GE. 20) GO TO 2550
T=ALF1*{CL2-CL)}/{CL2-CL1)+ALF2*(CL=CL1)/({CL2-CLL}"
ALFl=ALF2

ALF2=T

CL1=CL2

GD TD 2050

WRITE(6,500)

ALPHA=ALF2

IFI{K .EQ., NB)} GO TO 5040
M= NCFLG-1

DO 5020 1=M.N8B

GAM(I1=0,

READ(11) (XTEMPII)41=14NT)
SNALF=SIN(ALPHA}

READ(LL) (YTEMPII},I=14NT)
DO 5070 I=14NT
VCII)=XTEMP{I)&CSALF+YTEMP[I)*SNALF
IF { K +EQ., O) GO TO 5150
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00 5100 L=1.+K
READIIL) (XTEMPUI),yI= 1 NT}
DO 5100 I=1,NT

5100 VC(1}=VCUII+XTEMP{ I1)*GAM(L)

5150 M=1
N=ND({11}-1
ML=1
NL=ND(1)

B0 5250 J=1,NB
READ([4) (SINACI) I =M,N}
READUS) (COSACI),I=M;N}
READ{13)(IX(I}),I=ML4N1)
READ(13)1(Y(L)s =Ml 4N1)
READIL3I)(XMP{I},IaMsN)
READ{I31(YMP{I)ysI=M,N)
Ml=N1+1
N1=N1+NDI[J+1}
M=N+1
5250 N=N+NO(J+1)-1
GT=0.
DO 5350 I=1,K
5350 GT=GT+GAMI(I)
T=GT/SP¥.5
IF(FLGDS .EQ. O ) FALPHA=ATANZ2 {SNALF+T,CSALFI
ALFEX=ATANZ (SNALF-T,CSALF)
ALFEX=ALFEX*57.29578
FALPHA=FALPHA*S57.,29578
ALPHA=ALPHA*57,29578 '
IF(FLGDG LEQs 0) JALFA=FALPHA~ALFEX
VIN=SQRT(1.+2.#SNALF*T+T*T)
VEX=S5QRT(Le=~2*SNALFAT+T®T)
J=1
Kl=1
M=1
N=ND(1}~1
DO 5800 L=1.NB
K2=KO(L)
LCTR=19
ALPI=FALPHA/57.29578
AEXT=ALFEX/5T.29578
VEXIT=COS{ALPII/CISIAEXT)
VIHET=SIN(ALPI)~(VEXITHSIN(AEXT))
UI0UA=1.0/SQRT((CISIALPI)2*2)+[((VTHET/2. 0)+(VEX!T*SIN(AEXT))D**Z)
%)
DO 5400 [=M,N
IPL=1+1
YC(l)= VCI])IUIUUA/COS(ALP])*RSI((R(ll+R|IP1)l/2 Q)
CPI1)Y=1.0-VCULI)*%2
5400 CONTINUE
FX=0.0
FY=0.0
CM0=0.,0
DO 5410 I=M4N

54




[PL=1+1
Fy=FY+CP{I)={XIPL)=X(1))/100.0
FX=FX+CPLI)*{YI1)-Y{IPL})/100.0
CMO=CMO+CPLLI*I{X{ IPL)=-X{I))}*XMP{I}/10000,0~-
LIY{I)=Y{IP1))2=YMP{ 1}/10000.0)
5410 CONTINUE
WGAR=WGA*P1/180.0
CFTH=(=FX)#SIN{WGAR)-FY*CDS(WGAR)
CFR=FY*SIN(WGAR ) ~F X*COS{WGAR}
CHMRS=CMO+FX*YS-FY* X3S
I=1
5501 WRITE(6.,601)
601 FORMATI'1'425X.*APPLIED RESEARCH LABORATORY'/26X,
L'GARFIELD THOMAS WATER TUNNEL'//)
WRITE( 64602 }HEDR
602 FORMATI(* ',2X,20A4/)
HRITE{G64603INWG WO A .
603 FOCRMATLY ',2X,'MUMBER DF WICKETY GATES = ',12,10X,
L1'"WICKET GATE ANGLE = ' ,.F6.2/71)
WRITE{6+604}IRSs XS YS
604 FORMATI?® 'y 2Xe*RS = '3F10.T916Xs'XS = 1,F10T¢12X+'YS = *»F10.7/)
FALPHN=-FALPHA
ALFEXN=-ALFEX
WRITE(64605)FALPHN  ALFEXN
605 FORMATI(!' '",2X,'INLET FLOW ANGLE = '»Fll.7Ts7Xy
LYEXIT FLOW ANGLE = *,Fll.7/)
HWRITE(6+606)CFTHyCFRsCMRS
606 FORMATI(Y '3 2X,'CF THETA = ',Fll.Ty 9X4*'CF R = "3F1ll.7T,y-9X,
1'CM = ', F11.7//7) .
wRITE(b,bGT)
60T FGRMAT(® ,TZO,'X'.TBS.'Y',Tﬁ?.'V/VRS'.TbZ.'CP')
5600 ABSVC=ABSIVC{KLl]))
wRITE(ﬁ,bOB)I X{J} YIJ),XHP(KI).YHPIKl).ABSVC.CPlKlI
608 FORMATIY '42X,13,T13,2F14.8/T13,4F14,.8)
[=1+1
J=J+1
Kl=K1+1]
IF(I1.EQ.K2)1GD TG 5700
IF{1,LE.LCTRIGD TO 5600
LCTRZLCTR+19
GO TO 5501
5700 WRITE(6,6CB)L.X1d),Y(J}
J=J+1
M=h+1
5800 N=N+ND(L+l)-1
K= NCFLG=-2 =NUMBEX 0OF GAMMAS
1F(FLGD2 .EQ. O} GO TO 9191
N=ND{NB+1)
READI3) (XTEMPU(I)y I=1,yNT )
READI3) (YTEMP(I)y I=1,NT )
DO 5870 I=1sNT
5870 SIGT{I)=XTEMP{I}*CSALF+YTEMPII}1*SNALF
IF (K +EQ. O } GO TO 6150
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DO 6000 J=1,K
READI4)
READ(4)
C ¢= PRECEDING 2 READS WILL SKIP ON-BODY NON-UNIFORM ONSET FLOW
READ(3) (XTEMP(Il, [=1,NT)
DO 6000 I=l4NT
6000 SIGT{1)=SIGT(I) + XTEMPI[)*GAM{J)
M=1
Ml=N
D0 6100 J=1,K
READ(4) {XTEMP(I)y I=MsM1)
READ(4] (YTEMP{I), I=M,M1}
M2M1+1 .
6100 ML=ML+N
6150 DO 6400 J=1,4N
READ(10) (YIJ(1),1=1,NT)
READ(10) (XL1J(1),1=1,NT)
SUM1=0.0 :
SUM2=C,0
DO 6200 [=1,NT
T=516TI1}
SUML=SUML+T*XTJ(])}
6200 SUMZ=SUMZ+T*Y1JID)
IF(K .EQ. 0) GD TO 6300
N1=J
DO 6250 I=1,K
T=GAM(I)
SUML=SUM1+T*YTEMP{N1)
SUM2=SUM2+T#XTEMP(N1)
6250 NL=N1+N
6300 VXL(J)=SUML+CSALF
6400 VYL(J)=SUM2Z+SNALF
LCTR=45
108=1
D0 6450 L=1,4NB
10B=10B+NDIL)
6450 CONT [NUE
DO 6460 J=1,N
1108=10R+J-1
VXL{Jd)=(=VXL(J))#RS/R(TIDB) /UIDUA/COS{ALPI)
VYL(J)=VYL(J)*RS/R(I10B)/UIDUA/COSIALPI)
6460 CONTINUE
C - VXL NOW REPRESENTS VR
C VYL NDW REPRESENTS V THETA
10B2=108+N-1
READ(13)(X(1),1=108,10B82)
READ(L3)(Y(I),[=108,1082)

C X REPRESENTS R
C Y REPRESENTS THETA
I=1

6500 WRITE(G64601}
WRITE[64602)HEDR
WRITE(6+610)
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610 FGAMATI'Q'y2X, 'OFF-BODY POINT VELDCITIES'/)
WRITE(6,611)
6l1 FORMAT(* *,T20,'R' yT33,'THETA* ,T47,*VR/VRS',T58,*"VTHETA/VRS/)
6600 WRITEI6+61211X(I3BI,Y(IDB),VXL{T),VYLIT}
612 FORMAT(' *,2X4134T1344Fl4,.8]}
100=108+1
1=1+1
IFI] +GT. N} 60 T3 9191
IFI{ I .LE« LCTR) GO TOD 6600
LCTR=LCTR+45
GD 7O 6500
9191 RETURN
END
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10

20
25
30
35

SUBADUTINE FORML (JsKsJ2,2:Q1SINAYCOSAsW)

COMMON IMyNER NTyVByNCFLGyRPI R2P]+S5PCLyALPHA,FALPHA
1+DALFA,CHORD, FLGOZ s FLGO3,FLGO4,FLGOS+FLGD6OFILGOTFLGOBFLGOY,y
2FLGLOsFLGLL4FLGL2s NDyNLF 4+ SUMDS s XS+ YSsRS e WGAyNWG - )

DIMENSION ND(10)sNLF(10}, SUMDS([O'.XMC|B)|VMC|B):ADDY(B|-

COMPLEX IMs2+0+W,CLOG :

DIMEMSION Z¢100),21100),SINA(LOO), CDSAIIOOJ

W=CLOG((Z(A)=-Q(KI /121 3)=-Q(K+L))) :

W={COSAIJ2)-IM*SINA{J2) }*R2P[ =W

RETURN

END

SUBROUTINE FORMZ2 {(JyKJ2,2,QeSINALCOSAH)

COMMON IM NER NTsNBsNCFLGyRPI sR2P14SP+CL+ALPHA,FALPHA
1,DALFAZCHORDFLGO2 ,FLGO3 yFLGOGFLGOS4FLGO6+FLGOT+FLGOB,FLGO9,
2FLGI0 s FLGI19FLGL12y NDoNLF - SUMDS 4 XS3YSeRS s WGA ¢ NWG

DIMENSION ND(L1O)4NLF{LO),SUMDS{10),XMCIB),YML(B),ADDY{8)

COMPLEX 1My Z2.UsW,CLAG

DIMENSION Z{100},2(1001,SINA(LDO),CDS5A(100)

W=CLOG{Z(J)-CONJG{Q{K)})I}/{Z1J)~-CONJGIQIKR+1))

W=(COSA(JZ2)+IM=SINALIZ) Y¥R2PI*W

RETURN

END

SUBROUTINE SPGTO (JyKeJ2sSPsTF4Z2+QeSINALCOSA W)

COMMON 1M NERyNTyNB;NCFLG4RPI ,R2P]

COMPLEX IMeZoQoWsTFsTNyCLOGsCSINH

DIMENSION Z(100),Q(100),SINA{L100D},COSA(100)

TN=CSINHI3.14159%{ Z{J)-Q(K+1)}/5P)

W=(COSALJ2)Y ~IM*SINA(J2))*CLOG{TF/TNI*R2P1

TF=TN

RETURN

END

COMPLEX FUNCTION CSINHIZ)

COMPLEX 2Z

CSIMH=(CEXPLZ)=CEXPI=-2))/2.0

RETURN

END

SUBRAOUTINE MIS1 (AsNy NDD,BsMyNERR.D)

DIMENSION A118225)4,8{1350)

NERR=1

NO=NED

DO 90 I=1,.N

AlJMaxX=A(1])

[JMAX=1

DO 25 J=2:N

IJ=1+(J=-1)%ND

IF (ABSIALIJ))=~ABS{ATJMAX}) 25,25,20

ATJMAX=ATTY)

TJMAX=TJ

CONTINUE

IF (ATJMAX) 30,999,30

DD 35 J=1:N

1J=1+{J=1)%*ND

AlTJI=ALTJ)/ATIMAX
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40

50

55
58
60

65

68
69

70

90

93

95

99
100

999

10

D=D%ATJIMAX

DG 40 J=1.M
[d=1+1J=-1)%ND
BEIJY=BLLJY AT JMAX
DO 70 K=1l.N

IF (K-1) 50,470,450
KJMAX=TJMAX+(K=1)
ARAT==-A(KIMAX)
KJ=K

1d=1

DO 60 J=aleN

1F (A{IJ}) 55458,55
A(KJI)=ARAT*ALTJ)+AIKJ}
KJ=KJ+ND

1J=1J+ND
A{KJMAX}=0,0

KJ=K

14=1

DO 69 J=1.M

1F (R{IJ)) 654AB465
B{KJ)=ARAT=B([[J)+B(KJ)
KJ=KJ+ND

1Jd=1J+ND

CONTINUE
Kd=z1JMAX-1+1

FI = 1

A(KJI=FI

DO 100 I=1.N

K=1 .
I1=K&ND-ND+1
FK=A{11)

K = FX

IF{K~=1) 93,100,495
I1J=1

1K=K

DD 99 J=1,M
Al2)1=811J)
B(T1J)=B{IKI
BIIK)=A(2)
IJ=TJ+ND

IK=TK+ND

CONTINUE

NERR=0

RETURN

END

SUBROUTINE MISS {A,N, NDD, By My NERR,D}
DIMENSION A(81),8(9])

NERR=1

ND=NDO

DO 90 I=1,N

ALJUMAX = A{1)

TdMax= |

DD 25 J=2«N
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IJd=I+{J=-1)%*ND
IF ( ABS(ALIJ))- ABSIALJMAX)) 25925+20
20 AlJMAX=ALTJ}
[JMAX=1J
25 CONTINUE
IF (A1JMAX) 30,999,30
30 00 35 J=1.N
1d=1 + (J=1)%ND
35 Al1J)=A(TJI/ATINAX
D=D#%A[JMAX
DD 40 J=1,M
[J=I1+(J-1)1%ND
40 B(I1J)=B{IJ)/ALIJIMAX
DO 70 K=14N
IF{K=1) 50,70,50
S0 KJMAX = L[JMAX + (K=1])
ARAT= —-A(KJMAX}
KJ=K
IJ=1
DO 60 J=1+N -
IFLA(IJ)) 55+58,55
55 AIKJI = ARAT#*A[1J) +A(KJ)
58 KJ=KJ+ND :
&0 TJ=1J+ND
A{KJMAX)=0.0
KJ=K
1J=1
DO &9 J=sl4+M
[F (B{IJ)] 65+68:+65
55 B{KJI=ARATSBLLJ)+B(KJ)
68 KJ=KJ+ND
69 [J=1J+ND
70 CONTINUE
KJ=[JMAX=-T1+1
FI = 1
90 AtKRJ) = FI
DD 10O 1=1sN
K=1
93 [1l= K=ND-ND+1
FK = A{IL1)
K = FK
IF (K=~1) 93,100,955
98 [J=1
[K=K
DC 99 J=14M
Al2}=811J}
BllJ4)=B(IK)
BlIIKI=A(2)
IJ=1J+ND
99 [K=[K+ND
100 CONTINUE
NERR=0
999 RETURN

END

60




INPUT LISTING



//7DATALINPUT DD »
SAMPLE PROBLEM FOR CAMBERED WICKET GATE

1000
89 1¢ ©C.0
45 20 60.0 60,0 3.0201232 .5461218 .031533282

100.00000 0.00000
99,89999 0.72468
99.75000 1.12923
99.50000 1.56734
99.00CQ00 2.08582
98.50000 2.40332
38.00000 2.58885
97.50000 2.72502
96.75000 2.92638
95.50000 3.25439
94.,00000 3.63549
92.50000 4.00300
88.50000 4.91747
81.50000 €.29158
73,50000 1.51657
65.50000 8.38015
57.50000 8.88750
4%.50000 9.04165
45.50000 8.980663
41.,50000 8.84343
37.50000 8.61195
33.50000 8.29176
29.50000 7.88243
25.50000 7.38332
21.50000 6,79372
17.50000 6.11269
13.50000 5.33925
10.50000 4.69776

8.590000 4.24055
7.00060 3.88200
6.00000 3.63549
5.00000 3.38292
4.00000 3.12432
3.00000 2.85946
2.25000 2.65711
1.75000 2.51020
1.50000 2,40132
1.25000 2.26402
1.00000 2.08582
0.75000 1.85754
0.50000 1.55734
0.25000 1.12923
0.15000 0.88323
0.05000 0.51481
0.0000C0 0.0G000 .
0.05000 <-0.51481
0.15000 -0,58323
0.25000 =1.12923
0.50000 -1.55734
0.75000 =1.85754%
1.00000 =-2.08582
1.25000 =-2.26402
1.50000 =2.40332
1.75000 -2.51020
2.25000 -2.64129
3.00000 ~-2.67512
4,00000 =2.67532
5.00000 =2.67532
6.00000 =-2.,67532
7.00000 =-2.67532
8.50000 -2.67532
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10.50000
13.50000
17.50000
21.50000
25.50000
29.50000
33,.,50000
37.50000
41.50000
45.50000
43.50000
57.50000
65,50000
73.50000
81,50000
88,50000
92.50000
94.,00000
95.50000
96,75000
27.50000
98,.,00000
98.50000
99.00000
99.50000
99.75000
99,89999
100.000600

10

e o= = U NN
4 8 2 5 & 4 & s s @

[eRojaleBelaNalaNale

-2.67532
-2.67532
~-2.67532
-2,67532
-2.61532
~2.671532
~2.671532
-2.67532
-2.67532
=2.67532
-2.67532
-2:.6T7532
~2.67532
-2.67532
-2.67532
-2.67532
-2.67532

-2.67532

-2.67532
-2.67532
-2.66%957
-2.56868

4=2.40332

-2.08582
-1.12923
-0.72468

0.00000

00 0.0
0.0
#.5
3.0
13.5
18'0
0.0
4.5
9.0
13.5
18.0

64




SAMPLE OUTPUT



INPUT PARAMETERS

FLGOZ2 = 1

FLGOB = 0O

FLGOY9 = 0

FLG12 = 0

NN = 89

BDN =1

SUBKS = 0

ROFFB = 0.0000000
NLE = U5

NWG = 20

WGA = 60.00000
FALPHA = 60.00000
RS = 3,0201230

XS = 0.5461218

¥s = 0.0315333
NN = 10.

BDN = ¢

SUBKS = 0

ROFFB = 0.0000000
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APPLIED RESEARCH LABORATCRY
GARFIELD THOMAS WATER TUNNEL

SANPLE PROBLEM FOR CAMBERED WICKET GATE

NUMBER OF WICKET GATES = 20 WICKET GATE ANGLE = 60.00
RS = 3.0201230 Xs = 0.5u61218 ¥$ = 0.0315332
INLET FLOW ANGLE = 59,.9999690 EXIT PLOW ANGLE = 64,9216400
CF THETA = 0,7893797 CP B = =7.8014580 cn = 0.0215683
X 4 v/YRS ce
1 100.00000000 0.00000000
99,94999G¢39 €.36233990 C.59u71640 0.646312u0
2 99,89999000 0.7246R300 = -
99.82499C00 0,.92695470 1. 48706200 -1.21135400
3 93.75000000 - 1412922900
99.6250C000 1,3432Ru4C0 2.0388uL300 -3.15688100
4 99.50000000 1.55733300
99,25020000 1.82157300 2.60373u00 ~5.,77943500
5 99.00000000 2.08582000
98,750CC000 2.24456500 3.03379800 -8.20393000
6 98.50000000 2.40332000
98.250000C0 2,49628590 3.0389u900 -8.23521000
7 98.0000G6000 2.58885000 .
97.75000060 2.656334C0 2.824451700 -6.,97753400
8 97.50000000 2.72502000
97.12500000 2.82569900 2.65828200 -6.06646400
9 96.75000000 2.932638000
96.,12530000 3.09038400 2.5(366100 -5,58775200
10 95.50000000 3.25438900
94,75005C02 1.44493300 2.50539700 =5,27701700
11 99.00000000 3.63549000
93.25000000 3.81924500 2.47368700 ~5.11912700
12 92.50000000 4.00300G00
90.5CQ¢CRCN0 4.46023400 2.44061500 -4,95660400
13 88.50000000 4.91746900
85,0G070C00) 5.62452400 2.39334600 -4,72810800
14 81.50000000 6.22158000
77.50Q00€000 6,904C7400 2, 34706900 -4.50873500
15 73.50000000 7.51657000
’ 69.50000000 7.9481353900 2.29603700 -4.27178800
16 65.50000000 8.33014300 .
61,50000CC0 8.63381300 2.24320400 -4,03196400
17 57.50000000 8.0887497200.
53.50000000 8,96456900 2,19073600 =3.79932600
18 49,50000000 9.04164900
' 47.50000000 9.01413700 2.16301600 -3.68729400
19 45.50000000 8.98663000
43,5000C000 8.91502300 2.13801400 =3.57110600
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SAMPLE PROBLEM FOR CAMBERED WICKET GATE

NUNBER OF WICKET GATES = 20

RS .=

INLET FLOW ANGLE =

CF THETA =

20
21
22
213
24
25
26
27

3.0201230

WICKET GATE ANGLE =

X5 =
59,.9999600
¢.7893797 CF R =
X ¥
41,300C00€C0 8.341342900
35.50000000 8.72768400
37,.5000006) 8.5611947300
35.50000000 " B.45185000

33.5060C000
31.50000000
29.,5000C0CH
27.50000000
25.50C2C000
23.50000000
21,500CC000
19.50000000
17.5C3CG000
15.50000000
13.50000000

- . 12.00000000

28
29
30
31
32
33
T
35
36
37
38

10.5000C000
© 9.50000000
8.,50006050
7.75000000
7.0900C000
6.50000000
6.0300000Q0

5.50000000 .

5.0000G000
4.50000000
4,0062CG300
3.50000000
3.49000007
2.62500000
2,25000090
2.00000000
1.75000009
1.62500000
1.500C0000
1.37500000
1.2500000)
1., 12500000

8,29176200
8.097¢9300
7.882430090
7.563287400
7,38331300
7.08852000
6.791372300

- 6.45320500

6.11268900
5.72596900
5.33924900
5,01850400
4,6€77520¢
4.,469154%00
4, 24055000
4.06127400
3,88199300
3.75874500
3.63549200
3.50920400
3,38292300
3.25362000
3, 12432700
2.99199000
2.85966:200
2,75838400
2,65711000
2.58365400
2.51019900
2.45675300
2, 401332000
2.33366900
2.26401900
2.17492000
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APPLIED RESEARCH LABOFATORY
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0.5461218
EXIT PLCW ANGLE =
~1.8414580

V/VES
2.11223900
2.08615400
2,05917000
2.030855%00
2.00085800
{.9687uﬂ00

1.93411000

1.90652100

1.88791200

1.87614100

1. 86979700

1.86927700
1.87734700
1. 90670700
1.97396200
2.11068000
2.23801600
2.22070800
2.13881400

60.0C
¥s = 0
6U.921640

CH =

cp

-3.046155600

 ~3.35204200
- «3,26018300

-3.12437200
=3,00343300

=-2.87595300

-2.74075300

-2,63482400
-2,.56421300
=2.51990600

-2,49614300

o =2.4948:19900

-2.52443500

-2.63553400

. =2.,89644900

-3.U5497200
-4.00871500
=3.93154700
-3,57452800

-0315333
)
¢.0215683



APPLIED RESEARCH LABCFATORY
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SAMPLE PROBLEM POR CAMBERED WICKET GATE '

NUMBER OF WICKET GATES

RS '3,0201230 0.54€1218 YS = 0.02315333
INLET FLOW ANGLE = 59.9999609% BEXIT FLOW ANGLE -= 684.9216400
CP THETA = 0.7893797 CF R = ~=1,B414580 cH = 0.0215683
X Y V/VRS Cp
39 1.00000000 2.08582000
0.875C0000° 1.27167300 1.98831800 -2.95341000
40 0.75000000 1.85754000
0.62500029 ©1,.70743300 1.75195100 -2.06933200
41 0.50000000 1.55733300 :
0,37500000 1.343284¢0 1.36447790 -0.86179730
42 0.25000000 1.12922300°
0.1999999) 1.10622300 1.02807900 ~0.05694771
43 0.14929990 0.39322990 a
0.79399996 0.6%9C1990 0.69075520 0.52285710
44 0.05000000 0.51481000 ° : -
0.025002060 0.25740490 - 0.1€441660 0.97296720
45 0.000C0000 0.00000000 .~ .
: 0.025C0200 =0,25740490 0,4€6612930 0,78272340
ue6 0.05000000 ~0.51481000 ‘ oL
0.099999956 -0.699C1990 1.019653090 -0,039692808
47 0.14959990 -0.A83224990
0.19999992 -1.00622900 1.39530800 . =-0.54688510
us 0.25000000 -1.12922300 : ; :
S0,37560000 - =1.34328400 1.78914300 -2.20103400
49 0.50000000 -1,55733900- :
0.62500032 -1.707433C0 2,26682300 -4,13848900
50 0.75000000 «1.85754000 ’ ;
0.87500303 -1.97167500 2,58995300 - -5.70785800
51 1,00000000 ~2.08582000 : .
T.%250000)  -2,174892300 2,82889200 -7.00263300
52 1.25000000 =2,26501300
1.375¢0200  =2.333€66900 - 3.00371900 -8,02232900
53 1.5C00G0Q0 -2.00332000 :
4.62500009 -2.456759%00 3.713212800 -8.810223000
54 1.75000000 -2.51019300
2.00000000 =2.57574400 3.12789900 -8.78375200
55 2.25000000 -2.641283900 :
2.625G0207 ° =2.658304090 2.88813000 -7.34129500
56 3.00000000 -2.67531900 .- . ' .
.3.50000700 © ~2.67531900 2.60166300 -5,76865200
57 4.00000000 -2.67531900
4,50000000  =-2.67531900 2.45u68200 =5.02546500

20 -

TX§ =

70
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SANMPLE PROBLEM FOR CAMBERED WICKET GATE

RUHBER OPF WICRET GATES = 20 WICKET GATE ANGLE = 69,00
BS = 3.0201230 X5 = 0.5u61218 ¥s = . 0.0315333
INLET PLOW ANGLE = 59.9999600 EXIT PLOW ANGLE = 64.9216400
CP THETA = 0.7893797 CP R = =1.8414580 cH = 0.02156813
X Y V/VERS cP
58 5.00090C209 -2.67531300 .
5.50000000° -2.57531300 2.38719300 -4.69869300
59 6.000C0207 -2,67531900 . o
6.50000000 =2.67531300 2.34865800 -4.51619600
60 7.0C00C0207 -2.67531300
7.75000000 . -2.67531200 2.32482800 -4,40482500
61 8.5020C000 -2.67521300 o :
9,50000000 -2.67531300 2.30727800 =-4.32353400
62 10.50000069 -2.67%31300 .
©12.00000000 - -2.57531300 2.30145900 -4.29671400
63 13.5000C300 -2.67531300 . : N
15.50000000 -2.67531900 2.30795200 -4.32664500
64 17.500C0C09 -2,67521300 N
19.50000000 - ~2.67531300, 2.32270200 . ~u4.39494600
65 21,500200002 -2.67531903 .
231.50000000 -2.67531300 2.34291100 =-4,48923u400
66 25.5C05CC000 -2.675319¢C20 . . :
27.50000000- ~2.67531300 2.36626000 -4,59918800
67 29.5000C299 -2.67531900 ) :
31.56000000 -2.67531300 2.39180700° =-4.72074300
68 33.5C240009 -2.67531940 . - S
35.50000000 =2.67531300 2.41912300 -4.85215800
69 37.50002G070 -2.675317300 . 2
39.50000000 -2.67531300 2.44811500 ~-04.99326800
70 41.500C0000 =2.687231300 . ..
43.50000000 -2.,67531300 2.47842%00 -5.14261300
T1 45.5G0C0000 =-2.67531900
47.50000000 -2.67531300 2.50940600 -5.29711800
72 49,50CnC1300 -2.675319G0
53.50060000 -2.67531300 2.55813000 -5,54403000
73 57.59000000 -2.67531300
61.50000000 -2.67531300 2.62048300 -5.86682709
Th 65.50000000 -2.67531900
€9.50000000 -2.67531300 2.68101300 -6.18783000
75 73.5000C000 -2.67531900
77.50000000 «2.67531900 2.70073200 -6.51161200
76 81.50000000 -2.67£31900
85.00000000 -2.67531900 2.80448900 =-6,86515900
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SAMPLE PROBLEM FGE CAMBERED WICKET GATE

NUMBER OF WICKRET GATES = 20 FICKET GATE ANGLE = 60.00
RS = 3,0201230 s = +0.5461218 I8 = 0.0315333
INLET FLOW ANGLE = 59,99996730 EXIT PLOW ARGLE = 64,9216400
CF THETA = 0.7893797 CF R = =1.8u14580 CH = 0.,0215683
X Y V/VYRS cp
77 8n.50000000 -2.67531900 :
- 90.50000C00 -2.67531900 2.87847300 =-7.28560800
78 92.50000000 -2.67531300 ’
" 93.25000200 -2,67531300 2.94663900 -7.6826A1G0
79 94,00000000 -2.67531300 . '
Qu.759207202 -2.67531900 3.,08412200 -8,26668200
80 95,50000000 -2.67531300
96.12500000 -2.67521900 ©3,22393L400 © «9,39375100
81 96.750C0000 -2.675313900
'97.12500090 =2.672444C0 3,56036800 =11,67622000
82 97.50000000 -2.66956900 ; -
97,75000000 -2.629124C0 3,95L77400 -14.64024000
83 - 958.00000000 -2.58868000
98,252001200 =2.496000300 3.96366200 -14.71061000
g4 98.50000000 -2.040332000 )
98,75200000 - -2,24456900 3.65976400 -12.393870C0
a5 99.00000000 -2,08582000
99.25C200G0 -1.8215790¢ 2,56567700 ~7.79524100
86 99.,50000000 -1.55733300 ' ‘ :
99,62500000 -1.34328430 2,20933500 - =3,88116100
87 99.75000000 -1,.12922900
$9,82499000° ~0.92695u470 55355800 -1/41354200
88 99.89995000 -0.72468000 -
99,94999000 =-0.36233990 = 0.59613400 0.64462420
89 )

100.00000000

¢.00000000
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SABPLE PROBLEM FOR CANBERED WICKET GATE

OFF-BODY POINT VELOCITIES

b

QOO NE WN =

R

5.000000G0
5.0000C0C0
$.00000000
5.00000300
5.0000000Q0
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

END OF PROGHAM - DATA

THETA

0.00000000
4,500c0)00
9.00000000
13.5C060000
18.00000000
0.0n00C200
4.50000000
3,000006000
13.50000000
18,.00000000

INPUOT PARAMETERS

PLGO2
PLGOB
FLGOY
FLG12

- OO

oo nn
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VR/YRS

-0. 60478180
-0,6QU746200Q
-0.60475190
-0,60U79180
~0.60478220
-3.01638100
-3.01638100
-3.01638300
-3.01637%00
=3.01638100

HAS BEEN BIBAUSTED

VTHETA/VYRS

=-1.00622200
-1.0u621200
-1.0u4517300
-1.,04618200
-1.04622200
-6.45360400

-6,45360600°

-6.45360400
=6.45360400
-6.45360u00

GFO B39 =331



