REC-ERC-74-1

HYDRAULICS OF STRATIFIED FLOW FINAL REPORT SELECTIVE WITHDRAWAL FROM RESERVOIRS

Engineering and Research Center Bureau of Reclamation

January 1974

REPORT NO.	3. RECIPIENT'S CATALOG NO.
I. REFURINU.	
REC-ERC-74-1	5 REPORT DATE
. TITLE AND SUBTITLE	
Hudroulies of Stratified Flow	January 1974
Final Papart	6. PERFORMING ORGANIZATION CODE
Colorities Mithdrowal From Reservoirs	
Selective withorawar From Reservoirs	
	8. PERFORMING ORGANIZATION
7. AUTHOR(S)	REPORT NO.
P 1 Johnson	BEC-ERC-74-1
1. C. Objintowi, J. L. Lander, and S. S. Santara, "International Control of the Action of the Act	
PERFORMING ORGANIZATION NAME AND ADDRESS	10, WORK UNIT NO.
Engineering and Research Center	11. CONTRACT OR GRANT NO.
Bureau of Reclamation	
Denver, Colorado 80225	13 TYPE OF REPORT AND PERIOD
	COVERED
2. SPONSORING AGENCY NAME AND ADDRESS	
	Final
말 하는 것 같은 것을 하는 것 같은 것을 많다. 물건	
Same ·	14. SPONSORING AGENCY CODE
5. SUPPLEMENTARY NOTES	
	and the second
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Ceveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Reveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re- contridered. The method is compared with experimental and proto-	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are otype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the quarter may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. The veloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for previous discharges. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are stype data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop The studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ wate istribution/ "thermal stratification/ design
 Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or reconsidered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ *hydraulic mod quality/ temperature/ Froude number/ *stratification/ velocity discovery. 	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ "thermal stratification/ design
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ *hydraulic mo quality/ temperature/ Froude number/ *stratification/ velocity d criteria/ *stratified flow/ *multilevel outlets/ *selective level release	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ wate istribution/ "thermal stratification/ desig
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mo quality/ temperature/ Froude number/ "stratification/ velocity d criteria/ "stratified flow/ "multilevel outlets/ "selective level release	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ wate istribution/ "thermal stratification/ desig
 Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or reconsidered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ *hydraulic more quality/ temperature/ Froude number/ *stratification/ velocity d criteria/ *stratified flow/ *multilevel outlets/ *selective level release 	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ "thermal stratification/ desig
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mo quality/ temperature/ Froude number/ "stratification/ velocity di criteria/ "stratified flow/ "multilevel outlets/ "selective level release	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient redicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ "thermal stratification/ desig
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or ro considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ *hydraulic mo quality/ temperature/ Froude number/ *stratification/ velocity d criteria/ *stratified flow/ *multilevel outlets/ *selective level release b. IDENTIFJERS	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ wate istribution/ *thermal stratification/ desig
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mo quality/ temperature/ Froude number/ "stratification/ velocity di criteria/ "stratified flow/ "multilevel outlets/ "selective level release b. IDENTIFJERS	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ *thermal stratification/ designs
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mod quality/ temperature/ Froude number/ "stratification/ velocity d criteria/ "stratified flow/ "multilevel outlets/ "selective level release b. IDENTIFJERS c. COSATI-Field/Group 13M	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ *thermal stratification/ designs
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mo quality/ temperature/ Froude number/ "stratification/ velocity d criteria/ "stratified flow/ "multilevel outlets/ "selective level release b. IDENTIFJERS c. COSAT1 Field/Group 13M 18. DISTRIBUTION STATEMENT	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ *thermal stratification/ designs sector (THIS REPORT)
Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T Beveloped analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re considered. The method is compared with experimental and proto are included.	uality of water withdrawn from reservoirs d is part of a continuing effort to develop the studies discussed here refine previously sumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are type data. Step-by-step design procedures type data. Step-by-step design procedures bodels/ density currents/ hydraulics/ water istribution/ *thermal stratification/ designs s 19. SECURITYCLASS [21. NO. OF PAC (THIS REPORT) UNCLASSIFIED 41
 Selective outlet works provide an important means by which the quanty be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. The veloped analyses, including evalutation of previous simplifying as and equal half-layer discharges. A method is presented for previous detection of the vater surface or reconsidered. The method is compared with experimental and protogare included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic modulity/ temperature/ Froude number/" stratification/ velocity discriteria/ "stratified flow/" multilevel outlets/" selective level release b. IDENTIFJERS c. COSATI Field/Group 13M 18. DISTRIBUTION STATEMENT Available from the National Technical Information Service, Operations Division, Springfield, Virginia 22151. 	uality of water withdrawn from reservoirs d is part of a continuing effort to develop The studies discussed here refine previously ssumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are https://docs.com/procedures https://docs.com/procedures bodels/ density currents/ hydraulics/ wate istribution/ *thermal stratification/ desig istribution/ *thermal stratification/ desig istribution/ 19. SECURITY/CLASS 21. NO. OF PAC (THIS REPORT) UNCLASSIFICD 41 20. SECURITY CLASS
 Selective outlet works provide an important means by which the q may be controlled. This is the third and final report in a series, and accurate practicable design and operating criteria for such outlets. T developed analyses, including evaluation of previous simplifying as and equal half-layer discharges. A method is presented for pr withdrawal layer. Layers restricted by either the water surface or re- considered. The method is compared with experimental and proto are included. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS / applied research/ reservoirs/ "hydraulic mod quality/ temperature/ Froude number/ "stratification/ velocity di criteria/ "stratified flow/ "multilevel outlets/ "selective level release b. IDENTIF/ERS c. COSATI Field/Group 13M 18. DISTRIBUTION STATEMENT Available from the National Technical Information Service. Operations Division, Springfield, Virginia 22151. 	uality of water withdrawn from reservoirs d is part of a continuing effort to develop The studies discussed here refine previously ssumption, such as a linear density gradient edicting velocity destributions within a eservoir bottom and unrestricted layers are https://docs.com/docs/particle/layers/

 $\langle \rangle$

(T

and the second s

.

ç

. je.

.

REC-ERC-74-1

HYDRAULICS OF STRATIFIED FLOW FINAL REPORT SELECTIVE WITHDRAWAL FROM RESERVOIRS

Ĵ

Ĵ.

i Si ya s

by P.L. Johnson

January 1974

Hydraulics Branch Division of General Research Engineering and Research Center Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR * BUREAU OF RECLAMATION

5

€ °9

-1

ACKNOWLEDGMENT

÷

63

್ರಾಂ

67

-Ú

Č,

The studies were conducted by the author and reviewed by D. L. King, Applied Hydraulics Section Head, under the general supervision of W. E. Wagner, Chief, Hydraulics Branch.

0

6

1.0

 \mathcal{G}

 $^{\circ}$

CONTENTS -

Page

6

8

9

11.

15

		5 C 3			(1) Solve and the second se		
			· · · · · ·				
Purpose						• • • • • • • • •	• • . • . • . • . • . • . • . • . • . •
Results	• • • • •						
Application							, , , , , , , , , , , , , , , , , , ,
Introduction						ومناجبه متعادية	
Test Facility and Pr	rocedure	و مید مید ا	• • • •	÷ • • • • •			
Experimental Findi	ings 📖		an a		• • • • • • • •	المعالم والموسط معارضا والم	• • • • •
		á.,	<u>, 6</u> ,			6	
Uluti Ma Dattam	or Mate	ar Surface	Interferenc	е			

With No Bottom or Water Surface Interference Sample Calculation With No Bottom or Surface Interference With Bottom or Water Surface Interference Sample Calculation With Bottom or Surface Interference

References

LIST OF TABLES

Table

_1 ⊴2

Reservoir description	 		 	/ <u>(</u> 10)
Reservoir description	 	• • • • • • •	 	10

LIST OF FIGURES

Figure

	T II we and absorbation of withdrawal layer
1	lest flume and observation of withdraws over
2	Velocity distribution in stratified flow with boundary effects
	negligible
3	TVA prototype data for sample problem
4	Sample problem, no boundary effect
5	Velocity distribution in stratified flow with boundary effects
6	Relative position of maximum velocity for conditions in which a
	boundary limits the withdrawal zone
7.	Sample problem with boundary effects

APPENDIX

User's Manual Pro 1530-Strat

LIST OF FIGURES

Figure

1 2 3

	and the second	and the second		· · · · · · · · · · · · · · · · · · ·	26
	Example problem			 • • • • • • •	
	Input data			 • • • • • •	1 21
۰.	Program output		رجيفكم والوالم توتوس	 •••••	29

PURPOSE

The surpose of this report is to present recently achieved modifications to the previously presented tentative theory on selective withdrawal from stratified reservoirs. The author also attempts to develop and present the theory with design curves and formulas that are of practicable significance.

RESULTS

1. Attempts to correlate inaccuracies in withdrawal layer thickness prediction with variation in the density gradient from the assumed linear distribution proved inconclusive.

2. Dimensionless velocity distribution curves were developed for withdrawal layers that were either unrestricted or restricted by the bottom or the water surface. In these curves the dimensionless velocity term (the local velocity divided by the maximum velocity in the withdrawal layer) is correlated to the density gradient across the withdrawal layer and the relative location within the withdrawal layer.

3. It was generally observed that for withdrawal layers not restricted by the water surface or bottom, the elevation of the maximum velocity in the flow was the same as that of the center of the withdrawal outlet.

4. For withdrawal layers that are restricted by either the water surface or the bottom, the location of the maximum velocity was found to shift from the outlet centerline towards the restricting boundary. A curve to evaluate this shift was developed. The curve correlates the relative positions of the restricting boundary and the outlet centerline (with respect to the total withdrawal layer thickness) to the maximum velocity location.

5. A correlation between uneven discharge distributions within the withdrawal layer and the predicted half-layer thickness (distances from outlet centerline to layer boundaries) was developed for half layers that are not restricted by a boundary. It was found that variations from a uniform discharge distribution could be evaluated. These in turn could be used to develop modified discharges for use in evaluation of corrected withdrawal layer boundaries. This correction is only meaningful for unrestricted half layers. The thickness of the restricted half layers is established by physical limits and therefore cannot be modified.

APPLICATION

The material in this report is intended primarily for use by U.S. Bureau of Reclamation (USBR) designers in designing facilities for selective withdrawal from reservoirs. The contents should also be of interest to other researchers in this field.² Emphasis is placed on the hydraulic engineering aspects of selective withdrawal.

INTRODUCTION

This third and final report completes a series dealing with the hydraulics of stratified flows as applied to selective withdrawal from reservoirs.

The studies described by these reports were initiated on the premise that many water quality parameters follow the patterns established by reservoir stratification. It was also realized that the quality of reservoir outflow could be controlled through selective withdrawal; however, knowledge of the mechanics of stratified flow and selective withdrawal was limited and more accurate predictive abilities were needed to optimize design and operation of selective withdrawal structures.

In the first report in this series ¹ • D. L. King presented a summary of the basic theories and principles dealing with stratified flows and selective withdrawl. He also discussed hydraulic modeling problems which include similitude and modeling law questions as well as physical modeling facility and instrumentation difficulties. Finally, in the initial report King evaluated the state of research as of 1966 in which he not only presented a review of literature and a summary of USBR activities, but also an evaluation of areas needing additional research and a proposal for research by the Hydraulics Branch, Division of General Research of the USBR.

The second report in this series,² also by D. L. King, reviewed past research in reservoir stratification and selective withdrawal. He then presented a tentative theory for aiding in the solution of design and operational selective withdrawal problems. In his analysis King modified the formula for the densimetric Froude number as suggested by Debler.³ This formula is:

 $F' = \frac{V}{\sqrt{g'd}} 0.28 \pm 0.04$

Superscript numbers refer to references listed at the end of this report.

where F'

V

g

ď

- densimetric Froude number
- average volocity in withdrawal layer
- ° = g∆ρ/ρ
- ρ_{0} = density at orifice centerline
- △o = density differential across layer
 - = thickness of withdrawal layer

He then developed equations of the general form:

$$F' = \frac{V_0}{\sqrt{g'd}} = K \frac{Wd}{D^2}$$
 (2)

where

К

Ŵ

D

⊂ d

- V_0 = velocity through withdrawal orifice
 - = constant depending upon the shape_of the withdrawal orifice and the value of the * critical densimetric Froude number (selective withdrawal can be accomplished only for densimetric Froude numbers below the critical value)

channel width

 withdrawal layer thickness above or below the orifice centerline

⁹= diameter or vertical width of outlet,

 $\frac{D^4 \rho_0 V_0^2}{q} = \Delta \rho \ K^2 \ d^3 \ W^2$

King then rearranged terms to obtain:

which is a convenient form of the equation that may be applied easily in digital computer solutions. This analysis, however, contains several assumptions and simplifications which limit the flexibility and accuracy of the method. The first of these assumptions is that the density gradient across each half layer is linear. In actuality, however, this is almost never the case. In many cases the deviation from linearity is extreme. A second and equally significant assumption is that the total discharge is equally divided between the upper and lower portions of the withdrawal layer. This assumption is probably erroneous in all cases where the density gradient is not balanced about the withdrawal centerline. However, this error is generally most severe in those cases involving surface or bottom interference. As King noted:

When intersection with the reservoir bottom or water surface occurs, this assumption (equally divided discharge) is no longer valid. d is now less than the value required to satisfy equation (3). The discharge above or below the orifice is then adjusted by multiplying the discharge by the ratio of the right side to the left side of equation (3). The resulting excess discharge is applied to the other portion of the withdrawal layer.²

It is also noted that this discharge correction factor is probably not completely accurate. King recommended in the second report that future work should evaluate the velocity distribution in the withdrawal layer and that this information could be used to determine the discharge distribution in the layer. This could be done for cases both with and without water surface or bottom interference.

Because of the nature of the study, it was not possible, to consider specific reservoir shapes and outlet configurations. These factors change from site to site and thus do not lend themselves to a generalized research study. The results of this analysis are therefore most applicable to straight, uniform reservoirs with relatively symmetrical and unrestricted outlet placements. The results of this study can be expected to be representative for many facilities. Highly sinuous reservoirs,// reservoirs with severe constrictions, intake structures. with indirect access to the reservoir, and other similar physical factors can be expected to reduce the accuracy of representation. It may also be desirable, in some cases, particularly for larger structures or structures for which the selective withdrawal ability is critical? to refine this analysis. Model studies of specific installations can consider factors that are beyond the scope of this study and therefore can provide accurate predictive capabilities and the most effective design.

In this, the third and final report, an attempt is made to develop more accurate predictive methods. This additional accuracy is gained through the development of modifications to the basic formula, equation (3). These modifications attempt to consider the effect of both deviations from a linear density gradient and deviations from an equal discharge distribution. This report also attempts to present design curves and procedures that are of practicable significance.

TEST FACILITY AND PROCEDURE

Figure 1 shows the flume used for the laboratory tests. A refrigeration system in the flume was used to create the density stratification. The strength of the stratification could be controlled easily by adjusting a control thermistor. The stratification was monitored and recorded by using a series of thermistor probes placed at desired locations in the test flume. The thermistors were connected through a scanning device to a digital thermometer and a printer where temperatures are displayed and recorded with an accuracy of 0.02°C.

(3)

Figure 1. Test flume and observation of withdrawal layer Photo P801-D-74321

Two very accurate quartz probes, with a digital thermometer, were used for calibrating and checking the thermistor probes. Outflow from the flume occurred through a small orifice whose elevation was adjustable. The outflow was wasted and therefore not returned to the flume, resulting in a falling water surface in the test flume. When attempts were made to maintain a constant water surface elevation, data collection was more difficult because of extraneous currents established by the inflow. The withdrawal discharge was monitored with a differential mercury manometer across a volumetrically calibrated 3/8-inchdiameter orifice.

Temperature was selected instead of salinity as the agent for creating stratification for three principal reasons. First, temperature is a convenient medium for establishing and altering a stratified reservoir. Second, temperature stratification can be monitored easily with one set of probes. Because saline stratifications also contain temperature stratifications, a dual probe system with a superimposition of data is required to obtain the actual density gradient. Finally, temperature stratification creates a hydraulic model that more correctly represents the prototype molecular diffusion coefficient. As King noted:

The molecular diffusion coefficient for heat is on the order of 500 times greater than that for sodium chloride. This would tend to increase the withdrawal layer thickness in the thermal heat models and thus decrease the apparent critical value of F.²

The test procedure presented herein was followed for all data shown in this report. As soon as the test flume was freshly filled, the refrigeration unit was turned on and allowed to operate for at least 16 hours. After the stratification had been thus created, the refrigeration unit was switched off and the reservoir was allowed to stand for 3 to 4 hours. This period of time allowed currents to dissipate and the reservoir to stabilize. When the stabilization period was complete, the withdrawal layer was then given at least 20 minutes to develop and stabilize, after which data were collected. Crystals of potassium permanganate were dropped at a given station in the flume. At the same time a stopwatch was started. Then over a period of a few minutes the flow being withdrawn created a deformation in the vertical dye streak created by the falling crystals. The stopwatch was then stopped, and data were collected either visually or photographically. The data included: (1) average water surface elevation for the run, (2) upper and lower withdrawal layer boundary elevations, (3) elevation and magnitude of maximum dye streak deflection, (4) outlet elevation and discharge, (5) total time interval involved, and (6) average temperature profile for the run. Where photographic data were taken, total velocity distribution information resulted.

The test facility is a three-dimensional model although the reservoir shape has been idealized. The reservoir width is considered in all of the following analyses. Observations in the model indicate that the withdrawal layer quickly grows to its full thickness and to the full width of the reservoir. The layer thickness is nearly constant with respect to time and distance from the outlet when the density gradient is constant. Therefore, the analysis may be undertaken for any reservoir cross section considered to be representative.

EXPERIMENTAL FINDINGS

With No Bottom or Water Surface Interference

Initial efforts were directed toward improving the accuracy of withdrawal layer thickness prediction with the assumption of equal discharge distribution between the upper and lower layers accepted, while questioning the linear density gradient assumption. Noted was that if in the theoretical development something other than a linear gradient was assumed, a nonlinear differential equation developed. Solution of this equation would be difficult if not impossible. Therefore, attempts were made to develop coefficients based on the difference between the assumed linear and the true density gradients. The coefficients would be used to modify the results obtained from the conventional analysis so that more accurate solutions would be obtained. All of the attempts made proved to be futile.

Attention was shifted to the equal discharge distribution assumption and its effect on the analysis. A portion of the withdrawal layer data had been collected photographically, making it possible to obtain total velocity distribution information. The areas encompassed by the velocity distribution curve, both above and below the orifice centerline, were determined with a planimeter. From this the discharges both above and below the orifice centerline were determined. These discharges ranged from 25 to 75 percent of the total flow for cases where no bottom or water surface interference occurred. The conclusion was that some method should be found to predict the discharge distribution and to evaluate its effect on the withdrawal layer thickness calculation. Efforts were once again centered on the photographic velocity distribution data. Using the dimensionless parameters developed by Bohan and Grace,⁴ the dimensionless velocity distribution curve, shown in Figure 2, was developed. These parameters are: 🚓

$$\frac{\mathbf{y}\,\Delta\rho}{\mathbf{Y}\,\Delta\rho_{\mathbf{m}}}\,\text{and}\,\frac{\mathbf{y}\,\mathbf{v}}{\mathbf{V}}$$

where: ∆o

ేజ

e density difference of fluid between the elevations of the maximum velocity and the corresponding local velocity.

∆¢m° =

Density difference of fluid between the elevations of the maximum velocity and either the upper or lower boundary (depends on which half of the withdrawal layer is being examined)

 the vertical distance from the maximum velocity to a point on the velocity distribution

 the vertical distance from the maximum velocity to either the upper or lower limit of the zone of withdrawal

= the local velocity at y

ز کرد.

= the maximum velocity in the zone of withdrawal.

Figure 2 also shows the dimensionless velocity distribution curve developed by Bohan and Grace and a few prototype date points. The prototype data points are from two sources: a Tennessee Valley Authority study of Fontana, Watts Bar, and Douglas Reservoirs⁵ and a USBR study of Lake Mead.⁶ Only a limited amount of prototype data is available; more would be required to obtain an accurate verification of the model data. Several sources of error, when combined, probably yield the data scatter in Figure 2. In the model tests these sources of error are:

Figure 2. Velocity distribution in stratified flow with boundary effects negligible.

1. Large model scale.—The large model scale used either directly or indirectly reduced the data collection accuracy. The thicknesses of the withdrawal layers are so small that inaccuracies in the thickness measurement (including those due to parallax) may be significant.

2. Secondary currents.—The relatively small thickness of the withdrawal layer may be susceptible to errors induced by small secondary currents from several sources. These currents may be the single most important source of error in the analysis. Secondary currents can be caused by withdrawal from a restricted reservoir. Since the withdrawal layer has horizontal limits, a vertical flow must be established to supply water to the layer. Secondary currents can also develop when the dye is dropped into the flume. The dye-caused currents are due to both the disturbance caused by the falling crystals and to density currents caused by the dyed water.

3. Falling water surface elevation.—Returning water to the flume in an attempt to maintain a constant water surface elevation would induce strong secondary currents; therefore, no water was returned to the flume during these tests. These currents would no doubt have severely hampered, if not made impossible data collection. The reservoir water surface was allowed to fall as water was withdrawn. Because the density profile of the reservoir changed constantly, data were collected for the average density profiles for the total number of runs. The withdrawal layer boundaries also were evaluated approximately for the average conditions. This changing water surface elevation is a possible source of additional scatter.

For the field tests the greatest source of data scatter, by far, is error caused by other extraneous currents in the reservoir. These currents result from tributary inflows; outflows through the various spillways, outlet works, and generating facilities; and atmospheric energy exchange (wind, heat, etc.). It would be virtually impossible to still these currents in a brototype reservoir. Possible scatter caused by these uirrents may be extremely significant.

By obtaining a dimensionles- velocity distribution curve, a modified withdrawal layer thickness prediction can be undertaken. The elevation of the maximum velocity in the withdrawal layer must be known prior to making the analysis. Bohan and Grace⁴ note that, "* *** the maximum velocity within the zone of withdrawal, in most cases, did not occur at the elevation of the orifice centerline" and that "Data analysis indicated that the maximum velocity occurred. at the elevation of the orifice centerline only when the withdrawal zone was vertically symmetrical about the elevation of the orifice centerline. The maximum velocity occurred below the orifice centerline when the vertical extent of the lower limit of the withdrawal zone was less than that of the upper limit. Similarly, the maximum velocity occurred above the orifice centerline when the distance from the orifice centerline to the lower limit was greater than the distance from the orifice centerline to the upper limit." The author found a similar tendency in his data; but it was also noted that in cases where the bottom and water surface did not interfere with the withdrawal layer, the shift from the centerline was small. In these cases the assumption that the maximum velocity occurs at the elevation of the orifice centerline appears justified.

The recommended method of analysis for obtaining the withdrawal layer thickness consists of six steps:

1. Basic theoretical prediction.—The initial step consists of predicting the thickness of both the upper and lower portions of the withdrawal layer. This prediction is accomplished by using the digital computer program (Appendix) which applies the

5

analysis that was developed by King² and summarized earlier in this report.

2. Evaluate the dimensionless velocity distribution.—By using the dimensionless velocity distribution curve, Figure 2, in conjunction with the assumed elevation of the maximum velocity (the outlet centerline elevation), the known reservoir density gradient data, and the withdrawal layer thickness information that was predicted in Step 1, the velocity distribution for the predicted withdrawal layer is evaluated.

3. Integrate curves to determine discharge distribution.—With this knowledge an integration of the velocity distribution curve is carried out, and unit width areas representative of the discharges both above and below the orifice centerline are evaluated. In this report the integration is done manually; however, this also can be computerized.

4. Obtain modified discharges.—To consider a shift from a uniform discharge distribution, modified discharges are developed for the computer program. The ratios of the upper and lower integrations to one-half of the total are first evaluated. These two ratios are then multiplied by the initial total discharge to obtain two modified total discharges.

5. Obtain corrected layer thickness prediction.—The modified discharges from Step 4 are then used instead of the initial assumed discharge as data for the computer program in Step 1. Thus, two program runs are made, each with exactly the same input data except for the discharges. The withdrawal layer boundary limits from the two runs are then united to yield a corrected withdrawal layer. The predicted upper boundary from the run using the discharge based on the upper ratio (Step 4) and the lower boundary from the run using the discharge based on the lower ratio (Step 4) form the new withdrawal layer limits.

6. Obtain final layer thickness prediction.—This method is convergent with additional applications of the steps. A process of successive approximations therefore can be applied until change in the predicted layer is negligible. The rate of convergence varies with the specific problem, but indications are that five or less cycles would be satisfactory. Observe also that the program used in Step 1 could be modified to execute the entire analysis. Indications are that significant modifications to the initially predicted layer thickness occur only for cases with extreme variations from a balanced discharge distribution. In most cases the total modification will be only a small percentage of the initial thickness.

Sample Calculation With No Bortom or Surface Interference

 $^{\circ}$

The sample problem was obtained from TVA prototype data on Fontana Reservoir.⁷ This is done so that the results can be compared to actual prototype observations, Figure 3.

The following information is used at the start of the analysis:

Water surface elevation = 1643 feet Channel width = 1240 feet Orifice diameter = 28 feet Bottom elevation = 1363 feet Orifice centerline elevation = 1456 feet Withdrawal discharge = 6500 cfs The additional reservoir information shown in Table 1 would also be known. The data that describe the reservoir in the problem are taken from Figure 3. As can be seen the full prototype reservoir depth was not modeled. It was realized that the withdrawal layer probably would not extend to either the water surface or bottom. So hypothetical bottom and water surface boundaries were used in the problem to reduce the amount of input data. If the predicted withdrawal layer reaches these hypothetical boundaries; then additional data would be input. As long as the predicted withdrawal layer does not reach the hypothetical boundary, the withdrawal layer will be the same whether the hypothetical boundaries or the actual boundaries are used in the computer program.

Step 1.-The known information is entered into the computer program as shown in the Appendix. The resulting withdrawal layer thicknesses are:

From centerline to upper limit = 41.1 feet From centerline to lower limit = 32.8 feet

Figure 3. TVA prototype data for sample problem.

Table 1

RESERVOIR DESCRIPTION

Elevation (feet)	Temperature (°F)	Elevation (feet)	Temperature (°F)
1363	41.9	. 1503	63.2
1373	42.2	1513	63,9
1383	42.5	1523	64.3
1393	43.1	1533	65.1
1403	44.3	1543	66.2
1413	47.0	1553	67.1
1423	50.4	1563	68.4
1433 ⁽²⁾	54.4	1573	69.6
1443	⁹ 57.5	1583	70.7
1453	59.0	1593	72.0
1463	60.2	16 0 3	72.9
1473	60.9	1613	75.6
1483	61.7	1623	76.3
1493	62.3	100	

Step 2.—Develop the velocity distribution curve, figure 4. Since the elevation of the maximum velocity is assumed to be at the elevation of the outlet centerline, the upper layer thickness equals 41.1 feet and the lower layer thickness equals 32.8 feet. Random local elevations across the withdrawal layer may then be selected.

At these local elevations the densities and therefore the " $1-y\Delta\rho/Y\Delta\rho_m$ " term may be evaluated. The velocity distribution curve, Figure 2, is used to obtain the dimensionless velocity distribution term (local velocity divided by the maximum velocity) at that elevation for plotting on Figure 4.

Step 3,-Integrate the areas contained between the maximum velocity elevation and the upper and lower boundaries of the velocity distribution curve, Figure 4. These terms are directly proportional to the discharges because the dimensionless velocity term is directly proportional to the local velocity.

Upper Area = 2.5 (.150 + .514 + .742 + .992 + 1.238 + 1.456 + 1.710 + 10) + 3.05 (.150) = 19.962 Lower Area = 2.5 (1.0 + 1.766 + 1.522 + 1.224 + .878 + .530 + .091) + 1.4 (.091) = 17.654

1550 Ave Up

1350 L

.2

Discharge for initial evaluation=6500 CFS Lower Ratio=0.939

< -35

· · · · ·					
ar.	∆ ele	Δρ	ELE	<u>y∆p</u> Y∆pm	v/v
ы Т	41.1	-300	497.1	0	0.0
A.	35	253	491	.282	.150
12	30	226	486	.450	.257
Ш. Ци	25	194	481	.607	.371
- 6	20	157	476	.745	.496
٩.	15	121	471	.853	.619
· [_	10	91	466	.926	.728
	5	53	461	.979	.855
	0	0	456		1
E E	5	56	451	.986	.883
· 7	10	. 116	446	.942 -	.761
· اه	15	199	441	.850	.612
- L	20	313	436	.686	439
· E	2.5	429	43	.462	.265
₹	.30.	548	-426 -	.176	091
13 1	32.8	608	423.2	0.	ļ
14	1 1 1 1	1	4 1 1	1	1 . · · ·

LOCAL VELOCITY / MAXIMUM VELOCITY

Figure 4. Sample problem, no boundary effect.

1.0

Step 4.—Divide the area terms evaluated in Step 3 by the average of their two values. This yields the two discharge ratio terms (upper and lower layer) that, when multiplied by the initial discharge of 6,500 cfs, yield the upper and lower corrected discharges. For this problem the corrected upper discharge is 6,896 cfs, and the corrected lower discharge is 6,104 cfs.

Step 5.—The computer runs as in Step 1 are now made using the discharges from Step 4. The 6,896 cfs yields an upper half-layer depth of 42.3 feet, and the 6,104 cfs yields a lower half-layer depth of 31.9 feet.

Step 6.—One more cycle was computed through; the resulting upper half-layer depth was 42.9 feet, and the resulting lower half-layer depth was 31.4 feet. The predicted and observed results are shown on Figure 3.

By dividing the area contained within the entire dimensionless velocity distribution curve by the discharge for a unit width of reservoir, the maximum velocity may be determined. The dimensionless velocity term and therefore the area contained within the dimensionless velocity distribution curve are linearly proportional to the true velocity, and the term of proportionality is the maximum velocity. From the maximum velocity, the total velocity distribution may be easily determined. For the sample problem, the volume defined by the dimensionless velocity distribution curve with a unit width was approximately 38 cubic feet and the discharge for a unit width of reservoir was 5.24 cfs. The maximum velocity therefore would be 5.24/38 or 0.137 fps.

This computed maximum velocity compares to an observed maximum velocity of 0.09 fps which is reasonable agreement in view of the rather complex prototype velocity profile. A comparison of the predicted and observed profiles is shown in Figure 3.

With Bottom or Water Surface Interference

A similar evaluation was undertaken for cases in which either the bottom or the water surface interfered with the withdrawal layer. Once again, attempts to modify the theory so that nonlinear density gradients would be considered proved futile. So efforts were again shifted to an attempt to evaluate the significance of the discharge distribution assumption. As was noted earlier in the report, King² recommended the use of a discharge distribution factor developed from the ratio of the two sides of equation (3) at the boundary layer. The extent of the half layer that is affected by the boundary is set by the physical dimensions (boundary and outlet elevations). Any correction to the initially predicted thicknesses must therefore be limited to the half layer that is not interfered with.

A dimensionless velocity distribution curve was developed in a manner similar to the no-interference case. Photographs of the withdrawal layer were analyzed and a curve, Figure 5, based on the parameters proposed by Bohan and Grace⁴ was developed. These parameters are quite similar to, but not the same as, the ones used in the no-interference case, Figure 2. The curve devel ped by Bohan and Grace is also shown in Figure 5. No prototype velocity² distribution data were available to use in verifying these curves.

Once again the probable elevation of the maximum velocity was needed. Again the maximum velocity generally was located on the same side of the outlet centerline as the thinner layer and, therefore is usually on the same side as the restricting boundary. In this case the distance from the maximum velocity to the outlet centerline was significant enough to evaluate. To develop a curve that would aid in predicting the maximum velocity location, dimensionless parameters, as proposed by Bohan and Grace $\frac{4}{10}$ were utilized. These parameters were:

 $\frac{Y}{H}$ and $\frac{Z}{H}$

Figure 5. Velocity distribution in stratified flow with boundary effects.

here;

7

н

- the distance from the outlet centerline to the boundary
 - the distance from the maximum velocity to the boundary
 - = the height of the total withdrawal layer.

he curve that was developed is shown in Figure 6.

ith the knowledge of the outlet centerline elevation, ie restricting boundary elevation, and the total thdrawal layer thickness as predicted from the rocedure developed by King;² the elevation of the aximum velocity may be estimated. The commended sequence of analysis is quite similar to at recommended for the no-boundary interference ise as follows;

1. Basic theoretical prediction.—Once again the method of King² is used to predict the thickness of the upper and dower halves of the boundary layer. Note that one of these half-layer thicknesses is set by the locations of the boundary and the outlet.

2. Determine assumed discharge distribution.—Each side of equation (3) is evaluated at the restricting boundary. The ratio of the right side to the left side of equation (3) is then multiplied by one-half of the total discharge to determine the predicted discharge in the restricted half layer. The difference between this discharge and the total discharge is the assumed discharge for the unrestricted half layer.

3. Prediction of maximum velocity elevation.—With the knowledge of the outlet centerline elevation, the restricting boundary elevation, and the total withdrawal layer thickness as predicted in Step 1, the maximum velocity location is determined from Figure 6.

4. Evaluate the dimensionless velocity distribution.—By using the dimensionless velocity distribution curve, Figure 5, in conjunction with the elevation of the maximum velocity (as predicted in Step 3), the known reservoir density madient data, and the known restricted half withdrawal layer thickness, the dimensionless velocity distribution is evaluated for the restricted half layer. Then by using the no-interference dimensionless velocity distribution curve, Figure 2, in conjunction with the elevation of the maximum velocity (as predicted in Step 3), the known reservoir density gradient data, and the known thickness of the unrestricted withdrawal half layer (as predicted in Step 1), the dimensionless velocity distribution is evaluated for

Figure 6. Relative position of maximum velocity for conditions in which a boundary limits the withdrawal zone.

the unrestricted half laver. The two half-layer dimensionless velocity distributions are then combined to form a total layer curve. With this the velocity distribution is evaluated for the entire layer.

5. Integrate curves to determine discharge distribution.—The velocity distribution curve may then be integrated. In this manner the discharges both above and below the orifice centerline are evaluated.

6. Determine modified discharge. - A modified discharge is then determined for the unrestricted half layer. This discharge is the summation of restricted half-layer discharge as evaluated in Step 2 and the unrestricted half-layer discharge as evaluated in Step 5. This term is placed in the digital computer program of Step 1 and the cycle started again. No modified discharge is needed for the restricted half layer because its thickness is established by the physical parameters.

7. Obtain final withdrawal layar thickness prediction.—Once again the solution converges. The above six steps therefore may be applied until a satisfactorily accurate answer is obtained.

Sample Calculation With Bottom or Surface Interference

The following information (from a model test run) is known at the start of the analysis:

Water surface elevation = 1.57 feet Channel width = 3.00 feet Orifice diameter = 0.0417 feet Bottom elevation = 0.00 feet Orifice centerline elevation = 1.50 feet Withdrawal discharge = 0.00690 cfs

The reservoir information given in Table 2 would also be known.

Table 2

RESERVOIR DESCRIPTION

Elevation (feet)	Temperatures (°C)	Density (GR/CC)
0.033	9.84	0.9997407
0.000	9.93	.9997334
0.10	10.03	9997249
0.433	10.13	.9997154
0.567	10.28	.9997011
0.001	10.44	.9996860
0.833	10.65	.9996660
0.967	10.90	.9996424
1 100	11.28	.9996026
1.733	12.38	.9994788
1 367	15.80	.9990013
1.500	19,94	.9982442

Step 1.-The known information is entered into the computer program as shown in Appendix 1. The resulting predicted withdrawal layer thicknesses are:

From centerline to upper limit = 0.07 feet From centerline to lower limit = 0.24 feet

It should be observed that the withdrawal layer extends to, and therefore is restricted by, the water surface.

Step 2.-Evaluation of the left side of equation (3) vields:

$$\frac{D^4 \rho_0 V_0^2}{g} = \frac{(0.0417)^4 (0.998244) (5.05)^2}{32.2}$$

or 0.00000239

and evaluation of the right side of equation (3) yields:

$(\Delta \rho) (K^2) (d^3) (W^2) =$

 $(0.998244 - 0.997774) (0.254)^2 (0.07)^3 (3)^2$

or 0.000000935

The ratio of the two is 0.0391. This yields an estimated discharge of (0.0391) (0.00690) or 0.000135 cfs in the restricted half layer. This would make the unrestricted discharge (0.00690-.0000135) or 0.006765 cfs.

Step 3.—The elevation of the maximum velocity is now predicted. It is known that:

so, Z/H = 0.225

In referring this to Figure 6, it is observed that Y/H = 0.18 and Y is therefore 0.058 feet. This means that the maximum velocity is 0.012 feet above the outlet centerline at an elevation of 1512 feet.

Step 4.—The problem then is to determine the velocity distribution across the entire layer. Following the calculation procedures as shown on Figure 7, the dimensionless velocity distribution is obdined for the entire withdrawal layer.

Step 5.—The dimensionless curve obtained in Step 4 is then integrated to determine not only the discharge distribution for flow above and below the outlet centerline but also the maximum velocity. The calculation procedure for evaluating the unrestricted discharge is shown on Figure 7. As for the maximum velocity, once again the ratio of the unit width discharge to the integral of the entire dimensionless velocity curve is the maximum velocity.

Step 6.—The modified discharge for the unrestricted half-layer thickness calculation is then evaluated. With the restricted half-layer discharge of 0.000135 cfs from Step 2 and the unrestricted half-layer discharge of 0.00475 cfs from Step 5, the modified discharge is 0.004885 cfs. This is then inserted into the program of Step 1.

After two applications of this cycle the unrestricted half-layer thickness is predicted as 0.20 feet. The total withdrawal layer thickness is 0.27 feet. This compares to an observed thickness of 0.32 feet during the laboratory test.

Figure 7. Sample problem with boundary effects.

REFERENCES

1. King, D. L., "Hydraulics of Stratified Flow-First Progress Report-An Analysis of the State of the Art and a Definition of Research Needs," U.S. Bureau of Reclamation Report No. HYD-563, June 1966

2. King, D. L., "Hydraulics of Stratified Flow-Second Progress Report-Selective Withdrawal From Reservoirs," U.S. Bureau of Reclamation Report No. HYD-595, September 1969

3. Debler, W. R., "Stratified Flow Into a Line Sink," Journal of the Engineering Mechanics Division, ASCE, July 1959

4. Bohan, J. P. and Grace, J. L., Jr., "Mechanics of Flow From Stratified Reservoirs in the Interest of Water Quality," Technical Report H-69-10, U.S. Army Engineer Waterways Experiment Station, July 1969 5. Wunderlich, W. O. and Fan, L. N., "Turbulent Transfer in Stratified Reservoirs," ASCE Hydraulics Division Conference, Iowa City, Iowa, August 18-20, 1971

6. Sartoris, J. J. and Hoffman, D. A., "Measurement of Currents in Lake Mead With the Deep Water Isotopic Current Analyzer (DWICA)," U.S. Bureau of Reclamation Report No. REC-ERC-71-38, October 1971

7. Elder, R. A. and Wunderlich, W. O., "Evaluation of Fontana Reservoir Field Measurements," Report No. 17-90, Tennessee Valley Authority, August 1969

Ŵ

PENVER, COLORADO 10/11/73

d f

ENGINEERING AND RESEARCH CENTER

HYDRAULICS BRANCH

DIVISION OF GENERAL RESEARCH

BURFAN OF RECLAMATION

UNITED STATES DEPARTMENT OF THE INTERIOR.

PROGRAM BY

USER'S MANUAL - PRO 1530-STRAT

CLASSIFICATION - HYERAULICS

BUREAN OF RECLAMATION ENGINEERING COMPUTER SYSTEM

TABLE OF CONTENTS

2

6

8

. . .

Sec. Sec.

CHAPTER 5. PUTPUT . . .

• • • • •

CHAPTER 8. APPENDIX C.

Q.,

10/11/73

DISCLAIMER STATEMENT

COMPUTER PROFRAMS DEVELOPED BY THE BUREAU OF RECLAMATION ARE SUBJECT TO THE FOLLOWING CONDITIONS. CONSULTING SERVICE AND ASSISTANCE WITH CONVERSION TO OTHER COMPUTERS CANNOT BE PROVIDED. THE PROGRAMS HAVE BEEN DEVELOPED FOR USE AT THE "USBR" AND NU WARRAMTY AS TO ACCURACY, USEFULNESS OR COMPLETENESS IS EXPRESSED OR IMPLIED

PERMISSION IS GRANTED TO REPRODUCE OF QUOTE FROM THE PROGRAM; HOWEVER, IT IS REQUESTED THAT CREDIT BE GIVEN TO THE BUREAU OF RECLAMATION, U.S. DEPARTMENT OF THE INTERIOR, AS THE OWNER.

PAGE 1 10/11/73

PROGRAM

SELECTIVE WITHDRAWAL LAYER THICKNESS COMPUTATION

GENERAL INFORMATION

THE SUBJECT COMPUTER PROGRAM WAS DEVELOPED PPIMARILY FOR PETERMINING THE THEORETICAL WITHERAWAL LAYER THICKNESSES FOR STRATIFIED RESERVOIRS. THIS PROGRAM WAS INITIALLY DEVELOPED TO AID WITH MODEL STUDIES. BUT IT IS EQUALLY APPLICABLE TO INVESTIGATION OF PROTOTYPE STRUCTURES.

THE PROGRAM IS WRITTEN IN THE FORTRAM IV LANGUAGE FOR A HONEYWELL BOD COMPUTER. IT CAN BE USED WITH FITHER SQUAPE OR ROUND WITHDRAWAL OUTLET SHAPES, WITH ANY OUTLET ELEVATION, RESERVOIR WIDTH, RESERVOIR DEPTH, AND OUTELOW DISCHARGE. THE PROGRAM AS IT NOW EXISTS CAN BE USED WITH WATER TEMPERATURES PETWEEN O AND 30 DEGREES C. ALSO NO CONSIDERATIONS ARE GIVEN TO OTHER CAUSES OF DENSITY VARIATION (SUCH AS SALINITY AND TURBIDITY).

THE WITHDRAWAL LAYER THICKNESSES ARE COMPUTED USING EQUATION (17) FROM HYP-595 (EQ.3 OF THIS REPORT). THE LEFT TERM IS FIRST EVALUATED FOF THE PAPTICULAR OUTLET CONDITIONS. THE PROGRAM THEN SEARCHES FOR THE TWO DEPTHS AT WHICH THE RIGHT HAND TERM

PAGE 2 10/11/73

SATISFIES THE EQUALITY. THESE TWO DEPTHS ARE THE UPPER AND LOWER LIMITS OF THE WITHDRAWAL LAYER

THE COMPUTATION IS CARRIED FORWARD IN A STRIFS OF STEPS AS SHOWN IN THE ACCOMPANYING FLOW CHART, BEGINNING WITH THE CORRECTION OF THE TEMPERATURE PEADINES FOR THE VARIOUS LEVELS (THIS CAN BE OMITTED BY REMOVING THREE STATEMENTS FROM THE PROGRAM). WITH THE CORRECT TEMPERATURES THE DENSITIES ARE THEN COMPUTED. THE LEFT HAND TERM IS THEN EVALUATED FOR THE PARTICULAR OUTLET CONDITIONS, THE PROGRAM THEN EVALUATES THE RIGHT HAND TERM AT FACH TEMPERATURE LEVEL STARTING FROM THE HIGHEST. THESE VALUES ARE THEN COMPARED TO THE LEFT HAND TERM UNTIL THE POINT OF EQUALITY IS PASSED. THAT INTERVAL IS THEN BROKEN INTO 100 TNCREMENTS AND AGAIN THE RIGHT HAND TERMS ARE COMPUTED AND COMPARED TO THE LEFT HAND TERM UNTIL THE POINT OF EQUALITY IS AGAIN PASSED. THE POSITION OF THE UPPER LIMIT OF WITHDRAWAL IS THUS OBTAINED. A SIMILAR PROCEDURE IS THEN EXECUTED TO OBTAIN THE LOWER BOUNDARY. THE PROGRAM WILL COMPENSATE FOR CASES IN WHICH EITHER THE WATER SURFACE OR THE BOTTOM BS LOCATED IN WHAT WOULD OTHERWISE BE THE COMPUTED WITHDRAWAL LAYER ALSO IT WILL SOLVE CASES IN WHICH THE UPPER AND LOWER BOUNDARIES ARE BOTH PETWEEN THE SAME TEMPERATURE LEVELS.

INPUT

THE FIRST 31 DATA CARDS CONTAIN CORPERPONDING VALUES OF

TEMPERATURE AND DENSITY FOR TEMPERATURES FROM 0 TO 30 DEGREES C, IN ONE DEGREF INCREMENTS. THESE DATA ARE PLACED IN COLUMNS 1-16 IN AN 8-COLUMN FORMAT, WITH THE POSITION OF THE PECIMAL POINT UNSPECIFIED (8F.0)

PAGE

10/24/73

THE PROGRAM AS WRITTEN FOR ANALYSIS OF MODEL DATA SPECIFIES 28 CARDS TO FOLLOW, WHICH CONTAIN COPRECTION VALUES FOR THE THERMISTOR READINGS. THIS CORRECTION IS DELETED BY ELIMINATING STATEMENTS ORO6, 0007, AND 0014 FEON THE PROGRAM (SEE PROGRAM LISTING).

THE NEXT DATA CAPD CONTAINS THE VARIABLES OF RESERVOIR WIDTH, OUTLET SIZE, WATER, SURFACE ELEVATION, POTTOM ELEVATION, AND OUTLET SHAPE IN COLUMNS 1-40, WITH AN AF.O. FORMAT, COLUMNS 41 AND 42 CONTAIN THE VALUE OF THE NUMBER OF ELEVATION -TEMPERATURE CARDS TO FOLLOW, IN A 12 INTEGER FORMAT.

THE REMAINING CARDS CONTAIN CORRESPONDING VALUES OF ELEVATION AND TEMPERATURE (IN DEGREES C).

NO SUBROUTINES ARE USED IN THIS PROGRAM. APPENDIX & CONTAINS AN EXAMPLE PROBLEM IN WHICH THE DATA IS SHOWN AS IT WOULD BE ENTERED INTO THE PROGRAM.

Α.

5

PAGE 4 10/11/73

SUBMITTAL INSTRUCTIONS

THE DECK SHOULD BE STACKED ACCORDING TO THE DIAGRAM IN APPENDIX

OUTPUT

PRINTED OUTPUT CONSISTS OF: 1. LISTING OF THE ELFVATION ABOVE THE ROTTOM, THE CORRECTED TEMPERATURE AT THAT LEVEL, AND THE DENSITY AT THAT LEVEL 2. SHAPF OF THE OUTLET (SQUARE OR CIRCULAR) 3.THE OUTLET SIZE 4.THE OUTLET ELEVATION 5.THE DISCHARGE 6.THE UPPER LIMIT OF WITHDRAWAL 7.THE LOWER LIMIT OF WITHDRAWAL. AN EXAMPLE OF THIS PRINTED OUTPUT IS SHOWN IN THE SAMPLE PROBLEM (APPENIX B). WHEN PROTOTYPE DATA APE USED, THE FORMAT FOR PPINTING THE DISCHARGE MUST BE MODIFIED (FOR EXAMPLE, FROM F8.5 TO F8.0).

APPENDIX A

THE FOLLOWING FIGURE ILLUSTRATES THE CORRECT ORGANIZATION OF THE

3

. .

22

 \mathbb{E}

ŝ

PAGE 6 10/11/73

APPENDIX B

THE FOLLOWING EXAMPLE PROBLEM IS GIVEN TO ILLUSTRATE HOW TO USE THE PROGRAM. SHOWN IN FIGURE 1 IS THE EXAMPLE PROBLEM DISCRIPTION. FIGURE 2 SHOWS THE INPUT DATA SHEET AND FIGURE 3 SHOWS THE OUTPUT OBTAINED.

α.

Q.,

At the beginning of this example problem the following information was known:

Water Surface Elevation = 322 feet

Channel Width = 1,240 feet

Orifice Diameter = 28 feet

Bottom Elevation = 62 feet Orifice Centerline Elevation = 155 feet

Withdrawal Discharge = 6,500 cfs

Q

The following reservoir information would also be known.

		44	
Elevation (feet)	Temperature (°C)	Elevation (feet)	Temperature (°C)
62	5.50	192	16.83
72	5.67	202	17.33
82	5.83	212	17.72
92	6.17	222	17.94
102	6.83	232	18.39
		242	19.00
112	8.33	252	19.55
122	10.22	3	
132	12.44	262	20.22
142	14.16	272	20.89
152	15.00	282	21.50
<mark>9</mark> ,19		292	22.22
162	15.67	302	22.72
172	16.05	312	24.22
182	16.50	322	24.61
	The second s	· · · · ·	1

Figure 1. Example problem.

D

We wish to find the predicted withdrawal layer.

The input data for the program would be arranged as follows:

EL-22 (5-63)

.

BURFAU OF REGLAMATO	DN					LA	BORATORY	PUNCH CA	ARD DA	TA
110 E	PROBLEM					JOB NO.	<u></u>	· · · · · · · · · · · · · · · · · · ·]
USE	DETAIL Input	t Data For Sampl	e Problem			#				
COLORED	FEATURE			() ()		RETURN TO		•		
CARDS	PROJECT					ROOM	BLDG.	PHONE		
- 2 3 4 5 5 7 8	g 10 it 12 13 14 15 16	17 16 19 20 21 22 23 24	25 26 27 28 29 30 31 32	33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 4	18 49 50 51 52 53 54 55 5	5 57 58 59 50 51 62 63 64	65 66 67 69 69 70 71 7	2 73 74 75 76 77	78 79 80
1.2.4:0	°2.8.	.3,2;2	6 2	<u> 0 6'5</u>	2.7		u un el mara An	ahaderia.		
6 2,	<u>5, 5</u> 0	مريد بي من	e angen en ar en anderen en er die der der der der der eiten berechtene							e des
	56.7			بتعيدا أجدا						
<u>8;2,</u>	<u> </u>			<u></u>		<u></u>		<u></u>	- Ander Ca	۰غ
	1.7		<u></u> 1						rat.	
1.0 2	0 16 8,3		<u></u>		<u></u>				<u></u>	
1.112.	18, , , 3, 3	<u>, de la s</u>						<u> </u>		
1,212	110,,2,2				<u> </u>	<u></u>		h	+	
1.3.2.	12,4,4				<u></u>			<u>وم بالح الح</u>		
1,4:2,.	1 4, 1,6	<u> <u>in tanı</u></u>			<u> </u>					<u></u>
1,5:2.	115.00	Lund Internet		<u> </u>	<u>line</u>					<u>18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>
,1.617,	1 5,.,6,7	<u></u>						فيحتد المتحد الم		1. Januar
1.7:2.	1 6,.0,5	han han had a state of the stat								
1,8,2	16.50			L. L.					<u></u>	<u></u>
1,92	1 6,.8,3				2 	<u> i i i i i i i i i i i i i i i i i i i</u>	<u></u>	<u></u>		
2,0 2,	1 7,.3,3		<u></u>							
2,1 2,	1,7,2				+	بالمشيط المسالية				<u></u>
,2,2,2,	1]7,.,9,4							<u>+</u>		
			<u></u>		<u></u>	<u></u>				مى ئەركىيە ئ
	, , <u>1</u> 9, ,0,0	<u>ول تر اور میں اور اور اور اور اور اور اور اور اور اور</u>	<u> </u>		<u>da prita p</u>		<u> </u>	<u>l i na de stan</u> a		<u> </u>
REMARKS	2.0	- 1 <u>1</u>				<u> </u>				· <u>·</u> ····
					·····			,		· · · · · · · · · · · · · · · · · · ·
	. 0	<u> </u>			CHECKED			SHEET 1	0F 2	· · · · · · ·
8Y				<u> </u>		Figure 2 Input de				GPO 823~:

 \sim

 $\mathcal{L}^{-1}\mathcal{R}$

80 B

 $\epsilon_{\rm eq}$

0

.

GPO E3396 1 -LABORATORY PUNCH CARD DATA ē, . . -P. -ل----<u>अ</u> , T 2 SHEET PHONE . بار -1.1.1 . 1 1 1 -BL0G. ¢.,, Figure 2. Input data. • -RETURN TO 17 # 5 JOB ND. 1 T T T T H ROOM ------4 1 1 CHECKED L -1 -į -DATE i 1-1-1-Ō . 210, 8,9 211.5.0 2 2 ... 7 .2 , 2 4, 2 2 6,50,0,.0 1.9.55 210, 2,2 24..6.1 22.232 PROBLEM FEATURE PROJECT DETAIL -] $\hat{\Sigma}$ BUREAU OF RECLAMATION 3,2;2,... ------2,7]2. 2,5|2,. 3.012,... 1,5|5,., COLORED CARDS .2,612,--3, 112, . . 2,8|2, 2,912. REMARKS JSN ---ВY

28

'n

C)

Ĭ

EL-27

Figure 3. Program output.

* G

OUTLET SIZE= 28.000 DISCHARGE= 6500.00 OUTLET ELEVE 155.00 UPPER LIMIT= 196.10 LOWER LIMIT= 122.20

Ç,

CIRCULAP OUTLET

Ĥ

ELEVATION	TEMP	DENSITY
62.00	5.50a ·	.99998
72.00	5.67	96998
82.00	5.83	99997
92.ND	5.17	.99996
102.00	6.83	.99994
(112.00	8.33	.99985
122.00	10.22	.99971
132.00	12.44	.99947
142.00	14.16	.99925
152400	15.00	.99913
162.00	15.67	.99902
172.00	16.05	. 92826
182.00	16.50	.99889
192.00	16.83	.99883
202.00	17.33	.99874
212.00	17.72	.99867
222+90	17.94	.99863
232.00	14.39	.99855
242.00	19.00	.99843
252.00	19.55	.99832
262.00	20.22	.99819
272.00	20.89	.99864
762.00	21.50	.99791
292.00	22.22	.99775
302-90	22-72	.99763
312+70	24.22	. 99727
322-00	24.61	.99717

APPENDIX C

ta:

0

÷,

THE FOLLOWING IS A LISTING OF THE SUPJECT PROGRAM.

\$

2 S - 2	μυ 47 μυ Ι	40 4 E	¢ Å Å	4 .	788 700 700	78 7C	76	13 14 14 14 14 14 14 14 14 14 14 14 14 14	766 7	511 4	22	0 ≪ 00 €0 €0	2 2 2	11) (L. (9 ¥ ⊷ 0 €0 €0		104	512	12A 13	4 10 40	17 18 19
c (50) .											0										· ·
0) +DELRL (50) +											· · · · ·	DENSITYJ						·		ð	
14L LATER 17.		(7)	HAPE.N 6	-	F.K.			210	15 DEN1-DEN2)	DEN2-DEN1)	- 	ATION TEMP	R(1)	0 10 75	R OUTLET'	OUTLET)	-	0 TO 15)-H(I-1)) IIF-H(I-1))	471.3E1200	
UT H1 ITURAN (50) +T (50) +R (5 (50)	0,12)	rehP (J) = DENS 3 • (1)	4.04.WS.BOT.S	(1) • T(1)) .31) GO TO E	31		TFM11 GO TC	4.) 60 TO 2	r(I)-TEM2)•() - 1%-24H FLEV	H(I),T(I),	2,F8.2,F8.7) 50. 0.040) 0	.16H CIRCULA	.14H SQUARE	ELORIF,Q	6T H(1))		5000J/4. [F *RORIF°VORIF	1 TUND A V AI
DIMENSION HU	FORMAT (5F8 FORMAT (2F8 D0 200 J=1,2	READ (2+2) D0 9 =1+26 D54D /2-21	READ (2.1)	D0 10 1=1 N READ (2-2) H	T(I)=T(I)+C IF (T(I).6T, TF (T(I).1.T,	DO 210 J=2+5	TEM2=TEMP ()-	DEN2=DENS(J)	TF (T(I).LT.	GQ T0 10 R(I)=DEN1+()	GO TO LO CONTINUE	CONTINUE WRITE (3.52) Format (14)	DO 54 I=1+N	FORMAT (F8. If (SHAPE .	FORMAT (1HO	FORMAT (1HO	READ (2.2) Zup=0.0	ZLO=0.0 D0 15 1=1.N TE /ELOBIE	68AD= (R(1-1) RORIF=R(1-1)	AORIF=3.141(VORIF=2/AOR FACTOR=D***	GD TC 16 CCNTINUE
- م ر	• ~ ∾	200	7 <u>0</u> 7	•	· .			•		215	210	2 C	1 4 1	5	10	52	11	· · ·		÷	, 15 ,
			1								-						· ·				

PAGE:

				Que la companya de la	<u>+</u>
TONATU	1800 PI	EV 20.2 SOURCE PROGRAM LISTING	8/01/69 PROGRAM: STRAT	o o JOB: STRAT	• • • PAGE- 2
	1000			23	
<u>6</u>		DELRU(I)=RORIFERIN		24	
		50 10 20 151 51 (1)-6(1)-8081F		25	
	21	CONTINUE	and the second	20	
	ξv	H(N+1)=WS		and the second	
	1	B(N+1)=B(N)+(B(N)-B(N-1))+(WS-H(N))	Z(H(N)−H(N+17)		and the second second second second second
		DELRU(N+1)=RORIF-R(N+1)	나는 물건을 많이 가지 않는 것을 얻는 것을 했다.	264	
		K1=0		268	
		ZUPP=WS-ELORIF		2	
		PRODUP=DELRU(N+1) *SHAPE*ZUPP**3*N**	2	26D	
	1. A.	IF (PRODUP.GT.FACTOR) GOTO22		26E	
		QUP=(Q@PROBUP/FACTUR)/2+0	المتحقب بطأ بالمتهام مرزأ كالرابية التأر بالمرا	26F	العارك وأركامك والمتعاقري الموصولاتها وأفأهر يمعهم مكاكر كالعكار
		QL0=Q-QUP	والمصافية بالأرد فبالجامع المتحر المتحد والمحاد الجاجات	26G	والمستعجب والمعتد والمستعجب والمستعجب والمستعجب والمستعجب والمستعجب والمستعجب والمستعجب والمستعجب والمستعج
		SHAPE=SHAPE*(Q/(2+0*QLU))**2		26H	
		ZUP.=ZUP.P		261	
		K1=1		26J	
	22	CONTINUE			
		M=N+1	and the second		
		DO 25 I=1-M		28	
		IF (ELORIF, GE, H(I), OR, KARE II) OUT		29	
		ZUP=H(I)=ELOKIC		30	
				31	
		IF (PROD GT, PACIOR) OU TO 20			
		IF (I.EQ.M) G01030		32	
		GO 10 25		32A	이번 전쟁을 통하는 것 같아요. 이를 피는 것이
	26	2 KHU=K(1)	이 이 나는 것은 것을 가지 않는 것 같아?	32B	
				. 33	
		200-200 0 010(H(I)-H([#]))		3 4	승규는 이 이 속에 가는 것같은 일을 가 관계하는 것
		DELB-BORTE-BHO		32	and the factor of the state of the
		BOND-DEL DOCHAPFO7UP0030W902		36	
		TE (BOOD LT. FACTOR) GO TO 30	김 사람이 가지 않는 것 같은 것이 가지?	31	e di kana karangan dari karang bilangan di 🖉 🚬 s
		CONTINUE		378	
	4(TE (PROD IT. FACTOR) GO TO 81		378	
		The resolution of the resoluti		376	
		ROV-RIA-11 RO 61 H-1.100		370	이 제품은 이 가지 않는 것이 같이 좋지? 승규는 것은
		$p_{10} = p_{10} + (p_{10} + 2) = R(I = 1)) = 0.01$		316	
	-	711P=711P=0.010(H(1-1)-H(1-2))		375	
				376	
		PROPERFIRESHAPESTUPSSAWSS2		370	
		TE (PROD JT. FACTOR) GO TO 30		211	
	,	1 CONTINUE		210	
	7	4 TE (K .GT. 0) GO TO 25		.	
	- - -	TE(H(T) JE FLORIF) GOTO27			
				and the second	
		71.0-0.			
5		D095 J=1-100	and the second		and the second secon
		PH0=PH0+(P(I=1)-R0RIF)=0.01		B. A.	
7		7: 0=7: 0+0.010(ELORIF-H(1-1))			
				4	
r N		PPOTETEL ROSHAPEOTLOOP30W002	and the second secon	Mary Constant and Salah	and the second secon
Para an		TE (PROD. GT. FACTOR) GOTO90	and the second		
1	· •	LI VIRUDIGI I REIGRIGUIU	and the second		
-		7 CURIINUE		4.0	
5	2	PONTETEL PL (1) 958428471,000308007		4U 61	
		FRUITULERE LAT WIRE A TO DO	and the second	41	×.
7		TE (0000 IT. FACTOR) GO (0.20	 A second s		(a) A set of the se

• • • AUTOMATH 1800 REV 20+2 SOURCE PROGRAM LISTING • • 08/01/69 • • • PROGRAM: ST. * * JOB: STRAT

PAGE:

48A 48B 48C 48D 49

LIMI

3

0154	60 TO 25
0157	28 TF (1 .FQ. 1) GO TO 29
0157	
0160	
0161	PHO=PHO+ (P(I-1)-R(I))*0.01
0162	10 - 210 - 200 + 210 + 210 -
0165	
0164	
0165	
0166	IF (FROD . GT.FACTOR) GOTONO
0167	80 CONTINUE
0110	8J WRITE (3+82)
0171	GO TO 30
0172	82 FORMAT (22H DO LOOP LIMIT REACHED)
0173	90 IF(K1)29,29,36
0174	29 K=1
0175	QLO=(QOPROD/FACTOR)/2.0
0176	
0177	SHAPE⇒SHAPE∘(Q/(2.0°GUP))%°2
0111	25 CONTINUE
0200	
0201	
0202	
0203	() FORMAT (194) 134 OUTLET STOFT-FR.3.11H DISCHARGE=+F8-5}
0204	
0205	WRITE (3.00) ELUNIT FLUTTEL VIAER 2.13H UPPER LIMIT=.FA.2.13H LOWER
0206	GUUFUKHAI (ISH UUTE) ELEV-YF0-24151 UTEL ETTTTTTT
	17=, F6+23
0207	GO TO 50
0210	66 END

ន្ង

 \mathcal{G}

2

ير کم

in the second

5

 \sim

37

USER'S MANUAL - PRO 1530-STRAT

APPENDIX D

9

THE FOLLOWING IS A FLOW CHART OF THE SUBJECT PROGRAM.

S.

9

an was

 $^{\circ}$

---;;

ć.

 ϕ

Ľ.

ŝ

C

Û

ż.

Ď

ŝ....

tO, SHEET 3 OF

Ð

÷έ

Ð

COMPUTE ELEVATION OF LOWER BOUNDARY Q WRITE: DIA. B. DISCHARGE WRITE: ELORIF, ELUP, ELLO 6 (66) ົດ

> \hat{f}^{i}

Ğ,

್ರ

ENO

•

に勝いた。

14

υģ; È

Ć

4

 \odot

- 3

1

2<u>77</u>7)

 $\sqrt{2}$

 ≈ 20

tin it.

41

ż,

7-1750 (3-71) Buregy of Reclamation

CONVERSION FACTORS-BRITISH TO METRIC UNITS OF MEASUREMENT

G

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "International System of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 9.80665 m/sec/sec, the standard acceleration of free fall toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg, that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the term "kilogram" (or derived mass unit) has been used in this guide instead of "kilogram force" in expressing the conversion factors for forces. The newton unit of force will find increasing using and is essential in SI units.

4

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table i

QUANTITIES AND UNITS OF SPACE

Multiply	By	To obtain
3	LENGTH	· · · · · · · · · · · · · · · · · · ·
Mil	25.4 (exactly)	Micron
Will	25.4 (exactly)	Millimeters
	2.54 [evently]*	Centimeters
East	30 48 (exactly)	Centimeters
	0.3048 (exactly)	Meters
Ecc	0.0003048 lexactly)*	Kilometers
Vorde	0.9144 (evantly)	. Meters
Miles (statute)	1 609 344 (exactly)	Meters
Miles	1.609344 (exactly)	Kilometers
	AREA	
		and the second sec
Square inches	6.4516 (exactly)	 Square centimeters
Square feet	929.03	Square centimeters
Square feet	0.092903	Square meters
Square vards	0.836127	Square meters
Acres	0.40469	Hectares
Acres	4,046.9	Square meters
Acres	*0.0040469	Square kilometers
Square miles	2.58999	^o Square kilometers
	VOLUME	
	46 00074	Cubin continuators
Cubic inches	10.3871	Cubic centimeters
	0.0203100	Cubic meters
Culic varos	8.754000	
<i>u</i> .	CAPACITY	
	\mathbf{O}	D bit construction
Fluid ourices (U.S.)	29,6737	Milelitore
Fluid ognees (U.S.)	29.5729	Cubic desirectors
Liquid pints (U.S.)	0.4731/9	Liters
Liquid pints (U.S.)	0.4/3100	Cubic ceptimaters
Quarts (U.S.)	940,338	Litere
Quarts (U.S.)	10340331	Cubic centimeters
Gallons (U.S.)	3,/09.43	Cubic decimaters
Gallons (U.S.)	J/804J	I itore
Gallons (U.S.)	J/8033	Cubic meters
Gations (U.S.)	4 54600	Cubic decimeters
Gallons (U.K.)	4,04009	itere
Gallons (U.K.)	4.04000	Liters
Cubic feet	26,3100	Liters
Cubic yards	/04,00	Cubie motors
Acre-feet	1,233,3 , , ,	iterc
Acre-feet	1,233,000	LILEIS

Table II

QUANTITIES	AND	UNITS OF	MECHANICS	
 				 _

Multiply	By	To obtain
	MAS5	
Srains (1/7,000 lb)	64,79891 (exactly)	
roy ounces (480 grains)	031.1035	Grams
Junces (avdpl	28.3495	Grams
ounds (avdp)	0.45359237 (exactly)	Kilograms
hort tons (2,000 lb)	907.185	Kilograms
hort tons (2,000 lb)	0.907185	Metric tons
ang tons (2,240 lb)	1,016.05	Kilograms
	FORCE/AREA	
ounds per square inch	9.070307	Kilograms per square centimeter
ounds per square inch	0.6894/6	Newtons per square centimeter
ounds per square foot	4.88243	, Kilograms per square meter
ounds per square foot	47,8903	Newtons per square meter
	MASS/VOLUME (DENSITY)	• <u>•••</u> ••••••••••••••••••••••••••••••••
Dunces per cubic inch	1.72999	Grams per cubic centimeter
ounds per cubic foot	16.0185	
ounds per cubic foot	0.0160185	Grams per cubic centimeter
lons (long) per cubic yard	1,32894	Grams per cubic centimeter
· · · · · · · · · · · · · · · · · · ·	MASS/CAPACITY	
Junces per gallon (U.S.)	7.4893	Grams per liter
Junces per gation (U.K.)	6.2362	Grams per liter
ounds per gallon (U.S.)	119.829	Grams per liter
ounds per gallon (U.K.)	99.779	Grams per liter
	BENDING MOMENT OR T	ORQUE
inch-pounds	0.011521	Meter-kilograms
neh pounds	1,12985 x 10 ⁶	Centimeter dynes
Poot-pounds	0.138255	Meter-kilograms
Foot-pounds	1.35582 x 10/	Centimeter dynes
Foot-pounds per inch	5.4431	Centimeter-kilograms per centimeter
Dunce inches	72.008	Gram-centimeters
······································	VELOCITY	
Feet per second	30.48 (exactly)	Centimeters per second
eet per second	0.3048 [exactly]*	Meters per second
eet per year	"0.965873 x 10 ⁻⁰	Centimeters per second
Ailes per hour	1.609344 (exactly)	Kilometers per hour
Ailes per hour	0.44704 (exactly)	Meters per second
<u></u>	ACCELERATION	
Feet per second ²	*0.3048	
	FLOW	
Cubic feet per second		
(second-feet)	*0.028317	Cubic meters per second
Cubic feet per minute	0.4719	, Liters per second
Sallons (U.S.) per minute	0.06309	Liters per second
	FORCE*	
Pounds	0,453592	, , , , , , , , , , , , , , , , , , ,
Pounds	*4.448 2	Newtons
Pounds	4.448 2 x 10 ⁵	Dynes

Table II - Continued

Multiply	Ву	To obtain
	WORK AND ENERGY*	
British thermal units (Btu)	1,055.06	Kilogram calories
Stuper pound	2.326 (exactiv)	Joules
	POWER	
Horsepower	745.700	Watts
Foot-pounds per second	1.35582	
	HEAT TRANSFER	· · · · · · · · · · · · · · · · · · ·
Btu in /br ft ² degree F /k		
thermal conductivity) Btu in ./hr ft ² degree F (k,	1.442	Milliwatts/cm degree C
thermal conductivity) Btu ft/hr ft ² degree F	0.1240 *1.4880	Kg cal/hr m degree C Kg cal m/hr m ² degree C
thermal conductance)	0.568	Milliwatts/cm ² degree C
thermal conductance)	4.882	
thermal resistance	1.761 4.1868	Cal/oram degree C
Ft ² /hr (thermal diffusivity) Ft ² /hr (thermal diffusivity)	0.2581	Crn ² /sec M ² /hr
	WATER VAPOR TRANSMISS	ION
Grains/hr ft ² (water vapor) transmission)	16.7 0.659 1.67	Grams/24 hr m ² Metric perms Metric perm-centimetters
	8	
		· · ·
and the second	Table III	
and the second second	OTHER QUANTITIES AND U	INITS 0

Multiply	Ву	To obtain
Cubic feet per square foot per day (seepage)	304.8	Liters per square meter per day
Pound seconds per square foot (viscosity)	4.8824	 Kilogram second per square meter
Square feet per second (viscosity)	0.092903	Square meters per second
Fahrenheit degrees (change)*	5/9 exactly	Celsius or Kelvin degrees (change)*
Volts per mil	0.03937	
Lumens per square foot (foot-candles)	10.764	, Lumens per square meter
Ohm circular mils per loot	0.001662	 Ohm-square mittimeters per meter
Millicuries per cubic foot	35.3147	 Millicuries per cubic meter
Militiamps per square foot	* 10.7639	
Gallons per square yard	4,527219	Liters per square meter
Pounds per inch	°D.17858	Kilograms per centimeter
		GPO 854 • 215

ABSTRACT

Selective outlet works provide an important means by which the quality of water withdrawn from reservoirs may be controlled. This is the third and final report in a series and is part of a continuing effort to develop accurate practicable design and operating criteria for such outlets. The studies discussed here refine previously developed analyses, including evaluation of previous simplifying assumptions, such as a linear density gradient and equal half-layer discharges. A method is presented for predicting velocity distributions within a withdrawal layer. Layers restricted by either the water surface or reservoir bottom and unrestricted layers are considered. The method is compared with experimental and prototype data. Step-by-step design procedures are included.

ABSTRACT

Selective outlet works provide an important means by which the quality of water withdrawn from reservoirs may be controlled. This is the third and final report in a series and is part of a continuing effort to develop accurate practicable design and operating criteria for such outlets. The studies discussed here refine previously developed analyses, including evaluation of previous simplifying assumptions, such as a linear density gradient and equal half-layer discharges. A method is presented for predicting velocity distributions within a withdrawal layer. Layers restricted by either the water surface or reservoir bottom and unrestricted layers are considered. The method is compared with experimental and prototype data. Step-by-step design procedures are included.

ABSTRACT

5

Selective outlet works provide an important means by which the quality of water withdrawn from reservoirs may be controlled. This is the third and final report in a series and is part of a continuing effort to develop accurate practicable design and operating criteria for such outlets. The studies discussed here refine previously developed analyses, including evaluation of previous simplifying assumptions, such as a linear density gradient and equal half-layer discharges. A method is presented for predicting velocity distributions within a withdrawal layer. Layers restricted by either the water surface or reservoir bottom and unrestricted layers are considered. The method is compared with experimental and prototype data. Step-by-step design procedures are included.

ABSTRACT

Selective outlet works provide an important means by which the quality of water withdrawn from reservoirs may be controlled. This is the third and final report in a series and is part of a continuing effort to develop accurate practicable design and operating criteria for such outlets. The studies discussed here refine previously developed analyses, including evaluation of previous simplifying assumptions, such as a linear density gradient and equal half-layer discharges. A method is presented for predicting velocity distributions within a withdrawar layer. Layers restricted by either the water surface of reservoir bottom and unrestricted layers are considered. The method is compared with experimental and prototype data. Step-by-step design procedures are included.

REC-ERC-74-1

JOHNSON, PL HYDRAULICS OF STRATIFIED FLOW-FINAL REPORT-SELECTIVE DRAWAL FROM RESERVOIRS Bur Reclam Rep REC-ERC-74-1, Div Gen Res, Jan 1974. Bureau of Reclamation, Denver, 41 p. 7 fig, 2 tab, 7 ref, append

DESCRIPTORS-/ applied research/ reservoirs/ *hydraulic models/ density currents/ hydraulics/ water quality/ temperature/ Froude number/ *stratification/ velocity distribution/ *thermal stratification/ design criteria/ *stratified flow/ *multilevel outlets/ *selective level releases

REC-ERC-74-1

JOHNSON, PL

HYDRAULICS OF STRATIFIED FLOW-FINAL REPORT-SELECTIVE WITH-DRAWAL FROM RESERVOIRS

Bur Reclam Rep REC-ERC-74-1, Div Gen Res, Jan 1974. Bureau of Reclamation, Denver, 41 p. 7 fig, 2 tab. 7 ref, append....

DESCRIPTORS-/ applied research/ reservoirs/ *hydraulic models/ density currents/ hydraulics/ water quality/ temperature/ Froude number/ *stratification/ velocity distribution/ *thermal stratification/ design criteria/ *stratified flow/ *multilevel outlets/ *selective level releases

REC-ERC-74-1

JOHNSON, PL HYDRAULICS OF STRATIFIED FLOW-FINAL REPORT-SELECTIVE WITH-DRAWAL FROM RESERVOIRS Bur Reclam Rep REC-ERC-74-1, Div Gen Res, Jan 1974. Bureau of Reclamation, Denver, 41 p, 7 fig, 2 tab, 7 ref, append

DESCRIPTORS-/ applied research/ reservoirs/ *hydraulic models/ density currents/ hydraulics/ water quality/ temperature/ Froude number/ *stratification/ velocity distribution/ *thermal stratification/ design criteria/ *stratified flow/ *multilevel outlets/ *selective level releases

REC-ERC-74-1

JOHNSON, PL HYDRAULICS OF STRATIFIED FLOW-FINAL REPORT-SELECTIVE WITH-DRAWAL FROM RESERVOIRS Bur Reclam Rep REC-ERC-74-1, Div Gen Res, Jan 1974. Bureau of Reclamation, Denver,

41 p. 7 fig, 2 tab, 7 ref, append

DESCRIPTORS=/ applied research/ reservoirs/ *hydraulic models/ density currents/_ hydraulics/ water quality/ temperature/ Froude number/ *stratification/ velocity distribution/ "thermal stratification/ design criteria/ "stratified flow/ "multilevel outlets/ *selective level releases