- HYDRAULIC MODEL STUDIES

 OF O'SULLIVAN D_MColumbia Basin Project

Engineering and Research Center

Bureau of Reclamation

September 1973

TECHNICAL REPORT STANDARD TITLE PAGE

Hydraulic model studies were made to verify the design of the spillway, approach channel, and spillway chute for O'Sullivan Dam. Discharge rating curves are presented relating spillway discharge capacity to pier location upstream of the crest, at the crest, and downstream from the crest. The preliminary approach channel design was modified to improve the entrance flow conditions. Operating criteria for the spillway gates are recommended to assure acceptable flow conditions in the spiliway chute.

Of particular interest were the tests relating spillway discharge capacity to pier location. Relocation of the pier nose from upstream of the spillway crest, to the crest, and to two downstream locations, resulted in an increase in the effective spillway width of 38,67 , and 91 p arcent of the total pier width, respectively.
17. KEY WORDS AND DOCUMENT ANALYSIS
o. DESCRIPTORS-- / hydraulic structures/ *discharge coefficients/ discharge measurement/ *hydraulic models/ spillway crests/ water surface profiles/ radial gates/ approach channels/ critical flow/ gate control/ * spillway piers/ hydraulic design
b. IDENTIFIERS--/ O‘Sullivan Dam, WA/ Columbia River Basin Proj/ Potholes Reservoir, WA/ pier noses
c. COSATI Field/Group 13M
18. DISTRIGUTION SIATEMENT
Avallable from the National Technical Information Service, Operations

19. SECURITYCLASS (THIS REPORT) UNCLASSIFIED	$\left[\begin{array}{c} \text { 21: NO. OF PAGES } \\ 17 \end{array}\right.$
20. SECURITY CLASS (This Page) UNCLASSIFIED	22. PRICE

REC-ERC-73-15

HYDRAULIC MODEL STUDIES OF O'SULLIVAN DAM

Columbia Basin Project
by
P. H. Burgi

September 1973

Hydraulics Branch
Division of General Research Engineering and Research Center Denver, Colorado

[^0]
ACKNOWLEDGMENT

These studies were conducted by the author and reviewed by T. J. Rhone and D. L. King, Applied Hydraulics Section Head, under the general supervision of W. E. Wagner, Chief, Hydraulics Branch. J. E. Warlaumont and M. A. Jabara, Hydraulic Structures Branch, followed the progress of the studies and offered helpful comments which were incorporated into the final design. Model photography was by W. M. Batts, Office Services Branch.

CONTENTS

Page
Purpose 1
Results 1
Application 1
Introduction 1
The Model 1
The Investigation 2
Initial Design 2
Spillway Flow Characteristics 2
Approach channel 2
Spillway piers 2
Spillway chute 5
Pier Location Studies 5.
Pier nose located 13 feet (3.96 meters) downstream from the crest 5
Pier nose located 6 feet (1.83 meters) downstream from the crest 7
Pier nose located on the crest 7
Pier nose located 7 feet (2.13 meters) upstream from the crest 8
Spillway without piers 8
Discharge Capacity Rating 9
References 11
Appendix 13
LIST OF FIGURES
Figure
1 Location map $\therefore 1$
2 :- Initial design 2
3 1:36 scale model layout 3
4 35
Wave at spillway gates 4
Wide-flange pier nose 4
7 Wide-flange and elliptical pier noses 4
8 Spillway chute (all gates open) 5
9 Spillway chute (gate combinations) 6
10 Pier nose 13 feet downstream from crest 6111213
Spillway flow cross sections (piers 13 feet downstream) 6
Pier nose 6 feet downstream from crest 7
Spillway flow cross sections (piers 6 feet downstream) 7
Pier nose on crest 7
Spillway flow cross sections (piers at crest) 7
Pier nose 7 feet upstream from crest 8
Spillway flow cross sections (piers 7 feet upstream) 8
Spillway without piers 8
Spillway flow cross sections (without piers) 8
Discharge capacity (various pier locations) 9
Spillway design discharge (various pier locations) 10
Discharge capacity (gate-controlled flow) 10

PURPOSE

The studies were made to verify the hydraulic design of the spillway, the approach channel and the spillway chute. Also included were tests to relate discharge capacity to pier location along the spillway profile.

RESULTS

1. The turbulence created at the entrance to the initial spillway approach channel was significantly reduced by rounding the entrance. An entrance radius of 50 feet (15.2 meters) at the botiom of the side slope (elevation 1024) yielded good model results.
2. Although the wide-flange (12 WF 31) pier nose created more flow disturbance than the elliptical pier nose, identical design discharges were recorded for both shapes.
3. Free-flow and uniform (all gates equally open) gatecontrolled flow were smooth through the spillway chute without tendency to overtop the training walls.
4. Free-flow discharges with the spillway head, H $=18.5$ feet (5.6 meters) through the two center bays or three adjacent bays produced flow conditions in the spillway chute which resulted in overtopping of the training wall. For these gate operations and a training wall elevation of 1030, the spillway head should not exceed 17.65 feet (5.38 meters) and 15.90 feet (4.85 meters) respectively.
5. With alternate free-flow bays operating at $\mathrm{H}=18.5$ feet (5.6 meters), the 12 WF 31 pier nose produced a stable flow separation at the pier nose. The same gate operation with the elliptical pier nose yielded a relatively unstable but minor flow separation at the pier nose. However, either pier nose would serve adequately.
6. Relocation of the pier nose from 7 feet (2.23 meters) upstream of the spillway crest, to the crest, to 6 feet (1.83 meters) and 13 feet (3.96 meters) downstream from the crest, resulted in an increase in the effective spillway width of 38,67 , and 91 percent of the total: pier width [$9 \mathrm{ft}(2.74$ meters)], respectively. The respective design discharges were $29,750 \mathrm{cfs}$ $(842.4 \mathrm{cms}), 30,800 \mathrm{cfs}(872.2 \mathrm{cms}), 31,620 \mathrm{cfs}(895.4$ cms), and $32,300 \mathrm{cfs}(914.6 \mathrm{cms})$ for a design head, H $=20$ feet (6.10 meters). Tests without piers yielded a spillway discharge of $32,580 \mathrm{cfs}$ (922.6 cms) for the design head.

APPLICATION

The results of this study cans be applied qualitatively to the hydraulic design of similar low head, gated structures.
$=$

INTRODUCTION

O'Sullivan Dam is a feature of the Columbia Basin Project, located 25 miles (40.2 km) southeast of Ephrata, Washington, on Crab Creek (Figure 1). The 29,000 acre ($117.4 \mathrm{~km}^{2}$) Potholes Reservoir formed by O'Sullivan Dam collects return flows from all irrigation in the northern portion of the project for reuse in the southern portion. The dam was constructed in 1949. The present spillway has an uncontrolled crest which also serves as a highway crossing at elevation 1052. A rock cut extends downstream from the crest and terminates in a dry coulee.

Modifications to the original plan of operation for O'Sullivan Dam resulted ir the need for a gate controlled spillway structure which will pass the design flood without exceeding a reservoir elevation of 1048 [Design head $=20$ feet (6.1 meters)]. The structure will consist of four bays controlled by four 24 - by 19 -foot, 4-1/2-inch (7.3- by 5.9 -meter) radial gates. The new spillway structure will support a 32 -foot (9.8 meter) wide highway bridige.

Figure 1. Location map.

THE MODEL

The model, constructed to a scale ratio of 1:36, included a portion of the upstream reservoir, the intake channel, the spillway and 460 feet (140 meters) of the
downstream channel (Figure 2a). The model spillway was constructed of urethane plastic. The existing 500 -foot (152.4 -meter) wide rock excavated channel downstream of the spillway was modeled and a gravel basin was placed immediately downstream of the spillway chute to observe the erosion tendencies of the flow. Field geological data later indicated that the fractured granite in the downstream channel would adequately resist the spillway flows thus eliminating the need for the erosion study.

Water was supplied to the model through the permanent laboratory system and was measured by one of a bank of Venturi meters installed in the laboratory.

THE INVESTIGATION

Initial Design

Early during the model study the basic spillway design was changed from seven to four bays resulting in an increase in design head from 14 feet (4.3 meters) to 20 feet (6.1 meters). Preliminary studies with the seven-bay model spiliway (Figure 2) indicated two problem areas which were eliminated while modifying the model spillway. Turbulence resulting from the abrupt drawdown at the entrance to the spillway approach channel was significantly reduced by rounding the entrance. The preliminary design also had a transitional warp from the 1:1 approach channel side slope to the vertical spillway wall in 28 feet (8.5 ineters). This warp was replaced in the modified model with a curved transition from the $1: 1$ side slope to the vertical sidewall of the spillway in the same length, Figure 3b. These design modifications are shown on the detailed plans included in the appendix.

The four-bay modified spillway was also constructed of urethane plastic. Slots in the spillway surface permitted pier sections to be added to the fixed model piers which were located 13 feet (4.0 meters) downstream from the crest (Figure 3b). Provision was made to place the radial gates on the structure once the piers were extended to the crest. The study results discussed in this report refer to the four-bay spillway design (Figure 3).

Spillway Flow Characteristics

The prot:\%,pe spillway will have the pier nose located at the crest. The radial gates will thus seat 0.88 foot (0.27 meter) below the crest. Various gate operations were tested during the investigation to determine the flow characteristics in the approach channel, at the piers, and in the spillway chute.

a. Flow through seven-bay spiliway. P222-D-73810

b. No flow. P222.D. 73811

Figute 2. Initial design.
Approach channel. The tendency for an eddy along the 1:1 side slopes of the approach channel progressively increased as the gate operation changed from two outside gates (1 and 4), to the inside gates (2 and 3), to one outside gate (1 or 4), Figure 4.

With uniform gate-controlled operation, a standing wave appeared in the approach channel upstream of the spillway gates but it did not create surging in the approach channel (Figure 5). The size of the wave dopended on . : gate opening and reservoir head.

Spillway pi.: Tests were conducted to determine discharge cc:: : :ients for a wide-flange pier nase and an elliptical pict nose placed at the crest. The test of a $6 \cdot 1 / 2$. by 12 -inch ($165 \times 305 \mathrm{~mm}$) wide flange is shown in Figure 6a. The two pier configurations yielded the same model discharge. Figure 6 b illustrates the flow patternsaround the elliptical and wide-flange pier noses (elliptical pier nose on right).

a. O'Sullivan Dam model. P222-D-73813

b. Spillway pier slots. P222-D-73812

Figure 3. $1: 36$ scale model layout.

Figure 4. Flow in spillway approach channel.

Head $=20 \mathrm{ft}$.
Gate lip 12 ft . above crest
Figure 5. Wave at spillway gates. P222-D-73817

With free-flow or gate-controlled operation, the wideflange and elliptical pier performances were essentially the same. A drawdown occurred around the piers when gates were fully opened adjacent to closed gates. At $\mathrm{H}=18.5$ feet (5.64 meters) (reservoir at the top of the closed gates), the flow separated along the full height of the wide-flange pier. The contracted flow rejoined the parallel pier wall downstream from the pier nose. Under the same conditions the flow alternately separated and rejoined the elliptical pier nose.

Figure 7 illustrates flow around the two pier nose shapes when adjacent gates are closed. The wide-flange pier nose yielded a more stable flow condition at the pier than the elliptical pier nose under the above operating conditions. However, the flow instability related to the elliptical pier nose did not create a surge in the approach channel and the fluctuation was too random to create structural vibrations.

The wide-flange pier nose could serve a dual capacity of stoplog slot as well as pier in this particular design where the pier will not extend upstream of the spillway crest. However, it is envisioned that the reservoir elevation will recede below the spillway crest each year which should provide for normal gate maintenance without the use of stoplogs. Therefore the elliptical

a. Wide-flañge pier nose. P222-D-73818

b. Design flow through spillway. Note less flow contraction around elliptical pier nose on right side. P222-D-73819

Figure 6. Wide-flange pier nose.
$Q=30,800 \mathrm{cfs}$

$H=18.5 \mathrm{ft}$.
Figure 7. Wide-llange and elliptical pier noses. P222-D-73820
pier design will be utilized for this spillwav. Stoplog slots will be provided in the spillway training walls at the crest. If reeded, long stoplogs could be placed across the spillway and rest against the nose of the elliptical piers.

Spillway chute. For free-flow spillway releases and gatecontrolled releases with four gates equaliy open funiforml, a typical diamond-shape pattern appeared in the spillway chute and there was no tendency toward overtopping the downstrearn training walls, Figure 8.

Tests were also conducted using various free-flow gate combinations with $\mathrm{H}=18.5$ feet (5.64 meters). Flow through one or both (Figure 9a) of the outside gates (1 and 4) yielded quite satisfactory hydraulic conditions in the spillway chute. Flow through one of the inside gates alone also produced satisfactor; hydraulic conditions in the spillway chute, Figure 9b. Spillway operation with flow through the two chiter gates (2 and 3) resulted in a flow condition which overtopped the training walls, Figure 9c. The designed training walls were adequate for $H=17.65$ feet (5.38 meters) or less with the two center gates operating under a free-flow condition. When three adjacent gates operated under free-flow conditions, the flow in the spillway chute overtopped the opposite training walls, Figure 9d. The designed training walls were adequate for H $=15.90$ feet (4.85 meters) or less under this operating condition.

Pier Location Studies

In a study reported by Thompson ${ }^{17}$ an increase in effective spillway length of 40 percent of the total pier width was realized by moving the pier nose from the

$Q=30,000 \mathrm{cfs}$, pier nose at crest
Figure 8. Spillway chute (all gates open). P222-D-73821
upstream face of the spillway to the crest. To determine the effect of pier location in the O'Sullivan model. tests were conducted locating the pier nose at various stations along the spillway profile.

The spillway profile is described by the equation:

$$
x^{2}=80 y
$$

where: $\mathrm{x}=$ the horizontal distance downstream from the crest
$y=$ the vertical distance below the crest elevation

The basic equation to describe flow over a weir or spillway is
$Q=C L(H)^{3 / 2} \quad$ Equation 1
where: $\mathrm{Q}=$ discharge
$C=$ coefficient of discharge
$L=$ length of weir
$H=$ total head
Utilizing methods described by Bradley ${ }^{2}$ the coefficient of discharge was estimated to be 3.49 . The O'Sullivan spillway profile coincided with the Tiber spillway profile.) The spillway lengt., L, was 96 feet (29.3 meters) for the case where the piers extended upstream from the crest and 105 feet (32.0 meters) for the case where the piers were located downstream from the crest. This difference in spillway length wos due to the total pier width. The design head, H , wis 20 feet (6.10 meters).

For the normal pier nose loc:tion, upstream from the crest:

$$
\begin{aligned}
\text { Design discharge }=\mathrm{Q} & =3.49(96)(20)^{3 / 2} \\
& =29.966 \mathrm{cfs}
\end{aligned}
$$

For the case where the pier is located downstream from the spillway crest:

$$
\begin{aligned}
0 & =3.49(105)(20)^{3 / 2} \\
& =32.775 \mathrm{cfs}
\end{aligned}
$$

However, with the pier nose located near the crest, the flow contraction around the pier nose resulted in an effective spillway length less than the 105 feet $\mathbf{~} 32.0$ moters) and a discharge less than the theoretical quantity computed above. It is possible to locate the piers at some distance downstream from the crest such that they no longer affect the spillway discharge.

Pier nose located 13 feet (3.96 meters) downstream from the crest. The fixed section of the model pier with the elliptical nose was placed 13 feet (3.96 meters) downstream from the crest, Figure 10. The flow impinging on the pior nose climbed approximately 4.5 feet (1.37 meters). Figure 11 illustrates half cross sections of the symmetrical approach channel in the zone 4 feet (1.22 meters) upstream to 11 feet (3.35

[^1]
a. $H=18.5$ feet, Gates 1 and 4 open. P222-D. 73822

c. $H=18.5$ feet, Gates 2 and 3 open. P222-D-73824

b. $H=18.5$ feat, Gate 2 open, P222-D-73823

d. $H=18.5$ feet, Gates i, 2 , and 3 open, P222-D-73825

Figure 9. Spillway chute (gate combinations).

$Q=32,300 \mathrm{cfs}$.

Figure 10. Pier nose 13 feet downstream from crest. P222-D-73826

Figure 11. Spillway flow cross sections (piers 13 feer downstream).
meters) downstream of the spillway crest. Due to the transition from the $1: 1$ side slope to the vertical training wall a larger portion of the discharge passed through the center bays than the outside bays. The discharge for a design head of 20 feet (6.10 meters) was 32,300 cfs (915 cms).

Pier nose located 6 feet (1.83 meters) downstream from the crest. A section of pier representing 7 feet (2.13 meters) was fastened to the upstream end of the fixed section with the elliptical nose fastened to the end of the addition. The pier nose was therefore located 6 feet (1.83 meters) downstream from the crest, Figure 12. The flow impinging on the elliptical nose climbed approximately 3.4 feet (1.04 meters). Figure 13 illus-

$Q=31,620 \mathrm{cfs}$.
Figure 12. Pier nose 6 feet downstream from crest. P222-D-73827

Figure 13. Spillway flow cross sections (piers 6 feet downstream).
trates half cross sections of the flow as it passed over the crest. The water surface profiles again indicate arger discharge through the two center bays. The discharge for the design head, $H=20$ feet (6.10 meters) was $31,620 \mathrm{cfs}$ (895 cms).

Pier nose located on the crest. A section of pier representing 6 feet (1.83 meters) was fastened to the earlier addition with the elliptical nose fastened to the upstream end; the pier now extended to the crest, Figure 14. The flow impinging on the nose climbed 2.0 feet (0.61 meter). Figure 15 shows half cross sections of the flow in the same area as mentioned previously. The discharge for the design head, $\mathrm{H}=20$ feet (6.10 meters) was $30,800 \mathrm{cfs}(872 \mathrm{cms}$).

$\mathbf{Q}=30,800 \mathrm{cfs}$.
Figure 14. Pier nose on crest. P222-D-73828

Figure 15. Spillway flow cross sections (piers at crest).

Pier nose located 7 feet (2.13 meters) upstream from crest. A section of pier representing 7 feet (2.13 meters) was fastened to the earlier additions. With the elliptical nose attached, the pier extended 7 feet (2.13 meters) upstream from the crest, Figure 16. Figure 17 illustrates half cross sections of the flow in the area 4 feet (1.22 meters) upstream to 11 feet (3.35 meters) downstream from the crest. The discharge for the design head, $\mathrm{H}=20$ feet (6.10 meters), was $29,750 \mathrm{cfs}(842 \mathrm{cms}$).

Spillway without piers. The piers were removed from the model crest and tests conducted to determine the spiliway capacity without piers, Figure 18. Figure 19 illustrates half cross sections of the flow in the same area as mentioned previously. The discharge for the

$a=29,750 \mathrm{cfs}$
Figure 16. Pier nose 7 feet upstream from crest. P222-D.73829

Figure 17. Spillway flow cross sections (piers 7 feet i. istream).
design head, $\mathrm{H}=20$ feet (6.10 meters) was $32,580 \mathrm{cfs}$ (922.6 cms). This would yield a coefficient of discharge of 3.47 in Equation 1.

$\mathrm{Q}=32.580 \mathrm{cfs}$.
Figure 13, Spillway without piers. Top Photo P222-D-73830, bottom Photo P272-D. 73831

Figure 19. Spillway flow cross sections (without piers).

Discharge Capacity Rating

The discharge rating curves for the four pier locations are illustrated in Figure 20. It was originally assumed that the pier locatio: 13 feet (3.96 meters) downstream from the crest was also downstream of the critical section. However, Figure 11 indicates a slight disturbancis in the water surface 2 feet (0.61 meter) upstream from the center pier. Althougls the average depth was below critical, the depth near the center pier and therefore the flow in this zone was slightly above the critical condition. This result was further verified by a plot of design discharge [$H=20$ feet (6.10 meters)] versus pier nose location, Figure 21. With the pier nose located 13 feet (3.96 meters) downstream from the crest, the design discharge is very close to the no-pier discharge.

A decrease in discharge is noted as the pier nose is moved up througn the crest to a location 7 ieet (2.13 meters) upstream from the crest. At some location upstream from the crest the lower end of the curve will level off to a constant discharge where the location of the pier nose will no longer affect the discharge rating.

As the pier nose was moved progressively downstieam from the position 7 feet (2.13 meters) upstream of the crest, to the crest, to 6 feei (1.83 meters) downstream from the crest and to 13 feet (3.96 meters) downstream from the crest, the effective spiliway length was increased by 38, 67, and 91 percent of the total pier width, respectively.

A model study of Horsestoe Dam spillway ${ }^{3}$ showed an increase in the effective spillway length of 59 percent of the total pier width, by moving the pier nose 20 feet (6.10 meters) downstream from the crest. The 0 'Sullivan crest yielded a greater increase in the effective length in a shorter distance [91 percent in 13 feet (3.96 meters)]. This was due to the relatively steep spillway profile of the O'Sullivan spillway compared to the broad crested horizontal weir profile of the Horseshoe spillway.

Discharge measurements were made for uniform controlled flow at gate openings of 4, 8, and 12 feet (1.22, 2.44 , and 3.67 meters), Figure 22. The gate openings were measured vertically from the spillway crest elevation to the bottom of the gate. Although these dis-

Figure 20. Discharge capacity (various pier locations).

Figure 21. Spillway design discharge (various pier locations).

Figure 22. Discharge capacity (gate-controlled flow).
charge measurements were made with the wide-flange pier nose placed on the spillway crest, the elliptical pier nose would yield identical results.

It is interesting to note the required height of the spillway gate as the piers are moved through the range from upstream to downstream of the crest. When the pier nose is located some distance upstream from the crest the gate seat is usually placed on the crest or immediately downstream from the crest. For the O'Sullivan Dam spillway with the pier nose located at the crest, the gate seat is 8.5 feet (2.59 meters) downstream from the crest and approximately 0.9 foot (0.27 meter) below the crest elevation. If the pier nosa were located 6 feet (1.83 meters) downstream from the crest, the gate seat would be approximateiy 15 feet (4.57 meters) downstream from the crest and approximately 2.8 feet (0.85 meter) below the crest. It is obvious that the greatest improvement in discherge for a given increase in gate height occurs as the piers are moved from the position 7 feet (2.13 meters) upstream to the crest. Once past the crest, any more shortening of the piers results in an accelerated increase in gate height which quickly leads to a point of diminishing economic returns.

REFERENCES

1. Thompson, Major H., "Wallace Dam," A paper presented at the ASCE National Meeting on Water Resources Engineering, Atlanta, Georgia, January 24-28, 1972.
2. Bradley, J. N., "Discharge Coefficients for Irregular Overfall Spillways," Engineering Monograph No. 9, USBR, March 1952.
3. Peterka, A. J., "Hydraulic Model Studies for the Modification of Horseshoe Dam Spillway," Hydraulic Report No. Hyd-248, USBR, October 4, 1948.

7-1750 (3-71)
Butapu of Ruciamariom

CONVERSION FACTORS-BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those pubished by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380 -68) except that additional factors (") commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "International System of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been edopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg , gives it an acceleration of $9.80665 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$, the standard acceleration of free fall toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body hoving a mass of 1 kg , gives it an acceleration of $1 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$. These units must be distinguished from the (inconstant) local weight of a body having a mrass of 1 kg , that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, becauss it is general practice to use "pound" rather than the technically correct term "pound-force," the term "Kilogram" (or derived mass unit\} has been used in this guide instead of 'kilogram-force" in expressing the conversion factors for forces. The newton unit of force will find increasing use. and is essential in Sl units.

Where approximate or nominal Englisth units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I
QUANTITIES AND UNITS OF SPACE

Multiply	By	Ta obtain
LENGTH		
Mil	25.4 (exactly)	Micron
Inches	25.4 (exactly)	. Millimeters
Inches	2.54 (exactly)*	- Centimeters
Feet	30.48 (exactiy)	- Centimeters
Feet	0.3048 (exactly)* Meters
Feet	0.0003048 (exactly)*	. Kilometers
Yards	0.9144 (exactly)	. Meters
Miles [statute)	1,609.344 (exactly)* .	. Meters
Miles ,	1.609344 (exactly	Kilometers
AREA		
Square inches	6.4516 (exactly)	Square centimeters
Square feet	*929.03 ...	Square centimeters
Square feet	0.092903	. . Square meters
Square yards	0.836127	. . Square meters
Acres	*0,40469 Hectares
Acres	-4,046.9	. . Square meters
Acres	${ }^{\circ} 0.0040469$	Squaie kilometers
Square miles	2.58999	Square kilometers
VOLUME		
Cubic inches	16.3871	Cubic centimeters
Cubic feet	0.0283168	. Cubic meters
Cubic yards	0.764555	Cubic meters
CAPACITY		
Fluid ounces (U.S.)	29.5737.	Cubic centimeters
Fluid ounces (U.S.)	29.5729	. . . Milliliters
Liquid pints [U.S.]	0.473179	Cubic decimeters
Liquid pints (U,S.)	0.473166 Liters
Ouarts (U.S.) . .	*946.358 . .	Cubie centimeters
Quarts (U.S.)	${ }^{*} 0.946331$ Liters
Gallons (U, S.)	-3,785.43	Cubic centimeters
Gations (U.S.) .	3.78543	Cubic decimeters
Gallons (U.S.)	3.78533 Liters
Gallons (U.S.)	*0.00378543	Cubic meters
Galtons (U.K.)	4.54609	Cubic decimeters
Gallons (U.K.)	4.54596	. Liters
Cubic feet	28.3160	. . . Liters
Cubic yards	${ }^{*} 764.55$. ${ }^{\text {L }}$ Liters
Acrefeet	* 1,233.5.	. Cubic meters
Acrefeet	-1,233,500 Liters

Table Il

Quantities and units of mechanics

Tabte 1i-Contintued

Grainshly t^{2} (wate vapor) transmistioni ,	16.7	Grams/24 hr m
Perms Ipermeancal	0.659	Meurit perms
Perm-inches (permeability)	1.67	mrextimete

Table IIf
OTHER QUANTITIES AND UNITS.

Multiply	B4	To ebtain
Cubic feet per square foot per day (seeprese)	-304,8	Liters per xquare meter per day
Pound-seconds per square foot (vissasity)	4.8824	Kilogrsm second per square meter
Square feet per second (viswasity)	-0.092903 Square meters per escond
Fahrenlieit degrees (change)*	$5 / 9$ exactly	Celsius or Kelvin degrees dchangel*
V vis per mil	0.03937	Kilowalts per millimeter
Lumens per square foot (foot candles)	10.764	Lumens per square meter
Ohmincircular mils per fogt	0.001662	Ohm-stuare millimetert per meter
Millicuries per cubic foat	-35.3147	Millinutios per cubic metar
Milliamps pers square foot	-10.7639	Miliamps per square meter
Gallons per square yard	${ }^{4} \mathbf{4}, 527219$	Liters per square meter
Pounds per inch	'0,17858 Killograms per Centimater

Lכ甘 $\operatorname{HIS8} \forall$

IJVYISEV

 pa!!!pow sem ubis ap fauuey yoeordde Aıeu!w!

10ทy.LSg४

REC-ERC-73-15
Burgi, P H
HYDRAULIC MODEL STUDIES OF O'SULLIVAN DAM, COLUMBIA BASIN PROJECT
Bur Reclam Rep REC-ERC-73-15, Div Gen Res, Sept 1973. Bureau of Reclamation, Denver, $17 \mathrm{p}, 22$ fig, 3 ref, append
DESCRIPTORS-/ hydraulic structures/*discharge coefficients/discharge measurement/
"hydraulic models/ spillway crests/ water surface profiles/ radial gates/ approach channe!s/ critical flow/ gate control/ *soillway piers/ hydraulic design
IDENTIFIERS-/ O'Sulilivan Dams, WA/Columbia River Basin Proj/ Potholes Reservoir, WA/ pier noses

REC-ERC-73-15
Burgi, P H
HYDRAÜ_IC MODEL STUDIES OF O'SULLIVAN DAM, COLUMBIA BASIN PROJECT
Bur Reclam Rep REC-ERC-73-15, Div Gen Res, Sept 1973. Bureau of Reclamation, Denver, 17 p, 22 fig, 3 ref, append

DESCRIPTORS-/ hydraulic structures/*discharge coefficients/discharge measurement/
thydraulic models/ spillway crests/ water sürface profiles/ radial gates/ approach channeis/ critical flow/ gate control/ *spillway piers/ hydraulic design
IDENTIFIERS-/ O'Sullivan Dam, WA/ Columbia River Basin Proj/ Potholes Reservoir, WA/ pier noses

REC-ERC-73-15
Burgi, PH
hydraulic model studies of ósullivan dam, columbia basin PROJECT
Bur Reclam Rep REC-ERC-73-15, Div Gen Res, Sept 1973. Bureau of Reclamation, Deriver, 17 p, 22 fig, 3 ref, append

DESCRIPTORS-/ hydraulic structures/*discharge coefficients/dischargs measurement/ *hydraulic models/ spillway crests/ water surface profites/ radial gates/ approach channels/ critical flow/ gate control/ "spillway piers/ hydraulic design
IDENTIFIERS-/ O'Sullivan Dam, WA/Columbia River Basin Proj/Potholes Reservoir, WA/ pier noses

REC-ERC-73-15

Burgi, PH
HYDRAULIC MODEL STUDIES OF O'SULLIVAN DAM, COLUMBIA BASIN PROJECT
Sur Reclam Rep REC-ERC-73-15, Div Gen Res, Sept 1973. Bureau of Reclamation, Denver, 17 p, 22 fig, 3 ref, append

DESCRIPTORS-/ hydraulic structures/ *discharge coefficients/discharge measurement/
thydraulic models/ spillway crests/ water surface profiles/ radial gates/ approach channels/ critical flow/ gata control/ *spill way piers/ hydraulic desion
IDENTIFIERS-/ O'Sullivan Dam, WA/ Columbia River. Basin Prōj/ Potholes Reservoir, WA/ pier noses

[^0]: UNITED STATES DEPARTMENT OF THE INTERIOR

[^1]: "Numbers designate references at end of text.

